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Abstract. Nowadays, Permanent Magnet Syn-
chronous Motors (PMSM) are used more and more
widely due to their advantages over other types of
motors, such as high efficiency, constant torque, higher
power density, and wide speed range. Many studies on
this motor have been carried out in the industry. This
paper proposes an application for the PMSM motor
to estimate the speed of the motor rotor using an
extended Kalman filter (EKF). This also means that
the motor is controlled without using a speed sensor,
so the system has the advantages of reducing the cost
of manufacturing encoders, less damage, increased
reliability, and reduced size due to the absence of
moving mechanical parts of the sensor. The estimated
performance depends heavily on the parameters of
the covariance matrices in the filter. In the paper,
the filter parameters are optimized using the Cuckoo
Search Algorithm (CSA). The simulation results of
the proposed algorithm on the PMSM motor show its
advantages over traditional methods.
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1. Introduction

Currently, Permanent Magnet Synchronous Motors
(PMSM) have many advantages compared to other
types of motors, so many studies on the PMSM mo-
tor have been carried out, such as speed control ac-
cording to V/F frequency, torque control (DTC) and
vector control (FOC). There is also interest in sensor-
less speed control. Sensorless control has the following
advantages: saving components, increasing durability,
and stabilizing motor operation.

There have been some studies on speed estimation,
such as model reference adaptive system (MRAS) [1–
5]. The MRAS model compares the outputs of two
models: the first part (reference mode does not include
the rotor speed; the second part (adaptive model) uses
the speed to estimate the induction motor flux. The
output values of these two parts are compared to each
other to get the error. The error is injected into the
adaptation mechanism to produce a rate estimate that
feeds back into the adaptation typical. This model’s
features include simplicity and speed of processing, but
it also has significant errors.

The sliding mode standard has been used to estimate
and monitor when there are uncertainties. The slid-
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ing observer (SMO) [6–9] was effective in estimating
unknown inputs or errors. Several first-order sliding
mode observers have been applied in the industry for
speed sensorless estimation and control. Many speed
estimation models require low-pass filtering and extra
position compensation for the PMSM motor’s rotor.

The speed estimation method uses intelligent algo-
rithms such as neural networks [10–12]. Neural net-
works are one branch of smart control technology. A
radial basis function (RBF) neural network is a net-
work that has a three-layer sequential architecture. It
can establish a good nonlinear mechanism. For each
training sample, it only needs to change a small weight
value. Its advantages are fast convergence speed and
small errors. Some studies estimate speed using EKF
filters with Q and R matrices selected by the True-False
method will take a lot of time and the accuracy in speed
estimation is not high [13–16]. Some papers propose
ways to determine the parameters of the covariance ma-
trix using the GA and the PSO algorithms [19] and [21].
In those algorithms, the CSA algorithm proves more ef-
fective in finding the optimal parameters with the same
number of iterations and population sizes [19]. This ar-
ticle proposes a sensorless method for the FOC model
of a PMSM motor using an EKF filter in which the Q
and R matrices are optimized using the Kucoo Search
Algorithm. This article also compares the response
when the Q and R matrices are arbitrarily chosen, se-
lected using the True-False method, and the case is
optimized using the CSA algorithm.

2. The FOC Model of the
PMSM Motor

Tab. 1: The Nomenclatures of the State Space Equations

Id, Iq The current components of the real and
imaginary parts of the current vector in
the rotor reference frame (d-q)

Vd, Vq The voltage components on the reference
frame (d-q)

Rs The stator resistance
Ld, Lq The stator inductances at the pole along

and across the pole (d-q)
Te The motor torque
TL The load torque
Ω The rotor angular velocity
θ The rotor rotation angle
P Number of pole pairs
J Moment of inertia
Cf The friction coefficient

The PMSM continuous model in the d-q reference
frame can be expressed as follows:


Ld

dId
dt = Vd −RsId + PΩLqIq

Lq
dIq
dt = Vq −RsIq − PΩ(LdId + ψ)

J dΩdt = Te − TL − CfΩ
dθ
dt = Ω

(1)

The expression can be rewritten in matrix form be-
low.

d

dt


Id
Iq
Ω
θ

 =


−Rs

Ld

PΩIq
Ld

0 0
−PΩId
Lq

−Rs

Lq

−Pψ
Lq

0

0 3Pψ
2J

−Cf

J 0
0 0 1 0



Id
Iq
Ω
θ



+


1
Ld

0 0

0 1
Lq

0

0 0 −1
J

0 0 0

0


 Vd
Vq
TL


(2)

We have the currents Id, Iq.

