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Abstract. The paper introduces three applied methods
- Secretary Bird Optimization Algorithm (SBOA), Par-
ticle Swarm Optimization (PSO), and Tunicate Swarm
Algorithm (TSA) - to address economic load dispatch
problem (ELD) and the extended ELD problem with
renewable energy resources (RES_ELD). These meth-
ods were rigorously evaluated using various test systems
with complex restrictions and objective functions. The
test cases were ranged from simple to complex, with the
most challenging involving load demands ranging from
the minimum to the maximum load demand based on
the total power of all units. The study’s results indi-
cated that SBOA consistently outperformed PSO and
TSA across all test systems, offering the best cost so-
lutions in a shorter time. Also, SBOA demonstrates
comparable or superior results as well as improved
searchability compared to previous methods. Further-
more, comparing these results highlighted SBOA’s ef-
fectiveness in solving these problems and its potential
for addressing engineering problems beyond ELD. Fi-
nally, the study aimed to provide valuable insights for
operators by suggesting solution map that operators can
use it to make quick decisions to ensure safe and effi-
cient system operation when generating capacity from
power plants quickly meets load demand.
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1. Introduction

Due to the rising energy demand for development in the
residential, industrial, and commercial sectors, the fos-
sil fuel consumption of power plants, especially thermal
power plants (TPPs), to generate electricity for meet-
ing these sectors will increase significantly, and the cost
of TPP is huge, impacting on all power networks di-
rectly. This is one of the main concerns in the man-
agement and control of a power system, which must
deal with. As we know, the financial prospects of the
entire power system are significantly affected by even a
slight increase in the cost of electric energy. Therefore,
optimal load management strategy by the comparison
of the power between the consummating side and gen-
erating side is crucial. The key task of the strategy in
power system operation is to identify the correct gen-
eration among TPPs to satisfy the technical and eco-
nomic requirements while meeting system reliability,
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compliance with operational constraints, and consid-
ering environmental and long-term planning factors.
It is referred to as Economic Load Dispatch (ELD)
problem. Normally, the primary functions of such a
ELD problem can be presented as a quadratic or con-
vex function. However, in practical operation, multi-
valve steam turbines introduce valve-point effects due
to increasing and decreasing power that significantly
distort the input-output curves of the generators. Con-
sequently, the objective function becomes highly non-
linear and non-convex, posing a considerable challenge
for resolution. Besides, the presence of faulty auxiliary
systems or related machine issues can restrict genera-
tors from functioning in specific zones [1], resulting in a
highly discontinuous feature in the solution space with
lots of local optima. Furthermore, under stable power
system conditions, transmission line loss is unavoid-
able. Clearly, with high dimensionality, nonlinearity,
non-differentiability, and multi-constraint, ELD prob-
lem become challenging optimization problem. Up to
now, there have been numerous popular methods for
tackling ELD problems. These methods fall into three
categories: exact methods, conventional mathemati-
cal programming methods, and approximation search
methods.

The exact optimization techniques like lambda it-
eration (LI) [2], gradient based method [3], Newton’s
method, and Lagrange multiplier method [4] work ef-
fectively as long as the incremental cost curves of the
generating units with piecewise-linear functions. How-
ever, in practice, the ELD problem is highly non-linear
and non-convex functions or test systems are large-
scale [5, 6], these methods fail to find the best solutions
or only search for local solutions.

In the second group, these methods are widely used
for solving ELD problems and offer effective structure
ways to reach the best potential result while taking dif-
ferent restrictions into account. They are linear pro-
gramming (LP) [7], quadratic programming (QP) [8],
interior point method (IPM) [9], mixed-integer linear
programming (MILP) [10], and dynamic programming
(DP) [11]. All conventional methods have in common
that they can only find the answer after running the
ELD problem once. Furthermore, these methods pos-
sess the same benefits, such as a minimal standard de-
viation, quick execution, and few control parameters.
Nevertheless, these approaches struggle to handle is-
sues involving nonconvex objective functions and com-
plicated constraints. For example, Dynamic program-
ming can solve ELD problems, including discontinuous
and intrinsically nonlinear cost curves. However, it is
hampered by local optimality or the curse of dimen-
sionality.

