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Abstract. Accurate blood type classification is cru-
cial for safe transfusions and clinical decision-making,
yet existing research is limited by the lack of stan-
dardized, publicly available datasets for training and
evaluating machine learning models. To address this
gap, we introduce ABO-BTI (ABO Blood Typing Im-
age), the first open-source dataset dedicated to blood
type classification using high-resolution agglutination
images. The dataset comprises 144 cases, with 432
images standardized to a resolution of 1280x590 pix-
els after processing. This study evaluates the effective-
ness of deep learning for blood type identification us-
ing the ABO-BTI database. Three models, ResNet50,
MobileNetV?2, and a proposed deep learning architec-
ture, were trained and tested on the dataset to as-
sess its suitability for machine learning applications.
The proposed model achieved an accuracy of 96.51%,
significantly outperforming MobileNetV?2 (12.64%) and
ResNet50 (72.41%). Comparative analysis with tradi-
tional machine learning methods further demonstrated
that deep learning provides competitive performance
while reducing reliance on handcrafted feature extrac-
tion. These results highlight ABO-BTI as a valuable
benchmark for advancing Al-driven blood type classifi-
cation. The findings also suggest the potential integra-
tion of deep learning-based classification into embed-
ded systems for real-time blood typing in point of care
and emergency settings. By providing a standardized

dataset and demonstrating the viability of deep learn-
ing models, this study lays the foundation for future re-
search in automated blood classification, with implica-
tions for both clinical applications and Al-driven med-
ical diagnostics.
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1. Introduction

Accurate blood typing is a critical component of trans-
fusion medicine and organ transplantation, ensuring
compatibility between donors and recipients |1,2]. The
identification of blood groups, primarily the ABO and
Rh systems, is essential for preventing hemolytic re-
actions, which can result in severe complications, in-
cluding hemolysis, renal failure, shock, and even death.
Blood typing is also crucial in maternal-fetal medicine,
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where Rh incompatibility can lead to hemolytic disease
of the newborn (HDN) [3/4], necessitating timely inter-
vention to prevent neonatal morbidity and mortality.

Mismatched transfusions due to blood typing errors
pose significant clinical risks [5].Incompatible transfu-
sions trigger immune-mediated hemolytic reactions, in
which the recipient’s antibodies attack transfused red
blood cells, causing their destruction. Acute hemolytic
transfusion reactions (AHTRs) [6] are among the
most serious complications, leading to disseminated in-
travascular coagulation (DIC), multiple organ failure,
and death in severe cases [7,/8]. Additionally, minor
discrepancies in antigen typing can result in delayed
hemolytic reactions, complicating patient recovery and
increasing hospitalization duration [9].

Beyond transfusion medicine, accurate blood typing
is vital for organ transplantation, where mismatches
can lead to hyperacute rejection, reducing graft sur-
vival rates [10,|11]. Furthermore, in forensic science
and genetic studies, blood group determination plays
a role in paternity testing and population genetics re-
search [12}/13].

In recent years, artificial intelligence (AI) has shown
great promise in advancing medical diagnostics, includ-
ing blood type classification [14]. However, a signifi-
cant challenge in this field is the lack of standardized,
open-source datasets. Reliable and diverse datasets are
important for training and validating AI models to en-
sure their robustness and generalizability across differ-
ent populations.

Unlike other areas of medical imaging and diagnos-
tics, where large public datasets exist [15,|16], blood
typing remains underrepresented in open-source med-
ical AI repositories. This lack of accessible data
hinders the development of Al-driven solutions and
slows progress in automating blood typing processes.
Additionally, the limited availability of standardized
datasets raises concerns about potential biases in Al
models, which may lead to misclassification risks in
real-world clinical applications.

The absence of widely accepted datasets also com-
plicates benchmarking efforts, making it difficult to
compare the performance of different AI models ob-
jectively. This challenge underscores the need for col-
laborative initiatives between medical institutions, re-
search organizations, and policymakers to create and
share high-quality, anonymized datasets. Addressing
this gap will be essential for advancing Al-based blood
typing solutions, improving diagnostic accuracy, and
enhancing patient safety in transfusion medicine and
transplantation.

Several studies have explored the application of Al in
blood analysis, particularly in tasks such as blood cell

classification, anemia detection, and disease diagnosis
[141/17].

In [17], the authors proposed a rehearsal-based con-
tinual learning approach aimed at improving the classi-
fication of white blood cells in diverse clinical settings.
The study utilizes three distinct datasets: Matek-19
[18], INT-20 and Acevedo-20 |19], comprising 13 and
10 classes, respectively. The study [20] by R. Nithya
and K. Nirmala uses images collected from Apollo Hos-
pital with the consent of participants and guided by a
histopathologist. The data set comprises a total of 435
images from 29 slides with 15 field views, including
180 normal images and 255 anaemic images. Another
study |21] involves a dataset developed in collaboration
with Shaukat Khanum Hospital and Research Center in
Pakistan. The dataset consists of blood smear images
collected from 50 patients, with 25 non-anemic and 25
anemic subjects. A total of 500 images were captured
using an Olympus Dp27 8.9-megapixel CMOS sensor
at a resolution of 1920x1080 pixels.

The authors of [22| presents a deep learning algo-
rithm to diagnose leukemia by analyzing microscopic
images of blood samples. The datasets used for this
study are ALL IDB1 and ALL _ IDB2, which are
publicly available and consist of blood samples from
leukemia patients. ALL IDBI includes 108 images
with 39000 blood components, while ALL IDB2 con-
tains cropped regions of cells.

In this study, we introduce ABO-BTI, the first open-
source dataset comprising high-resolution ABO blood
typing images with standardized annotations. Unlike
prior studies, which primarily focus on broader hema-
tological analysis such as blood cell classification and
disease detection, ABO-BTT is specifically designed to
facilitate the development, benchmarking, and clin-
ical validation of AI models for ABO blood group
classification. By providing real-world agglutination
images with verified annotations, this dataset estab-
lishes a foundation for reproducible research and cross-
institutional collaboration in Al-driven blood typing.
The ABO-BTI dataset offers a diverse collection of im-
ages capturing various blood types and agglutination
patterns under standardized conditions, ensuring ro-
bustness and generalizability in model training. Its
availability addresses the lack of publicly accessible
datasets necessary for algorithm evaluation and com-
parative benchmarking. Furthermore, the inclusion of
high-quality annotations supports the development of
AT models capable of automating blood typing with
high accuracy, thereby enhancing transfusion safety
and mitigating the risks associated with human error.
By fostering innovation in Al-assisted blood classifi-
cation, ABO-BTI represents a significant step toward
integrating machine learning into transfusion medicine.
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Fig. 1:
training and evaluation, and performance analysis.