[
Id
Iq

]
=

[
1 0 0 0
0 1 0 0

] [
Id Iq Ω θ

]T (3)

The state space equations (2) and (3) are abbrevi-
ated as follows:

{
ẋ = A.x+B.u
y = C.x

(4)

With the equation system of the PMSM motor (4), a
sensorless field-oriented speed controller for the PMSM
motor is built in Fig. 1. The Kucoo research algorithm
is proposed in this architecture. The speed estimator
uses an extended Kalman filter (CSA-EKF) whose in-
put parameters are current and voltage acquired from
the model through current and voltage sensors. The
motor’s estimated speed and rotation angle are its out-
puts.

The Field Oriented Control (FOC) consists of two
stator current components characterized by a vector.
The method is based on converting a three-phase speed
and time structure into a two-coordinate (d and q)
time-invariant structure. This scheme creates an ar-
rangement similar to the DC motor controller. The
vector controller requires two parameters as input ref-
erences: the torque and current component, the Id
component described by the flux current and the Iq
component described by the rotor speed [18].
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Fig. 1: The organization of the FOC method for PMSM motor.

Fig. 2: The flow chart of the Cuckoo Search Algorithm for CSA-EKF method of PMSM.

3. Estimate the Speed of
PMSM Using the EKF
Optimized through CSA
Algorithm

This section begins by presenting the equations of state
in their discrete form. The next part is the algorithm
of the extended Kalman filter and identifies variables
of the matrix Q in the system model, and the matrix
R in the measurement block. The disadvantages of
determining the matrix Q and R with the trial and
error method. Lastly, the CSA algorithm is utilized to
fix the optimal values of the variables in the matrix Q,
and R for estimating the speed of the PMSM.

3.1. Using the EKF for the speedy
estimation of the PMSM

From (4), after adding the disturbance components, we
have the extended state model:

ẋ = A.x+B.u+ w(t) (5)

y = C.x+ v(t) (6)

The PMSM motor’s nonlinear equations (5) and (6)
of extended state space will be discretized, making each
tiny step regarded as linear, and the Kalman algorithm
will be used. To estimate the parameters of the state
equation for the PMSM motor, this is a recursive prob-
lem with adaptation.

xn+1 = An · xn +Bn · un +Wn (7)

yn+1 = Cn · xn+1 + Vn (8)
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With An = eAT ≈ I + AT ; Bn =
T∫
0

eATBdt = BT ;

Cn = C.

In addition, the components of the equation of state
are determined by the following expressions: xn+1 =[
i
(n+1)
d i

(n+1)
q Ω(n+1) θ(n+1)

]T
;

yn+1 =
[
i
(n+1)
d i

(n+1)
q

]T
;

un =
[
v
(n)
d v

(n)
q TL

]T
;

An =


1− Rs

Ld
T pΩ

Lq

Ld
T 0 0

−pΩLq

Ld
T 1− Rs

Lq
T −p ψLq

0
3p
2J (Ld − Lq)IqT

3p
2JψT 1− Cf

J T 0
0 0 T 1

;

Bn =


T
Ld

0 0

0 T
Lq

0

0 0 −T
J

0 0 0

; Cn =


1 0
0 1
0 0
0 0


T

.

The covariance matrices Q and R of noises obligate
the behind formula:
Qn = Cov(w) = E[wwt] =

{
Qnwithn = l
0otherwise

;

Rn = Cov(v) = E[vvt] =

{
Rnwithn = l
0otherwise

The diagonal matrix form is indicated by the ma-
trices Q and R. The PMSM motor speedy estimation
model is based on the EKF algorithm [14].

xn+1 = Ax̂n +Bun = f(xni , u
n) (9)

The linearization of the nonlinear equation [14] is
performed with the following estimated values (x̂i):

Fn =
∂fn(x

n
i , u

n)

∂xi
=
∂(Ax̂n−1 +Bun−1)

∂xi
(10)

Pn+1 = FnP̂nF
T
n +Q (11)

h(xni ) = Cn(x
n
i )x

n
i (12)

Hn =
∂h(xni )

∂xi
=
∂(Cn(x

n
i )x

n
i )

∂xi
(13)

Kn+1 = Pn+1H
T (HPn+1H

T +R)−1 (14)

x̂n+1 = xn+1 +Kn+1(yn+1 − Cnxn+1) (15)

P̂n+1 = Pn+1 −Kn+1CPn+1 (16)

Where the components with a hat represent the esti-
mated values, the noise matrix Q and R are the state
variables (parameters) of the PMSM, P is the covari-
ance matrix, and K is the Kalman filter gain. The
covariance error matrix’s creation values have the for-
mula:

Q =


λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4

; R =

[
µ1 0
0 µ2

]
;

P =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


An important difficult in the Kalman filter is the pa-

rameter determination (λi, µi) in covariance matrixes
Q and R. Normally, these matrices are typically found
by trial and error, but this process is laborious and
prone to significant errors.