Over the past few decades, many techniques in the
third group have been suggested to address the ELD
problem, yielding promising results. They are consid-

ered powerful optimization techniques for solving the
ELD problem. Most of the approaches have several
benefits, including the capacity to work with large-scale
systems, the ability to manage complicated constraints,
and the ability to determine the global optimal solution
for nonconvex objective function issues. Some of these
methods can be divided into original methods and
hybrid methods. Particle-swarm optimization (PSO)
[12, 13], cuckoo search algorithm (CSA) [14], gravi-
tational search algorithm (GSA) [15], biogeography-
based optimization (BBO) [16], firefly algorithm (FA)
[17], genetic algorithm (GA) [18], artificial bee colony
(ABC) [19], simulated annealing (SA) [20], harmony
search (HS) [21], etc are of original algorithms. These
algorithms’ advantages are effective at finding high-
quality solutions for systems where fuel cost function
of thermal units is nonconvex. However, their draw-
backs are that they can sometimes get stuck in local
optima, especially for complex, multimodal optimiza-
tion problems. This can lead to suboptimal solutions,
and the methods may need help to explore the search
space to find the global optimum effectively. In addi-
tion, as the problem size and complexity increase, the
performance of the original metaheuristic methods may
deteriorate. This is due to the exponential growth of
the search space, making it difficult for these methods
to explore the space effectively. Combining the advan-
tages of various techniques is to form a new method,
called hybrid meta-heuristic approaches with the pur-
pose of covering these drawbacks of original methods.
They have a great deal of potential to improve the
performance of optimization algorithms in solving the
ELD issue such as particle swarm optimization - grav-
itational search algorithm (PSO-GSA) [22], cauchy-
gaussian quantum-behaved bat algorithm (CGQBA)
[23], comprehensive learning PSO-sequential quadratic
programming (SQP-CLPSO) [24], quantum behaved
artificial bee colony (QBA) [25], hybrid fuzzy adaptive
chaotic ant swarm optimization (FCASO) algorithm
and SQP method (FCASO-SQP) [26] and hybrid PSO
and artificial fish swarm algorithm (PSO-AFSA) [27],
etc. Hybrid meta-heuristic methods offer significant
potential benefits despite their increased complexity
and computing requirements. However, their successful
implementation requires meticulous design, parameter
adjustment, and integration to ensure their advantages
outweigh the disadvantages.

In general, the algorithms mentioned have been
broadly and effectively utilized across a wide range
of test systems. These systems include 6-unit test
system with POZ and power loss constraints, 15-unit
test systems with POZ and those without power loss
constraints, 20-unit test system with power loss con-
straints, 40-unit test system with valve-point loading
effects, 10-unit test systems with multiple fuels, and
large-scale unit test systems with the complicated con-
straints. Additionally, IEEE systems with 30, 57, and
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118 buses have also been part of the application scope.
The applied or proposed algorithms have been assessed
based on comparing fuel cost functions and other cri-
teria such as population size, maximum iterations, and
standard deviations. These detailed evaluations have
offered valuable insights into the strengths and capa-
bilities of these algorithms across different system con-
figurations and constraints. After reviewing all men-
tioned references, the authors of studies have only in-
vestigated the electricity generating cost of these stan-
dard test systems with one or four load demand levels.
However, the power consumption of a power system
is always different and changes every minute, hour, or
even day, leading to significant changes in the whole
power system cost. The research gap should be cov-
ered by finding the solution map for each test system
that helps operators and managers make the correct
and quick decision on allocating power from the num-
ber of thermal power plants to ensure economical and
efficient operation and safety.

Recently, there has been a significant increase in
attention to addressing the dual challenges of energy
scarcity and environmental impact by integrating re-
newable energy sources (RES) into the ELD problem
to form e new problem, named RES_ELD problem.
This new problem is being addressed by applying meta-
heuristic techniques, which are proving to be effective
in finding solutions. In reference [28], the authors pro-
posed a hybrid bat algorithm (HBA) to tackle the ELD
problem with the integration of thermal power gener-
ators and renewable energy sources like wind power.
The key feature of this algorithm is the combination of
a chaotic map and a random black hole model, enabling
the algorithm to mitigate premature convergence is-
sues and effectively seek solutions within the global
search space. An innovative study in [29] introduces
a solution to optimize power distribution within in-
terconnected microgrids. The study employs a proba-
bilistic model to achieve balanced power-sharing while
minimizing operating costs. It optimizes the objective
function using PSO and the imperialist competitive
algorithm (ICA). The results suggest that achieving
optimal power distribution between the primary grid
and microgrid can decrease the overall cost of distri-
bution networks. Study [30] discusses the resolution of
the RES_ELD problem through the application of a
dynamic adaptive bacterial foraging algorithm (BFA).
The study highlights the improved performance of the
modified BFA in addressing challenges, such as poor
convergence characteristics when dealing with high-
dimensional complex problems, which were evident in
the original BFA. The ELD problem with RESs is pre-
sented in [31]. In order to address the uncertainty as-
sociated with wind and solar energy, their stochastic
behavior is represented using Weibull and Beta distri-
butions. To tackle this highly constrained problem, an
enhanced version of the Fireworks algorithm (FA) is