Beyond its primary application in Al-driven blood
typing, ABO-BTI has the potential to support a wide
range of additional use cases. In medical education
and training, the dataset can serve as a valuable re-
source for teaching students and laboratory profession-
als how to interpret agglutination patterns accurately.
By providing a standardized set of annotated images,
ABO-BTT can aid in developing interactive learning
tools and simulation-based training programs, improv-
ing diagnostic proficiency and reducing human error in
manual blood typing procedures. Furthermore, ABO-
BTT can contribute to quality control and standardiza-
tion efforts in clinical laboratories. Automated systems
trained on this dataset can assist laboratory techni-
cians in verifying blood typing results, flagging ambigu-
ous or potentially erroneous classifications, and ensur-
ing consistency in testing procedures. This application
is particularly relevant in high-throughput transfusion
centers, where maintaining accuracy across large vol-
umes of blood samples is critical for patient safety. The
rest of this paper is organised as follows. In Section |
2] materiels and methods are described. Section [3]
| reports the experimental results with discussions. Fi-
nally, the last section [4. | presents the conclusion and
future works.
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Workflow of the proposed deep learning-based ABO blood typing classification model, including dataset preprocessing,

2. Materials and Methods

Figure. illustrates the workflow of an ABO blood
typing classification model based on deep learning tech-
niques. The process begins with the ABO Blood
Typing Image dataset (ABO-BTI), which comprises
images of blood agglutination reactions. These im-
ages undergo pre-processing steps, including normal-
ization and data augmentation, to enhance model per-
formance. The dataset is then split into training (80%)
and testing (20%) subsets. The training data is utilized
to optimize model parameters, while the test data is
used for final evaluation. The proposed model, based
on a CNN architecture, is trained to classify blood sam-
ples into eight ABO blood groups (A+, A-, B+, B-,
AB+, AB-, O+, and O-). Performance analysis is con-
ducted using standard classification metrics, including
accuracy, precision, recall, and F1-score, to assess the
effectiveness of the model in blood group identification.

2.1. Data Collection

The data analyzed in this study were collected from
two healthcare institutions in Annaba, Algeria: cen-
ter Hospitalo-Universitaire Dr Dorban and Abdallah
Nouaouria El Bouni Specialized Hospital. These fa-
cilities serve as regional referral centers, providing a
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representative sample of demographic and clinical di-
versity within the province. Data extraction focused
on the distribution of blood types in sex and age
groups according to the ABO Blood Group System
, with anonymized patient records spanning multiple
years. Blood agglutination [24] assays were conducted
by trained personnel following standardized laboratory
protocols to ensure reproducibility and minimize vari-
ability. Images of agglutination patterns were captured
using consistent imaging settings.

Collection of the ABO-BTI dataset was done us-
ing the World Health Organization (WHO) standards
on ABO and RhD typing of blood for clinical
relevance and worldwide comparability. Every image
file holds four sub-images arranged in 2x2 quadrants.
These correspond to the four test tubes used in the
routine ABO/D blood typing;:

e Left—Anti-A reaction

e Middle right—Anti-B reaction

e Middle left—Positive control (Anti-AB)
e Right—Anti-D (Rh) reaction

The four tubes were:Prepared and drawn in equal
aliquots from a single specimen of blood. Were in-
cubated in the same conditions. Were captured in a
fixed position using a digital camera and controlled
lighting during a single imaging session to yield the
same scale, orientation, and illumination. The inclu-
sion of a positive control (Anti-AB) aids in confirming
the presence of agglutination of red blood cells with
antibodies, thereby validating sample reactivity. This
also aids in distinguishing true negatives, like the ab-
sence of reactions because of a luxury of A/B antigens
from non-reactive technical failures of cells, reagents,
and surfaces.

Fig. [2 presents a representative image from the
ABO-BTTI dataset, demonstrating the characteristic
morphological features utilized for subsequent deep
learning-based classification.

1) Data Collection Procedures

The Source Data was meticulously curated to ensure a
robust and representative data set for classification of
blood types. The inclusion criteria required the avail-
ability of a documented blood type, limited to the eight
primary categories. A+, A-, AB+, AB-, B+, B-, O+,
and O-, alongside essential demographic metadata, in-
cluding sex and age. To facilitate a comprehensive age-
based analysis, participants were systematically strat-
ified into seven distinct age groups: newborns (0-28
days), infants (1-12 months), children (1-12 years),
adolescents (13-18 years), young adults (19-35 years),

Fig. 2: Sample agglutination pattern captured during ABO-
BTI dataset collection by a research team member.

adults (36-64 years) and seniors (65 + years). This
stratification, described in Table [I] , enables a struc-
tured evaluation of the distribution of the type of blood
in different stages of development.

The composition of the initial data set comprised
164 cases, with a gender distribution of 66% female
(108 cases) and 34% male (56 cases). The structured
organization of age groups and the balanced inclusion
of different blood types contribute to the suitability of
the data set for machine learning applications in trans-
fusion medicine, biomedical imaging, and Al-driven di-
agnostics.

Tab. 1: Age group distribution by gender. This table presents
the demographic breakdown of participants in the
ABO-BTI dataset, categorizing individuals into seven
distinct age groups.

Age Group Women | Men | Total
Newborns (0-28 days) 11 6 17
Babies (1-12 months) 11 6 17
Children (1-12 years) 22 11 33
Adolescents (13-18 16 8 24
years)

Young Adults (19-35 27 14 41
years)

Adults (36-64 years) 16 8 24
Seniors/Elderly (65+ 5 3 8
years)

Total 108 56 164
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To facilitate systematic and standardized data col-
lection, a structured Google Form was designed and im-
plemented to gather essential demographic and blood
type information from participants. This approach
ensured efficient data entry, real-time validation, and
centralized management, enabling streamlined compi-
lation and subsequent analysis. By utilizing an online
form, data collection was conducted in a consistent and
organized manner, minimizing errors and ensuring the
reliability of recorded information.

The form was structured to capture critical vari-
ables necessary for constructing the dataset. Fach
participant was given an anonymized unique identifi-
cation number, ensuring data traceability while main-
taining confidentiality. Age categorization was an
integral component, with participants stratified into
seven predefined groups: newborns (0-28 days), in-
fants (1-12 months), children (1-12 years), adoles-
cents (13-18 years), young adults (19-35 years), adults
(36—64 years), and seniors (65+ years). Gender iden-
tification was recorded as either male or female, con-
tributing to demographic diversity within the dataset.
Additionally, participants were required to report their
blood type, selecting from the eight primary ABO and
Rh blood group categories.

To ensure data integrity, the form was configured to
enforce mandatory responses for all fields, preventing
incomplete submissions and enhancing dataset com-
pleteness. Internal validation mechanisms minimized
inconsistencies, while duplicate entries were identified
and filtered during the preprocessing stage. No person-
ally identifiable information beyond the anonymized
unique identifier was collected, ensuring compliance
with ethical research standards and protecting partic-
ipant confidentiality.

2) Data Description

The ABO-BTI dataset consists of 164 systematically
collected blood typing samples from two major
hospitals in Annaba, Algeria: Centre Hospitalo-
Universitaire Dr Dorban and E.H.S Abdallah
Nouaouria El Bouni. This dataset has been meticu-
lously curated to support advancements in medical
imaging, Al-driven diagnostics, and automated blood
type classification. By ensuring a balanced represen-
tation of blood types and demographic diversity, it
facilitates the development of generalizable and clini-
cally relevant machine learning models for transfusion
medicine and computational diagnostics.

To mitigate potential biases in Al model training,
gender representation within the dataset was carefully
structured, with 66% of cases from female patients (108
samples) and 34% from male patients (56 samples).
This proportion is essential for ensuring that trained

models maintain fairness, reliability, and unbiased pre-
dictive accuracy across different demographic groups.

Furthermore, the dataset maintains an equitable dis-
tribution of blood types, ensuring that each major cat-
egory within the ABO and Rh systems is adequately
represented. This structured approach is paramount
for training robust classification models, capable of ac-
curately predicting blood types across diverse popula-
tions. The breakdown of blood type distribution by
gender is detailed in Table [2] reinforcing the dataset’s
suitability for Al-driven applications in transfusion
medicine and clinical decision support systems.