3.2. Using the CSA algorithm to
find the optimal parameters of
Q, R of the EKF

Due to the limitations of the trial and error method,
in this section, the optimal parameters are found us-
ing the CSA algorithm [19, 20]. Estimating the speed
of the PMSM motor will be more accurate when the
parameters are selected appropriately. The algorithm
flow chart for finding optimal parameters of matrices
Q and R is presented in Fig. 2.

At the beginning of the algorithm, parameters Q
and R are initialized randomly and are encoded as
real numbers. For simulation, these parameters will
be imported into the Matlab model. A cost function
will be used to assess its outcomes, followed by experi-
ments like alien egg discovery and the creation of new
solutions through Lévy flights. Consequently, we will
continue to feed the model for testing with a fresh set
of values that are frequently superior to the prior set.
Until the necessary number of generations is reached,
this process keeps going. The final run time produced
the best results.

4. Results and Discussion

The PMSM drive was simulated using MATLAB-
SIMULINK. The main parameters of the PMSM are
P= 1.5 Kw, Pp= 3, RS= 0.05 Ω, Ld = 0.0003 H, Lq=
0.0003 H, ψ= 0.027, J= 0.0039 Kg.m2, Cf = 0.000
N.m.s/rad.

PMSM Driver Parameters: PN = 1.5 kW, U1N= 220
V, I1N = 4.5 A, nN = 2500 rev·min−1.

PMSM Parameters: PN = 1.5 kW, U1N= 220 V, I1N
= 3.5 A, nN = 1500 rpm, Pp= 3, RS= 0.05 Ω, Ld =
0.0003 H, Lq= 0.0003 H, ψ= 0.027, J= 0.0039 Kg.m2,
Cf = 0.000 N.m.s/rad.
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Fig. 3: The comparison of EKF estimation speed with Q1, R1

(trial and error) and actual rotor speed.

Fig. 4: The error between EKF estimation speed with Q1, R1

(trial and error) and actual rotor speed.

Fig. 5: The comparison of EKF estimation speed with Q2, R2

(trial and error) and actual rotor speed.

Fig. 6: The error between EKF estimation speed with Q2, R2

(trial and error) and actual rotor speed.

4.1. The speed estimation of PMSM
based on the EKF filter with Q,
R matrix is determined through
trial and error

With the trial and error method, we only choose a few
times. First, the values Q1 (10 10 0.01 0.005) and
R1 (100, 1) are chosen, the speed response and speed
deviation with these values are shown in Fig. 3 and
Fig. 4.

We see that the speed deviation is quite large (the
error according to the MSE standard is 2953.04194).
In many cases, if the value is not suitable, the speed
response will have a larger deviation.

The trial and error method is applied repeatedly to
find a better speed response. After more than 15 test
times, the parameters Q2 (10 10 0.0001 0.0001) and
R2 (1, 1) are selected. The speed response with this
parameter is shown in Fig. 5 and Fig. 6.

In Fig. 5 and 6, the speed response has improved
significantly. In this case, the MSE standard error is
55.75929. The speed response of the PMSM motor
is much better than the case in which the Q and R
matrices are randomly selected.

4.2. The speed estimation of PMSM
based on EKF with Q, R matrix
is determined through CSA
algorithm

The limitation of trial and error is that it is time-
consuming, but the response is not the best. Here, the
smart algorithm is applied (CSA algorithm) to find the
best set of parameters in a number of iterations. Tab.
2 is the parameters for the CSA algorithm to find op-
timal parameters for matrices Q and R.

Tab. 2: Parameters of CSA algorithm.

The parameters The values
Population size 25

The probability of alien egg 0.1
Number of generation 20

The CSA algorithm is performed with 20 iterations.
We obtain the results in Tab. 3 and the graph in Fig.
7.

In the first iteration, the algorithm found a
pretty good value. The later it gets, the bet-
ter value it finds. The error is the smallest
in the last iteration. The speed error is com-
puted using the MSE error in the eighth column(
E = 1

k

k∑
1
(Sreal_speed−Sestimated_speed)2

)
.
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Tab. 3: The results after 20 iterations.