utilized for optimization. Researchers in [32] have de-
veloped a cost-effective hybrid microgrid system incor-
porating RES, including wind power, hydrogen-based
storage systems, and fuel cells. They tackled the op-
timal power problem using the PSO method, and the
results from PSO were compared with those obtained
by GA. In [33], the study addresses the ELD problem
for a microgrid comprising solar and wind farms. The
researchers employed the reduced gradient method to
solve this complex problem. Furthermore, their con-
clusions highlight the importance of integrating solar
energy with renewable energy credits for efficient en-
ergy management. The solution to the ELD problem,
found in [34], involves the utilization of the BAT algo-
rithm, which incorporates wind power. The objective
function is designed to account for the stochastic na-
ture of wind power. Moreover, it considers imbalance
costs resulting from forecasting errors, such as overes-
timation and underestimation.

This study recommended a new method, called sec-
retary bird optimization algorithm (SBOA) [35] for ad-
dressing ELD and RES_ELD problems. The method
mimics the hunting and survival strategies of secre-
tary birds to tackle real-world optimization problems.
The method consists of two essential phases: explo-
ration and exploitation. During the exploration phase,
it thoroughly explores the search space and identifies
potential solutions by simulating the hunting behav-
ior of secretary birds. In the exploitation phase, it
strategically selects the most optimal path for safety
by emulating the escape strategies employed by sec-
retary birds when evading predators. In [35], authors
have implemented rigorous evaluations across multi-
ple scenarios to demonstrate SBOA’s superior per-
formance in finding faster solutions and its potential
in addressing complex real-world optimization prob-
lems such as the CEC-2017 and CEC-2022 benchmark
suites, 12 constrained engineering designs, and three-
dimensional path planning for Unmanned Aerial Vehi-
cles when compared to alternative methods. In addi-
tion to SBOA, two methods like PSO [36] by Kennedy
& Eberhart in 1995 and Tunicate Swarm Algorithm
(TSA) [37] by Kaur et al in 2020 were also applied to
such problems. The results from three applied methods
were compared other competitors.

The novelties of the study are given as follows:

1. Propose a new model for establishing a solution
data map to ELD problem.

2. Recommend how to use global solar atlas for de-
termining solar radiation data to calculate power out-
put of SP.

3. SBOA meta-heuristic algorithm, developed in
2024, and PSO and TSA algorithms, recommended
in 1995 and 2020, are suggested to address ELD and
RES_ELD issues with different constraints.
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After applying these novelties, the study has made
the following contributions below:

1. Demonstrate the superiority of the SBOA algo-
rithm over previous algorithms by presenting specific
numerical data and figures. Furthermore, the SBOA
algorithm outperforms PSO and TSA in terms of iden-
tifying high-quality and optimal solutions.

2. Provide solution data for power system opera-
tors and managers, focusing on test systems with load
demand varying from the minimum to the maximum
levels of total generated power from all units.

3. Use precise solar radiation data from two southern
provinces in Vietnam to calculate the power output of
solar power plants (SP) connected to the conventional
power system throughout the day. It is noteworthy
that previous studies may have overlooked the oppor-
tunity to utilize the available natural solar radiation
data from the global solar map.

The study is carefully structured as follows to pro-
vide a comprehensive understanding of the subject
matter: Section 2 thoroughly presents the problem
model in detail. Sections 3 and 4 meticulously in-
troduces the applied methods and the implementa-
tion of SBOA, providing a comprehensive implemen-
tation overview. Section 5 extensively presents and
thoroughly discusses the results of the applied meth-
ods, providing a deep analysis of the findings. Finally,
Section 6 presents the conclusions, offering a compre-
hensive summary of the key insights derived from the
study.