Tab. 2: Blood Type Distribution by Gender. This table pro-
vides a detailed breakdown of blood type distribution
within the ABO-BTI dataset, categorizing cases by gen-

der.
Blood | Women | Men | Total
Type | (66%) | (34%) | Cases
A+ 15 8 23
A- 13 7 20
AB- 12 6 18
AB+ 13 6 19
B- 12 6 18
B+ 14 7 21
O- 13 7 20
O+ 17 8 25
Total 108 56 164

A summary of overall gender distribution is pre-
sented in Table [3] highlighting the dataset’s demo-
graphic diversity. The inclusion of both sexes in well-
defined proportions ensures equitable model perfor-
mance, reducing gender-based discrepancies in classi-
fication accuracy while enhancing the dataset’s relia-
bility for machine learning applications in biomedical
research.

Tab. 3: Overall Sex Distribution. This table presents the dis-
tribution of participants in the ABO-BTI dataset by

gender.
Sex Number of Cases | Percentage (%)
Women 108 66%
Men 56 34%
Total 164 100%

This structured dataset not only enhances the ro-
bustness of Al-driven classification models but also
ensures equitable performance across patient demo-
graphics. By addressing potential sources of bias, this
dataset serves as a valuable resource for developing
machine learning applications in transfusion medicine,
computational pathology, and biomedical diagnostics.

Each blood sample in the ABO-BTI dataset is ac-
companied by high-resolution agglutination images,
which are critical for training machine learning mod-
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els in automated blood type classification. These im-
ages capture a diverse range of agglutination patterns,
enabling Al models to learn fine-grained distinctions
between different blood types. The dataset contains
a total of 492 images, with the distribution per blood
type detailed in Table [4]

Tab. 4: Total Image Numbers per Blood Type. This table
presents the distribution of images in the ABO-BTI
dataset across the eight primary blood types.

Blood Type | Total Cases | Total Images
A+ 23 69
A- 20 60
AB- 18 54
AB+ 19 57
B- 18 54
B+ 21 63
O- 20 60
O+ 25 75
Total 164 492

The inclusion of multiple images per sample signifi-
cantly enhances the dataset’s robustness and applica-
bility. This diverse collection of images not only sup-
ports classification tasks but also facilitates anomaly
detection, quality control in blood testing laborato-
ries, and educational initiatives in medical and biologi-
cal sciences. By providing high-resolution images with
standardized annotations, the ABO-BTI dataset estab-
lishes a valuable benchmark for Al-driven research in
transfusion medicine.

This dataset holds substantial potential for advanc-
ing Al applications in clinical practice. By providing
a well-balanced collection of high-resolution images,
the ABO-BTI dataset enables researchers to develop
and benchmark AI models for blood type classifica-
tion, promote collaborative advancements in Al-driven
diagnostics, and support clinical validation efforts. Be-
yond classification, the dataset is highly applicable to
automated blood typing, laboratory quality assurance,
and medical education, reinforcing its role as a founda-
tional resource for Al-driven innovations in transfusion
medicine.

The ABO-BTI dataset provides a comprehensive
representation of blood type distribution across differ-
ent age groups and genders. This section details the
demographic breakdown of blood types in both male
and female populations, which is essential for ensuring
robust AI model training and clinical research. The
dataset consists of 164 total cases, with 108 female
cases (66%) and 56 male cases (34%). Understanding
the variation of blood types across different age groups
enhances the applicability of the dataset for research
in transfusion medicine, immunohematology, and Al-
driven diagnostics.

The male cohort consists of 56 cases, distributed
across various age groups. Table[5|presents the detailed
blood type distribution among men by age category.

The male population shows an even distribution
across different blood types, with O+ and A+ being
the most frequent. The highest concentration of cases
is among young adults (19-35 years), indicating the age
group most represented in the dataset.

The female cohort consists of 108 cases, covering a
wider range of age groups. Table [ provides a detailed
overview of the blood type distribution among women
by age category.

The female population shows a more varied age dis-
tribution, with a notable representation in the young
adult (19-35 years) and child (1-12 years) categories.
The most common blood type among women is O+,
followed by A+.

The distribution of blood types across genders and
age groups in this dataset ensures diversity, making
it an invaluable resource for research in transfusion
medicine and Al-driven diagnostics. The relatively
high proportion of young adults in both genders sug-
gests that the dataset is well-suited for training models
aimed at clinical applications involving active donors
and patients undergoing transfusions. Additionally,
the inclusion of newborns and children provides oppor-
tunities for research in pediatric transfusion strategies
and congenital blood disorders.

B A+
H A-
H AB+
O AB-
[ B-
O B+
8O-
OO+

Fig. 3: Blood Type Distribution in the ABO-BTI Dataset. The
figure presents the proportional representation of differ-
ent blood types within the dataset, covering the eight
primary ABO and Rh factor groups.

Figure [3] illustrates the distribution of blood types
within the ABO-BTI dataset, highlighting the relative
prevalence of each blood group in the studied popula-
tion. As depicted in the pie chart, the most common
blood type is O+, accounting for 15% of the total cases,
followed by A+ at 14%. Other major blood groups
include B+ (13%) and A- (12%). Meanwhile, AB-
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Tab. 5: Blood Type Distribution Among Men by Age Group. This table presents the distribution of blood types within the male
cohort of the ABO-BTI dataset, categorized across seven distinct age groups.

Blood Type Newborns Babies Children Adolescents | Young Adults Adults Seniors Total
(0-28 days) | (1-12 months) | (1-12 years) | (13-18 years) | (19-35 years) | (36-64 years) | (65+ years)
A+ 1 1 2 1 2 1 0 8
A- 1 1 2 1 2 1 0 7
AB- 1 1 2 1 1 0 0 6
AB-+ 1 1 2 1 1 0 0 6
B- 1 1 2 1 1 0 0 6
B+ 1 1 2 1 2 1 0 8
O- 1 1 2 1 1 1 0 7
O+ 1 1 2 1 2 1 0 8
Total 8 8 15 8 12 5 0 56

Tab. 6: Blood Type Distribution Among Women by Age Group. This table presents the distribution of blood types within the
female cohort of the ABO-BTI dataset, categorized across seven age groups.

Blood Type Newborns Babies Children Adolescents | Young Adults Adults Seniors Total
yp (0-28 days) | (1-12 months) | (1-12 years) | (13-18 years) | (19-35 years) | (36-64 years) | (65-+ years)
A+ 2 2 3 2 1 2 1 13
A- 1 1 2 2 4 2 1 12
AB- 1 1 3 2 3 2 0 12
AB+ 1 1 3 2 3 2 1 13
B- 1 1 3 2 3 2 0 12
B+ 2 2 3 2 4 2 1 16
O- 1 1 3 2 3 2 0 12
O+ 2 2 3 3 4 3 1 18
Total 11 11 23 17 25 16 5 108

(11%), B- (11%), and O- (12%) demonstrate moderate
prevalence, with AB- and B- being the least frequent
at 11%. This distribution aligns with general popu-
lation trends while emphasizing slight variations that
may be attributed to regional genetic factors or sam-
ple demographics. Understanding such distributions
is crucial for blood transfusion compatibility studies,
clinical research, and the development of Al-based di-
agnostic models.

3) Cleaned Data

The preprocessing stage is a critical step in ensuring
the accuracy, consistency, and reliability of the dataset.
This process involved systematically addressing dupli-
cate entries, removing poor-quality images, such as
blurry ones, and resolving inconsistencies, such as mis-
classified blood types. These measures were essential
to maintaining data integrity and ensuring that the
dataset adhered to standardized demographic and clin-
ical classifications.