Index λ1 λ2 λ3 λ4 µ1 µ2 MSE
1 939.3539 434.0386 0.010616 0.002796 39.69101 12.90153 1.43543
2 939.3539 434.0386 0.010616 0.002796 39.69101 12.90153 1.43543
3 998.3147 240.8655 0.006058 5.00E-05 26.4032 8.702176 1.38273
4 998.3147 240.8655 0.006058 5.00E-05 26.4032 8.702176 1.38273
5 998.3147 240.8655 0.006058 5.00E-05 26.4032 8.702176 1.38273
6 1000 71.77744 0.001867 5.00E-05 6.31178 0.01 1.34914
7 1000 71.77744 0.001867 5.00E-05 6.31178 0.01 1.34914
8 1000 71.77744 0.001867 5.00E-05 6.31178 0.01 1.34914
9 1000 71.77744 0.001867 5.00E-05 6.31178 0.01 1.34914
10 1000 71.77744 0.001867 5.00E-05 6.31178 0.01 1.34914
11 1000 71.77744 0.001867 5.00E-05 6.31178 0.01 1.34914
12 1000 71.77744 0.001867 5.00E-05 6.31178 0.01 1.34914
13 1000 71.77744 0.001867 5.00E-05 6.31178 0.01 1.34914
14 1000 57.19251 0.00138 5.00E-05 0.01 0.01 1.33662
15 1000 57.19251 0.00138 5.00E-05 0.01 0.01 1.33662
16 1000 57.19251 0.00138 5.00E-05 0.01 0.01 1.33662
17 1000 57.19251 0.00138 5.00E-05 0.01 0.01 1.33662
18 1000 57.19251 0.00138 5.00E-05 0.01 0.01 1.33662
19 1000 53.48652 0.001293 5.00E-05 0.01 0.01 1.33568
20 1000 53.48652 0.001293 5.00E-05 0.01 0.01 1.33568

Fig. 7: The results of implementing the CSA algorithm after 20
iterations.

Fig. 8: The comparison of CSA-EKF estimation speed and ac-
tual rotor speed.

Fig. 9: The error between CSA-EKF estimation speed and ac-
tual rotor speed.

As the number of iterations increases, the parame-
ters found will be better and the speed error will be
smaller. In addition, Fig. 7 shows the results in an
intuitively different form.

We take the parameters of the matrix Q (1000
53.48652 0.001293 5.00E-05) and R (0.01 0.01) that
we found in the 20th run times and put them into the
speed estimation model using the extended Kalman fil-
ter (EKF). After completing the simulation, the results
of speed response and error are shown in Fig. 8 and
Fig. 9.

With the parameters found by the CSA algorithm,
the speed response is excellent, better than the trial
and error solution, and the speed error is quite small.
Using the CSA algorithm ensures the most optimal pa-
rameters and the smallest deviation. Tab. 4 compares
the errors of the three methods mentioned above.
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Tab. 4: The parameters of CSA algorithm.

The methods MSE The evaluated
results

The random choice 2953.04194 Bad
The trial and error 55.75929 Good

The CSA-EKF 1.33568 The best

The data table above demonstrates that choosing the
matrix Q, R at random provides a bad speed estimate,
choosing the matrix Q, R by trial and error provides
a pretty good speed estimate, but choosing Q, R with
CSA algorithm, speed response estimation is the best.

4.3. The MRAS speed estimation
model for the PMSM motor

Fig. 10: The MRAS block diagram for the PMSM.

Fig. 11: The detailed MRAS model for the PMSM.

The MRAS model’s characteristics [1–3] were outlined
in the paper’s introduction. Fig. 10 illustrates the
block diagram of the MRAS model.

The equations and parameters of the MRAS model
applied to the PMAS motor are detailed in Fig. 11.

From the equations in Fig. 11, we build the model
in Matlab. The response of the speed estimation using
MRAS under normal conditions is shown in Fig. 12.

Fig. 12: The comparison of MRAS estimation speed and actual
rotor speed of the PMSM.

The speed error of this MRAS model with the MSE
standard is 4.92719, which is larger than the speed es-
timation model using the EKF model.

4.4. The speed estimated response
using the MRAS and EKF
models in case of impact noises

Process noise (w) is the noise generated from within
the motor system, usually due to imperfect mathemat-
ical models of the system or due to difficult-to-predict
physical factors. For example:

• Electromagnetic noise: Due to unstable rotor and
stator magnetic flux.

• Load Torque Variation: Load changes unexpect-
edly while the motor is operating.

• Thermal Drift: Temperature affects the stator
winding resistance.

Measurement noise (v) is the noise generated from
measurements during data collection. For example:

• Sensor Noise: When measuring the rotor speed.