Following the data cleaning process, the final dataset
comprised 144 cases, consisting of 95 female and 49
male participants. To ensure uniformity in image rep-
resentation, all collected images were resized to a fixed
resolution of 1280x590 pixels. Standardizing image di-
mensions was necessary to maintain consistency across
the dataset and facilitate efficient processing by deep
learning models [|26] [27].

In the data cleaning phase, we addressed the class
imbalance in the ABO blood group image dataset to

ensure unbiased model performance for blood type
classification. The initial dataset exhibited significant
disparities across the A+, A-, AB+, AB-, B+, B-, O+,
and O- classes, with sample sizes ranging from 18 cases
and 54 images (AB-, B-) to 25 cases and 75 images
(O+), totaling 164 cases and 492 images (Table[d). To
resolve this imbalance, we implemented a downsam-
pling strategy by aligning all classes with the smallest
class size, which consisted of 18 cases and 54 images.
During this process, we prioritized the removal of low-
resolution images to maintain high-quality inputs for
the model. This resulted in a balanced dataset with 18
cases and 54 images per class, totaling 144 cases and
432 images (Table [7)).

Tab. 7: Blood Type Distribution by Sex

Blood | Women Men Total
Type (66%) (34%) | Cases

A+ 12 6 18
A- 12 6 18
AB+ 11 7 18
AB 12 6 18
B+ 12 6 18
B 12 6 18
(0] 12 6 18
O+ 12 6 18

Total 95 49 144

The pre- and post-balancing details are summarized
in Table [4] and Table [7] This preprocessing step miti-
gated bias toward overrepresented classes, ensured con-
sistent image quality, and enhanced the fairness and

(©2026 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 7
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(a) A Rh-

(b) AB Rh-

(d) O Rh-

(e) O Rb-

(g) O Rh-

(h) O Rh-

Fig. 4: Representative images from the dataset, illustrating samples from each blood type class after preprocessing. The figure
showcases agglutination patterns corresponding to the eight primary blood type categories.

reliability of subsequent machine learning model train-
ing.

To provide a visual representation of the dataset
composition, Figure [ illustrates sample images from
each blood type class. This figure serves as an impor-
tant reference, highlighting the diversity and unifor-
mity of the dataset across all categories.

By implementing these preprocessing steps, the
dataset was refined to support reliable and repro-
ducible experiments, enabling a rigorous assessment of
its suitability for automated blood type classification.

The ABO-BTI dataset,
resolution agglutination images and associated
metadata, is publicly available for research
purposes. The dataset can be accessed at:

|https://doi.org/10.5281/zenodo.16971046.

including all high-

In order to protect donor privacy and comply with
ethical protocols, individual-level metadata (e.g., exact
age, gender, hospital ID) is not included in the public
release. However, the aggregate demographic data dis-
played in Tables [f| and [f] were obtained from summary

(©2026 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 8
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Tab. 8: Age group distribution by gender. This table presents
the demographic breakdown of participants in the
ABO-BTI dataset, categorizing individuals into seven
distinct age groups.

Age Group Women | Men | Total
Newborns (0-28 days) 11 6 17
Babies (1-12 months) 11 6 17
Children (1-12 years) 22 11 33
Adolescents (13-18 16 8 24
years)

Young Adults (19-35 27 14 41
years)

Adults (36-64 years) 16 8 24
Seniors/Elderly (65+ 5 3 8
years)

Total 108 56 164

records that are anonymized and were acquired with
ethical approval and informed consent.

2.2.  Preprocessing

Effective data preprocessing is crucial for ensuring the
robustness and generalizability of machine learning
models [28|, particularly in medical imaging tasks such
as automated blood type classification. The ABO-BTI
dataset undergoes a series of preprocessing steps de-
signed to normalize, augment, and enhance the train-
ing data while preserving critical diagnostic informa-
tion. These preprocessing techniques not only improve
model generalization by reducing overfitting but also
ensure that the trained model can effectively handle
real-world variations in blood agglutination images.

1) Normalization and Rescaling

To standardize pixel intensity values across all images,
min-max normalization [29] applied by rescaling pixel
values to the [0,1] range. This is achieved by divid-
ing each pixel intensity by 255, ensuring that all input
values remain within a uniform scale. This normal-
ization step is critical in deep learning models as it
prevents numerical instability, accelerates convergence
during training, and ensures that different images are
processed on a consistent scale.

Mathematically, the rescaling operation is defined as

follows:
I

= — 1
255 (1)
Where I represents the original pixel intensity (ranging

from 0 to 255), and I’ is the rescaled intensity in the
range [0,1].

U

2) Data Augmentation

To enhance the dataset’s diversity and improve model
generalization, extensive data augmentation is applied
to the training images. Augmentation artificially ex-
pands the dataset by applying a series of random
transformations, which simulate real-world variations
in imaging conditions [32|. This process significantly
reduces overfitting, enabling the model to learn robust
and invariant features from blood agglutination pat-
terns. The following augmentation techniques are in-
corporated into the preprocessing pipeline:

e Random Rotation (+40°): Introduces variability
in the orientation of blood smear images, simulat-
ing natural variations in image capture.

e Width and Height Shifts (£20%): Offsets the im-
ages horizontally and vertically by up to 20% of
their original dimensions to account for slight mis-
alignments in blood sample imaging.

e Shear Transformation (0.2 Factor): Applies affine
transformations to modify the geometric perspec-
tive of the images, reinforcing robustness against
viewpoint variations.

e Zooming (+20%): Simulates differences in magni-
fication by randomly zooming in or out, ensuring
that the model remains scale-invariant.

e Horizontal Flipping: Introduces left-right symme-
try by randomly flipping images, aiding in the
detection of agglutination patterns regardless of
their orientation.

These augmentation techniques are applied exclusively
to the training dataset to enhance variability, while the
test dataset remains unaltered to ensure that perfor-
mance evaluation is conducted on unaltered, real-world
images.

2.3. Model Development

To assess the suitability of the proposed ABO-BTI
dataset for blood type classification, three deep learn-
ing models were implemented and evaluated: a cus-
tom CNN, ResNet50, and MobileNetV2. These mod-
els were selected to encompass a range of architectural
complexities, from a relatively shallow CNN to deeper,
more computationally intensive networks. The objec-
tive of this evaluation was to determine whether the
dataset provides adequate feature representation to fa-
cilitate accurate blood type classification.
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1) Proposed CNN Model

The proposed model is a custom CNN architecture, as
shown in Table [9] designed to serve as a baseline for
classification performance on the ABO-BTI dataset.
It comprises three convolutional layers [33], each fol-
lowed by LeakyReLU activation [34], max pooling [35],
and dropout regularization to mitigate overfitting. The
feature maps are subsequently flattened and passed
through a fully connected layer, followed by a softmax
activation function [36] to produce the final classifica-
tion output.

This model was designed to test whether a relatively
lightweight architecture is sufficient for distinguishing
blood types based on the given dataset. The inclusion
of dropout layers enhances generalizability by reducing
reliance on specific neurons, thereby improving robust-
ness against overfitting.

2) ResNet50

In this study, ResNet50 [30] was initialized with
ImageNet-pretrained weights to benefit from prior fea-
ture representations learned from large-scale image
datasets. The architecture was subsequently fine-tuned
by modifying the final classification layers. The origi-
nal fully connected layers were replaced with a Global
Average Pooling (GAP) layer, followed by a fully con-
nected layer with 1,024 neurons and ReLU activation.
The final classification was performed using a softmax
output layer with 8 neurons, corresponding to the num-
ber of blood type categories, as outlined in Table [I0]

The inclusion of ResNet50 in this study allows for
an assessment of whether a deep, highly expressive
model provides significant performance improvements
over shallower architectures when trained on the ABO-
BTT dataset.

3) MobileNetV2

Similar to ResNet50, MobileNetV2 [31] was initialized
with ImageNet-pretrained weights to leverage transfer-
able feature representations. To adapt the model for
the ABO-BTTI dataset, the original classification head
was replaced with a GAP layer, followed by a fully
connected layer with 1,024 neurons and ReLLU activa-
tion. The final classification was performed using a
softmax output layer with 8 neurons, ensuring compat-
ibility with the dataset’s categorical labels, as detailed
in Table [l

The implementation of MobileNetV2 in this study
facilitates an evaluation of lightweight neural networks
in medical AI applications. By assessing its per-
formance in comparison to deeper architectures such

as ResNet50, this analysis provides valuable insights
into the feasibility of deploying efficient and memory-
conscious blood type classification models in real-
world, low-power computing environments.

3. Results and Discussion

This section presents the experimental results of the
proposed deep learning model and the transfer learn-
ing architectures evaluated for ABO-BTI blood typing
classification. The evaluation includes the experimen-
tal setup, training configuration, performance metrics,
and confusion matrix analysis.

3.1. Experimental Setup

The computational environment was designed to lever-
age both CPU and GPU resources for optimized per-
formance. The hardware setup included an Intel Core
i3-10100F processor with four cores and eight threads,
along with an NVIDIA GTX 1650 graphics card featur-
ing 4GB of GDDR6 VRAM. The system was equipped
with 8GB of DDR4 RAM and operated on Linux Mint
22.1 (64-bit). The GTX 1650, while categorized as
an entry-level GPU, provided CUDA-enabled acceler-
ation for deep learning computations. Given the con-
straints of 4GB VRAM, careful optimization was re-
quired, including batch size adjustments and memory-
efficient training strategies to prevent resource exhaus-
tion which will be discussed later on this section.

The software environment was designed to ensure
compatibility with deep learning frameworks and max-
imize computational efficiency. Python 3.12.3 was used
as the primary programming language. The deep learn-
ing models were implemented using TensorFlow 2.18.0,
which was optimized for GPU acceleration through
CUDA 12.4. The integration of TensorFlow with
CUDA allowed for significant reductions in training
time compared to CPU-based execution.

3.2. Training Configuration

The deep learning models were trained using an 80/20
data split, where 80% of the dataset was allocated for
training and 20% for validation. This partitioning en-
sures that the models are exposed to a sufficiently di-
verse set of samples during training while preserving an
independent subset for evaluating generalization per-
formance. Given the hardware constraints, particu-
larly the GTX 1650 GPU with 4GB GDDR6 VRAM,
specific optimizations were implemented to efficiently
manage memory usage while maintaining high model
performance.
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Tab. 9: Proposed CNN Architecture for Blood Type Classification.

Layer Type Output Shape | Parameters
1 Conv2D (32, 3x3) | LeakyReLU (0.1) | (118, 256, 32) 896

2 MaxPooling2D (2x2) (59, 128, 32) 0

3 Dropout (0.25) (59, 128, 32) 0

4 Conv2D (64, 3x3) + LeakyReLU (0.1) (59, 128, 64) 18,496
5 MaxPooling2D (2x2) (30, 64, 64) 0

6 Dropout (0.25) (30, 64, 64) 0

7 Conv2D (128, 3x3) | LeakyReLU (0.1) | (30, 64, 128) 73,856
8 MaxPooling2D (2x2) (15, 32, 128) 0

9 Dropout (0.4) (15, 32, 128) 0

10 Flatten (61440) 0

11 Dense (128) + LeakyReLU (0.1) (128) 7,864,448
12 Dropout (0.3) (128) 0

13 Dense (8, softmax) (8) 1032

Tab. 10: Modified Classification Layers in ResNet50.

Layer

Description

Initial Weights

ImageNet Pretrained Weights

Global Average Pooling (GAP)

Reduces feature maps to a single value per channel

Fully Connected Layer

1,024 neurons, ReLLU activation

Softmax Output Layer

8 neurons (corresponding to blood type classes)

Tab. 11: Modified Classification Layers in MobileNetV2.

Layer

Description

Initial Weights

ImageNet Pretrained Weights

Global Average Pooling (GAP)

Reduces feature maps to a single value per channel

Fully Connected Layer

1,024 neurons, ReLU activation

Softmax Output Layer

8 neurons (corresponding to blood type classes)

To standardize input dimensions, ResNet50 and Mo-
bileNetV2 were trained using input images resized
to 224x224 pixels, whereas the proposed model was
trained with images resized to 118x256 pixels. These
resizing strategies were chosen to optimize computa-
tional efficiency while ensuring compatibility with the
architectures’ input layer requirements.

To enhance model robustness and prevent overfit-
ting, data augmentation techniques were applied to
the training set using the ImageDataGenerator class.
The augmentation pipeline included random rotations
(+40°), width and height shifts (£20% of image di-
mensions), shear transformations (+£20%), zoom vari-
ations (£20%), and horizontal flipping. Additionally,
all input images were normalized by rescaling pixel val-
ues to the range [0,1]. These transformations increased
dataset variability, allowing the models to learn invari-
ant features and improve generalization.

The training batch size was set to 8, primarily due
to the limited VRAM capacity of the GTX 1650 GPU.
This batch size was chosen to prevent memory overflow
while ensuring stable model training. The categori-
cal cross-entropy loss function was employed for multi-

class classification, with the models producing prob-
ability distributions across blood type categories. To
address class imbalances, class weights were computed
dynamically using the balanced class weight strategy,
ensuring that underrepresented blood types had a pro-
portional influence on the optimization process.

The models were compiled using the Adam optimizer
with a learning rate of 1 x 10~%. The choice of Adam as
the optimization algorithm ensures adaptive learning
rates for efficient convergence, while the selected learn-
ing rate balances fast convergence with stable gradient
updates. Training was conducted for 20 epochs, with
the number of steps per epoch dynamically determined
based on dataset size.

The validation set underwent the same preprocess-
ing pipeline as the training data but without augmen-
tation, ensuring an unbiased evaluation of model per-
formance. Moreover, shuffling was disabled for the val-
idation generator to maintain label consistency during
performance assessment.
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Tab. 12: Performance comparison of ResNet50, MobileNetV2, and the proposed model in terms of accuracy, precision, recall, and

F1-score.
Model Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%)
Proposed CNN 96.90 + 0.67 97.24 + 0.55 96.90 + 0.67 96.87 + 0.67
ResNet50 70.50 + 12.18 71.06 £ 15.75 | 70.50 £ 12.18 | 65.58 £ 14.60
MobileNetV2 10.34 £ 3.04 1.39 £ 0.18 10.34 £ 3.04 2.55 £ 0.37

Note: Values represent mean + standard deviation from 3 independent runs.

3.3. Deep Learning Performance

The results presented in Table [12] demonstrate a sub-
stantial variation in classification performance among
the three models, ResNet50, MobileNetV2, and the
proposed model, when evaluated on the ABO-BTI
dataset.