• Analog to Digital Converter: When converting
current or voltage from analog to digital.

• Current Measurement Delay: Delay during cur-
rent measurement.

In this section, we choose the change in stator re-
sistance to represent process noise and white Gaussian
noise (random number block on Matlab Simulink) to
represent measurement noise in simulation.

1) The effect of white noise on the MRAS
and EKF models

We apply Gaussian noise with a covariance value of 0.2
and a value of 1 to the currents id, iq of the speed es-
timation model using the MARS and EKF. The speed

© 2025 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 7
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response obtained in the two models mentioned above
is shown in Fig. 13 and Fig. 14.

Fig. 13: The comparison of MRAS estimation speed and actual
rotor speed with Gaussian noise.

Fig. 14: The comparison of EKF estimation speed and actual
rotor speed with Gaussian noise.

Fig. 15: The comparison of MRAS estimation speed and actual
rotor speed with the stator resistance value increased
by 200%.

The two responses shown in Fig. 13 and Fig. 14 il-
lustrate that the MRAS model is significantly impacted
by noise, resulting in a large speed estimation error of
1.7857e+03. In contrast, the EKF model is less af-
fected by noise, leading to a smaller speed estimation
error of 1.39663.

Fig. 16: The comparison of EKF estimation speed and actual
rotor speed with the stator resistance value increased
by 200%.

Fig. 17: The comparison of MRAS estimation speed and actual
rotor speed with the stator resistance value increased
by 200%. and white noise (its variance is 0.2).

Fig. 18: The comparison of EKF estimation speed and actual
rotor speed with the stator resistance value increased
by 200% and white noise (its variance is 1.0).

2) The effect of changing stator resistance
on the MRAS and EKF models

In this section, we investigate the system noise. For the
testing, we select the resistance, changing the stator re-
sistance from 0.05 Ω to 0.1 Ω, which represents a 200%
increase. Figures 15 and 16 display the speed estima-
tion responses for both the MRAS and EKF models.

From the above figures, the speed response of the
MRAS model changes quite a lot (1.1738e+03). In
contrast, the speed response of the EKF model changes

© 2025 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 8
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Tab. 5: The summary table of speed estimation error data of MRAS and EKF models:

Index Rs Variance for Variance for The MRAS The EKF model
MRAS Kalman model

1 Rs 0 0 4.92719 1.33568
2 Rs 0.2 1 1.7857e+03 1.39663
3 2Rs 0 0 1.1738e+03 2.25683
4 2Rs 0.2 1 3.1855e+03 2.40604

insignificantly (2.25683) when the stator resistance in-
creases by 200%.

3) The effect of changing stator resistance
and white noise on the MRAS and EKF
models.

The speed response using the MRAS and EKF models
in case of doubled stator resistance and white noise
(variance of measurement noise is 0.2 for the MRAS
model and 1.0 for the EKF model) is shown in Fig. 17
and 18.

When there are two types of noises: white noise and
system noise, the speed response of the MRAS model
(3.1855e+03) has a much larger error than the EKF
model (2.40604).

From the above survey cases and the summary table,
we can conclude that the EKF model, in addition to
accurately estimating speed, also has better resistance
to measurement noise and system noise than other es-
timation methods such as MRAS, etc.

5. Conclusion

This article presents how to estimate the speed of a
PMSM motor controlled according to the field orien-
tation (FOC) model using the EKF algorithm. Using
the EKF filter to estimate speed has the advantage of
being less dependent on motor parameters and more
accurate than some other methods, such as MRAS,
the sliding mode observer (SMO), however in this ar-
ticle, we emphasize determining the Q, R matrices in
the EKF filter. The performance of the EKF filter de-
pends heavily on the Q and R matrices. If the matrix
is chosen randomly, the results are usually bad. If the
matrix is selected using the trial and error method,
the results achieved are relatively good, but it is time-
consuming to choose and the results are not the most
optimal value. Choosing the matrices Q and R using
the CSA algorithm gives the best results. Furthermore,
the EKF speed estimator demonstrates reduced sen-
sitivity to measurement noise and system noise com-
pared to other methods, such as MRAS. Simulation
results on MATLAB Simulink provide data tables and
graphs that prove this.

It can be seen that the suggested CSA-EKF model
for the PMSM motor is less dependent on PMSM mo-
tor parameters than the MRAS models, but the CSA-
EKF model is more complex than the above methods.
The DSP processor (TMS320F2833x) is recommended
when implementing the CSA-EKF algorithm for the
PMSM motor. Today, this method can be easily im-
plemented in industrial equipment due to the strong
development of semiconductor technology.
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