ResNet50 achieved an accuracy of 70.50 + 12.18,
with a precision of 71.06 + 15.75 and an Fl-score of
65.58 + 14.60, indicating a moderate ability to differen-
tiate between blood types. The recall value of 70.50 4+
12.18 suggests that while the model correctly identified
a reasonable proportion of positive instances, it still
encountered difficulties in distinguishing certain blood
types. This performance aligns with expectations, as
ResNet50 is a deep convolutional model with robust
feature extraction capabilities. However, its computa-
tional requirements and architectural complexity may
have limited its effectiveness in this specific classifica-
tion task.

In contrast, MobileNetV2 exhibited significantly
lower performance across all metrics, attaining an accu-
racy of 10.34 £ 3.04, a precision of 1.39 + 0.18, a recall
of 10.34 + 3.04, and an Fl-score of 2.55 + 0.37. These
results suggest that MobileNetV2 struggled to learn
meaningful representations from the dataset, likely due
to its lightweight design, which prioritizes computa-
tional efficiency over expressive feature extraction. The
particularly low precision indicates a high frequency
of misclassifications, while the poor recall suggests a
general failure in correctly identifying blood type cate-
gories. The overall weak performance of MobileNetV2
underscores its limitations when applied to agglutina-
tion images that require more intricate feature extrac-
tion mechanisms.

The proposed model significantly outperformed both
baseline architectures, achieving an accuracy of 96.90
+ 0.67, with a precision of 97.24 + 0.55, a recall of
96.90 £ 0.67, and an Fl-score of 96.87 £ 0.67. These
results demonstrate the model’s superior ability to cap-
ture and distinguish relevant features from the aggluti-
nation patterns, leading to a substantial improvement
in classification accuracy. The high precision and recall
indicate that the model is capable of correctly clas-
sifying blood types with minimal errors while main-
taining a balanced distribution of correctly identified
instances across different categories. The F1-score fur-

ther supports the model’s reliability, confirming its ro-
bustness in handling the classification task with high
consistency.

The comparative results highlight the importance of
model selection in the context of blood type classifi-
cation from agglutination images. While deeper ar-
chitectures such as ResNet50 offer reasonable perfor-
mance, their reliance on extensive computational re-
sources may limit their practical applicability. On the
other hand, lightweight models such as MobileNetV2,
while efficient, may lack the representational capacity
required for accurate classification in this domain. The
proposed model demonstrates that a well-structured
architecture, specifically optimized for this task, can
achieve superior performance, making it a more suit-
able candidate for automated blood typing applications
in clinical and laboratory settings.

100 1

80 1 }
60
Proposed CNN

ResNet50
MobileNetV2

Performance (%)

40

201

I I

Precision Recall F1-Score

Metrics

Accuracy

Fig. 5: Performance comparison of Proposed CNN, ResNet50,
and MobileNetV2 models on blood type classification
using mean + standard deviation.

The bar plot presented in Figure [5] illustrates the
mean performance (+ standard deviation) of three
models, proposed model, ResNet50, and MobileNetV2,
on blood type classification across four key evaluation
metrics across three runs. The Proposed model con-
sistently outperforms the other models, achieving high
scores (above 95%) with minimal variability across all
metrics, indicating high reliability and effectiveness.
In comparison, ResNet50 demonstrates moderate per-
formance (approximately 70%) but with large error
bars, reflecting greater inconsistency. MobileNetV2

(©2026 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 12



SARA, D. ¢t al.

VOLUME: XX | NUMBER: X | 2026 | MONTH

performs significantly worse, with scores below 15% on
all metrics and relatively high variance, suggesting lim-
ited suitability for this task.

3.4. Confusion Matrix Analysis

The confusion matrix, presented in Figure[f] illustrates
the classification performance of MobileNetV2 across
multiple classes. It is evident that the model consis-
tently predicts a single class for all test samples, as
indicated by the high concentration of values in one
column. This behavior suggests a severe classification
failure, likely due to suboptimal feature extraction or
convergence issues during training. The absence of true
positive classifications across multiple classes indicates
that the model struggles to generalize effectively, po-
tentially as a result of poor weight updates or insuffi-
cient feature separability in the dataset.

Confusion Matrix - MobileNetv2

AB negative - 0 0 0 3} 0 0 0

Apositive- 0 0 0 0 0 0 0
B negative - 0 0 0 0 0 0 0
A negative - 0 0 0 0 0 0 0
o
g
B positive - 0 0 0 0 0 0 0
O positive - 0 0 0 0 0 0 0
AB positive - 0 o 0 0 0 0 0
Onegative- 0 0 0 0 0 0 0

AB negativeA positive B negative A negative B positive O positive AB positiveO negative
predicted

Fig. 6: Confusion matrix for MobileNetV2 classification re-
sults. The model exhibits a strong bias toward a sin-
gle class, indicating poor generalization across multiple
categories. This suggests potential class imbalance, in-
adequate feature representation, or convergence issues
during training.

The training history, depicted in Figure[7] shows the
variation in accuracy and loss over training epochs.
The rapid decline in loss during the initial epochs, ac-
companied by a sharp increase in accuracy, suggests
that the model quickly adapts to the training data.
However, the high accuracy observed in training does
not correspond to meaningful class separability, as ev-
ident in Figure [f] This discrepancy implies that the
model may have overfitted to dominant patterns in the
dataset while failing to learn robust class distinctions.
Furthermore, the relatively stable accuracy curve in
the later epochs suggests that the model has converged,
but on a suboptimal solution that does not generalize
well to unseen samples.

Training History - MobileNetv2

—— accuracy
—— loss.

0.0 25 5.0 75 10.0 125 15.0 17.5
Epoch

Fig. 7: Training history of MobileNetV2, showing accuracy and

loss over epochs. The sharp decline in loss during the
early epochs indicates rapid adaptation to training data.
However, the high accuracy does not correspond to
meaningful class separability, suggesting potential over-
fitting or inadequate learning of class-specific features.

MobileNetV2 is designed for efficiency in low-
resource environments, prioritizing computational
speed over deep feature extraction. While this makes it
suitable for embedded systems such as the Raspberry
Pi, it also limits its capacity to capture intricate agglu-
tination patterns.

Confusion Matrix - MobileNetV2

AB negative - 0 0 [} 0 0 0 0
Apositive - 0 0 0 0 0 0 0
Bnegative - 0 0 [} 0 0 0 0

Anegative- 0 0 [ o 0 0 0

True

B positive- 0 0 o o 0 0 0

O positive- 0 0 o o 0 0 0

AB positive - 0 o o o o 0 0

Onegative- 0 0 o o 0 0 0

AB negativeA positive B negative A negative B positive O positive AB positiveO negative
Predicted

Fig. 8: Confusion matrix corresponding to the classification
performance of the ResNet50 model. The matrix pro-
vides insights into the model’s ability to correctly clas-
sify blood types, with the color intensity representing
the frequency of each classification.

The performance of the ResNetb0 model in the
classification task can be assessed through the confu-
sion matrix and training history. Figure [8] presents
the confusion matrix, which provides insights into the
model’s ability to correctly classify different blood
types. The diagonal elements of the matrix rep-
resent correct classifications, while off-diagonal ele-
ments indicate misclassifications. The results suggest
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that the model achieves high accuracy for most blood
types, particularly for B-negative, A-negative, and AB-
positive, which exhibit strong diagonal values. How-
ever, some misclassifications are observed, notably for
AB-negative, where a proportion of instances are clas-
sified as O-negative or AB-positive. This suggests po-
tential challenges in distinguishing between these spe-
cific blood types, likely due to feature similarities in
the learned representations.

The training dynamics of the ResNet50 model are
illustrated in Figure [0 which depicts the evolution of
accuracy and loss over training epochs. The accuracy
curve shows a rapid increase in early epochs, stabilizing
close to 1.0, indicating effective learning and conver-
gence. Simultaneously, the loss function demonstrates
a steep decline, which further corroborates the stability
of the training process.

Training History - MobileNetV2

— accuracy
loss

06

Value
\\

0.4

02

0.0

00 25 50 75 100 125 150 175
Epoch

Fig. 9: Training performance of the ResNet50 model, showing

the evolution of accuracy and loss over training epochs.
The steady increase in accuracy and reduction in loss
indicate the model’s convergence during training.

ResNet50, despite being a deeper and more expres-
sive model, achieved only 72.41% accuracy, indicating
difficulties in fully adapting to the ABO-BTI dataset.

The real effectiveness of the ABO-BTI database
is assessed through the performance of the proposed
model, as demonstrated by its confusion matrix (Fig-
ure and training history (Figure . These results
provide crucial insights into how well the dataset sup-
ports the development of a robust classification model
for blood type identification. The following discussion
elaborates on the implications of the confusion matrix
and training history in evaluating the dataset’s suit-
ability for deep learning-based classification.

The confusion matrix in Figure illustrates the
classification performance of the proposed model, offer-
ing valuable information regarding the dataset’s qual-
ity, class separability, and potential biases. The results
indicate that the model exhibits a high degree of clas-
sification accuracy, with the majority of predictions

aligning correctly with the ground truth labels. The
strong diagonal pattern observed in the matrix sug-
gests that the ABO-BTI dataset provides sufficiently
distinct and well-defined features for each blood type
category, enabling the model to achieve accurate pre-
dictions.

Confusion Matrix - MobileNetv2

AB negative- 0 0 0 o o 0 o
Apositive- 0 0 0 o o 0 0
Bnegative- 0 0 0 o 4 0 o

Anegative- 0 o o 0 0 o 0

True

B positive- 0 o 4 o 0 0 0

Opositive- 0 0 4 0 0 4 )

AB positive - 0 o 0 o o 4 0

Onegative- 0 o 0 0 0 o 0

AB negativeA positive B negative A negative B positive O positive AB positiveO negative
Predicted

Fig. 10: Confusion matrix of the proposed model on the ABO-
BTI dataset, illustrating the classification performance
across different blood types. The high diagonal values
indicate strong classification accuracy, with minimal
misclassifications, demonstrating the dataset’s effec-

tiveness in enabling clear class separability.

Accuracy
0.8
z
© 0.6 -
=1
3
2 0.4
0.2 —— train accuracy
0.0 2.5 5.0 7.5 100 125 150 175
Loss
100 - —— train loss
75 -
]
S 50
254
01 T T T T T T T T
0.0 2.5 5.0 7.5 100 125 150 175
Epoch
Fig. 11: Training history of the proposed model, showing accu-

racy (top) and loss (bottom) over multiple epochs. The
steady increase in accuracy and smooth decrease in loss
indicate efficient learning, suggesting that the ABO-
BTI dataset provides high-quality and well-structured
data for robust model training.

The high classification accuracy observed in the ma-
trix indicates that the ABO-BTI dataset is structured
in a manner that facilitates effective learning. Certain
blood types, such as “A negative” and “AB positive”,
demonstrate particularly strong classification perfor-
mance, as evidenced by their high correct prediction
counts. The minimal number of off-diagonal misclas-
sifications further suggests that the dataset allows for
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a clear differentiation between the blood type classes.
For instance, “A negative” is correctly classified in all
cases, while “AB positive” achieves a high recognition
rate with only one misclassification. These findings
highlight the effectiveness of the dataset in providing
meaningful and discriminative features necessary for
robust classification.

Despite the overall strong performance, a few in-
stances of misclassification suggest the presence of sub-
tle overlaps in feature representation between certain
blood types. The confusion matrix reveals that “A pos-
itive” is misclassified as “A negative” in two cases, while
“AB negative” is predicted as “A positive” twice. These
misclassifications indicate that some blood type cate-
gories may share intrinsic similarities in the dataset,
potentially due to overlapping physiological or mor-
phological characteristics. While such minor errors
are expected in biomedical classification tasks, their
low frequency in this case suggests that the ABO-BTI
dataset successfully minimizes ambiguities in feature
space. The limited number of incorrect classifications
further reinforces the notion that the dataset effectively
supports accurate blood type identification.

The training history, as depicted in Figure pro-
vides additional insights into the dataset’s effectiveness
in facilitating deep learning-based blood type classifi-
cation. The accuracy curve, shown in the upper panel,
demonstrates a steady improvement in classification
performance as training progresses. This trend indi-
cates that the model is able to learn meaningful pat-
terns from the ABO-BTI dataset without encountering
significant challenges related to data inconsistencies or
poor feature representation. The smooth and mono-
tonic increase in accuracy suggests that the dataset is
well-structured, allowing the model to gradually refine
its predictive capabilities over successive epochs.

The training history further suggests that the
dataset exhibits a balanced distribution across blood
type classes, as evidenced by the stable and progres-
sive learning curve. In scenarios where class imbalances
are present, model accuracy often exhibits fluctuations
or prolonged plateaus due to difficulty in learning un-
derrepresented classes. However, the observed accu-
racy curve suggests that the ABO-BTI dataset does
not suffer from severe class imbalance issues, enabling
the model to generalize effectively across all blood type
categories.

The loss curve, presented in the lower panel of Fig-
ure 1] corroborates these findings by demonstrating
a consistent decline in loss values over the course of
training. The sharp initial drop in loss values suggests
that the ABO-BTI dataset provides clear and distinc-
tive features, allowing the model to rapidly learn dis-
criminative patterns in the early training stages. The
subsequent gradual stabilization of loss values indicates

that the model converges effectively without encounter-
ing excessive noise or ambiguities in the training data.
A well-behaved loss curve such as this is a strong in-
dication that the dataset is well-labeled and contains
high-quality feature representations.

A key factor contributing to the smooth training dy-
namics observed in the model is the high-quality an-
notation and feature representation in the ABO-BTI
dataset. The absence of significant fluctuations in the
loss curve suggests that the dataset contains minimal
label noise, ensuring that the model learns from accu-
rately labeled examples. In datasets with noisy or am-
biguous labels, loss values often exhibit irregular fluctu-
ations, leading to unstable training behavior. However,
the observed stability in both accuracy and loss met-
rics confirms that the ABO-BTI dataset is effectively
curated to support deep learning-based classification
tasks.

The analysis of the confusion matrix and train-
ing history confirms that the ABO-BTI database is
a highly effective resource for training deep learning
models in blood type classification. The dataset’s high-
quality feature representation, minimal noise, and bal-
anced class distribution allow for robust and accurate
model training. The minimal misclassification rates
and stable learning curves further reinforce the notion
that the dataset is well-suited for biomedical classifica-
tion tasks. With a final accuracy of 96.51%.

The ABO-BTI database, despite its significance for
blood type classification, presents several limitations
that contribute to the poor performance of deep learn-
ing models such as ResNet50 and MobileNetV2. These
architectures, which have demonstrated high perfor-
mance on large-scale image classification tasks, strug-
gle to achieve satisfactory results when applied to the
ABO-BTI dataset. This discrepancy arises due to fun-
damental differences between the nature of the ABO-
BTT data and the feature extraction mechanisms these
models employ.

ResNet50 and MobileNetV2 are CNNs originally de-
signed for processing natural images, where spatial pat-
terns, edges, and textures provide critical information
for classification. ResNet50, with its deep residual
learning framework, is particularly adept at extracting
hierarchical features, while MobileNetV2, optimized
for efficiency, utilizes depthwise separable convolutions
to reduce computational overhead. However, the na-
ture of blood type data differs significantly from that
of traditional image datasets. Blood type classification
does not rely on complex spatial patterns, but rather
on subtle biochemical and morphological features that
may not be optimally captured by CNN-based archi-
tectures.

A key factor contributing to the poor performance
of these models is the limited dataset size. Deep learn-
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Tab. 13: Performance Comparison of Blood Type Classification Methods.

Method Model Feature Technique | ROI Shape | F1-Score (%)
HoG Square 52.63
Ferraz et al. [14] | SVM HoG Round 79.17
FFT Round 87.18
Proposed Method | Proposed Model | Deep Features - 96.87 £+ 0.67

Note: HoG = Histogram of Oriented Gradients, FF'T = Fast Fourier Transform. ROI = Region of Interest. Dashes

(-) indicate not applicable.

ing models, particularly those as complex as ResNet50,
require vast amounts of training data to generalize ef-
fectively. The ABO-BTI database does not provide a
sufficiently large dataset for these architectures to learn
discriminative patterns without overfitting. Without
adequate training samples, these models fail to estab-
lish robust decision boundaries, leading to suboptimal
accuracy, precision, recall, and Fl-score. In contrast,
the proposed model, which is specifically designed for
the nature of blood type classification, exhibits signif-
icantly improved performance, as it is better aligned
with the characteristics of the ABO-BTT dataset.

Beyond the challenges posed to deep learning mod-
els, the ABO-BTT database itself presents inherent lim-
itations that impact classification performance. One of
the most critical issues is the high inter-class similarity
between blood types. Unlike natural image classifi-
cation tasks, where classes often have distinct visual
features, the differences between blood types are more
subtle, making it challenging for models to distinguish
between them with high confidence. This can result in
increased misclassification rates, particularly for archi-
tectures that rely on spatial differentiation.

Another limitation of the ABO-BTI database is the
potential lack of representational diversity. If the
dataset consists of a relatively homogeneous set of sam-
ples, models trained on it may fail to generalize to new,
unseen examples. Effective blood type classification re-
quires training data that encompasses a wide range of
variations, including different sample conditions and
potential measurement artifacts. A lack of diversity
within the ABO-BTI dataset may lead to biased model
predictions and reduced robustness in real-world appli-
cations.

Table presents a performance comparison be-
tween the proposed blood type classification method
and prior approaches by Ferraz et al. |[14], highlighting
differences in model architectures, feature extraction
techniques, and ROI design. Ferraz et al.’s method,
based on SVM classifiers and handcrafted features
(HoG and FFT), achieved variable results depending
on the ROI shape, with F1-Scores ranging from 52.63%
(HoG with square ROI) to 87.18% (FFT with round
ROI). In contrast, the proposed method, which inte-
grates a custom deep learning model and deep fea-

ture representations, significantly outperforms earlier
methods with an Fl-score of 96.87 + 0.67, while elim-
inating the need for explicit ROI design. This demon-
strates the superiority and robustness of the proposed
approach in accurately classifying blood types.

4. Conclusion

This study introduced the ABO-BTI database as a
benchmark dataset for blood type classification and
evaluated its effectiveness using deep learning mod-
els. The experimental results demonstrated that
the proposed deep learning-based classification model
achieved an accuracy of 96.51%, highlighting its po-
tential for automated blood type identification. Com-
pared to traditional machine learning approaches that
rely on handcrafted feature extraction, the deep learn-
ing model successfully learned meaningful feature rep-
resentations directly from the data, reducing the need
for extensive preprocessing and domain-specific feature
engineering. However, the comparative analysis with
state-of-the-art methods revealed that handcrafted ap-
proaches using SVM with certain feature extraction
techniques, such as histogram and FFT, still achieve
higher classification accuracy in some cases.

The primary research question addressed in this
study was whether deep learning models, when trained
on the ABO-BTI database, could serve as reliable
and effective tools for blood type classification. The
findings confirm that while deep learning models can
achieve high classification performance, they may still
face challenges in outperforming optimized traditional
methods under certain conditions. Nevertheless, the
results support the viability of deep learning for this
task and underscore the importance of dataset quality
and representation in achieving optimal performance.
By providing a standardized and publicly available
dataset, this work lays the foundation for further ad-
vancements in automated blood type classification.

A key contribution of this research is the introduc-
tion of the ABO-BTI database, which fills a critical
gap in the field by providing a dedicated dataset for
blood type classification. Unlike previous studies that
relied on smaller, private datasets, ABO-BTI offers a
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structured and diverse dataset that can facilitate the
development and benchmarking of new classification
models. Additionally, the study presents an exten-
sive evaluation of deep learning performance on this
task, shedding light on both its strengths and limita-
tions in comparison to conventional machine learning
techniques. This work not only advances the field of
automated blood classification but also contributes to
the broader area of medical image analysis by demon-
strating the potential of deep learning in biomedical
classification tasks.

The findings of this study have several implications
for both theoretical and practical applications. Theo-
retically, they contribute to the ongoing discourse on
the effectiveness of deep learning in classification tasks
where data variability and feature representation are
critical. The results suggest that deep learning can
generalize well to blood type classification, although it
still benefits from careful dataset construction and pre-
processing. From a practical perspective, the ability to
automate blood type classification has significant appli-
cations in healthcare, particularly in emergency medi-
cal scenarios where rapid and accurate blood type iden-
tification is essential. Furthermore, as machine learn-
ing continues to integrate into medical diagnostics, the
ABO-BTI database can serve as a valuable resource for
researchers and practitioners seeking to refine classifi-
cation techniques and enhance the robustness of pre-
dictive models.

Despite the promising results, certain limitations
should be acknowledged. The study primarily evalu-
ated deep learning models on the ABO-BTI dataset,
which, while comprehensive, may still require further
expansion to ensure greater generalization across di-
verse imaging conditions and population groups. Ad-
ditionally, while deep learning models offer automation
advantages, their dependency on large amounts of la-
beled training data remains a challenge, and their sus-
ceptibility to misclassification in certain cases warrants
further investigation.

Future research should explore strategies to fur-
ther enhance deep learning performance in blood type
classification. Potential directions include incorporat-
ing hybrid models that combine deep learning with
handcrafted feature extraction techniques, investigat-
ing self-supervised learning approaches to reduce de-
pendency on labeled data, and leveraging explainabil-
ity methods to interpret model decisions more effec-
tively. Moreover, expanding the ABO-BTI dataset
with additional samples and variations could further
improve the robustness of classification models, mak-
ing them more suitable for real-world deployment.

Beyond traditional machine learning applications,
future work should focus on the deployment of blood
type classification models in embedded systems. The

integration of deep learning-based blood type classifica-
tion into low-power embedded platforms could enable
real-time and on-site blood type identification, which
would be particularly beneficial in resource-constrained
medical environments, ambulatory emergency units,
and military field hospitals. Edge AI devices, such as
those using TinyML frameworks, could facilitate fast
and efficient blood classification directly from mobile
diagnostic tools without requiring cloud-based process-
ing. Furthermore, wearable health monitoring systems
and point-of-care testing devices could incorporate au-
tomated blood typing to streamline transfusion com-
patibility assessments in decentralized healthcare set-
tings. These advancements would significantly enhance
the accessibility and responsiveness of blood type iden-
tification, ultimately improving patient outcomes in
critical situations.
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