2. Problem Model

2.1. The objective function

The paper discusses the ELD and RES_ELD prob-
lems, which aim to minimize costs while satisfying the
load demand and various equality and inequality con-
straints. In the ELD problem, the objective function
is the fuel cost of the TPP, whereas in the RES_ELD
problem, the objective function includes both the fuel
cost and the solar power cost. The formulation for
ELD and RES_ELD problems are shown in Eqs. (1)
and (2) respectively:

Min(FCTPP ) (1)

Min(FCTPP , FCSP ) (2)

These objective functions are restricted by equal-
ity constraints and inequality constraints as shown in
equations below:

m(PTPP , PSP ) = 0 (3)

n(PTPP , PSP ) < 0 (4)

Where PTPP and PSP represent the power outputs of
TPP and SP , respectively.

Nextly, the models of thermal power plant and solar
power plant are presented in Subsections as follows:

1) Modelling fuel cost of thermal power
plant:

The fuel cost function of thermal power plants
(FCTPP ) can be mathematically described as a second-
order function, which signifies that it can be repre-
sented by an equation involving a second-degree poly-
nomial. This allows for a more nuanced analysis of the
fuel cost function, enabling a deeper understanding of
its behavior and implications. It is formulated by:

FCTPP =

T∑
t=1

(εt + δtPTPP,t + γtP
2
TPP,t; t = 1, . . . , T )

(5)
Where, εt, δt, and γt are cost factors of TPP t and T
is number of TPPs.

2) Modelling cost of solar power plant:

When the system operator owns solar power plants,
the cost function may not be applicable since SP does
not require fuel. However, in cases where a utility does
not own SP, the cost of SP generation needs to be de-
termined based on specific contracts [38]. This paper
discusses SP’s total cost function (FCSP ), which can
be represented as a linear function [38]:

FCSP =

S∑
s=1

(a · PSP,s; s = 1, . . . , S) (6)

In Eq. (6), a is price of solar generators in ($/MWh);
PSP,s is the power output of the sth SP and calculated
by:

PSP (Ab) =

{
PSP,rated × A2

b

Astd+Rc
0 < Ab < Rc

PSP,rated × Ab

Astd
Ab > Rc

;

b = 1, ..., 24 intervals
(7)

It is noted that solar radiation (Ab) varies greatly
on an hourly, daily, monthly, and yearly basis. For
optimal determination of location and rated power of
photovoltaic systems, it is essential to collect solar ra-
diation data for all 8760 hours in a year. However, the
challenge lies in effectively managing the vast amount
of data, as existing optimization algorithms struggle to
address the issue. To efficiently address the challenge,
we recommend leveraging global solar data to specify
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the locations of the solar power plants. These data set
accurately report the average radiation for each hour
of every month, providing valuable insights into solar
radiation patterns. This approach allows for a more
focused analysis, helping to optimize solar power gen-
eration strategies effectively. In the study, average ra-
diation for each hour in a day collected from the global
solar map in two southern provinces of Vietnam will be
applied to determine the power output of SPs, which
were integrated into traditional thermal power plant
systems.

2.2. The considered restrictions

In addressing the ELD and RES_ELD problems, en-
suring that the generators and systems meet a range
of equality and inequality constraints is essential. This
paper will focus on addressing these restrictions in the
following manner:

1) Limitation on the real active power
balance:

The total generated power from such power plants
should be sufficient to meet demand load (PD) and
transmission losses (Ploss), which can be expressed as
follows:

T∑
t=1

PTPP,t +

S∑
s=1

PSP,s = PD + Ploss (8)

In Eq. (8), T and S are number of TPPs and
SPs; Ploss is determined by utilizing Krone’s reduc-
tion model below:

Ploss =

T∑
t=1

T∑
j=1

PTPP,t ×Btj × PTPP,j

+

T∑
t=1

B0t × PTPP,t +B00

(9)

2) Limitation on power generation:

In order to operate efficiently, every unit must adhere
to the prescribed minimum and maximum generation
capacities, as shown by:

PTPP,min ≤ PTPP,t ≤ PTPP,max (10)

PSP,min ≤ PSP,s ≤ PSP,max (11)

3. Secretary Bird
Optimization Algorithm

The secretary bird optimization algorithm [35] is a
nature-inspired optimization technique that mimics the
hunting behavior of the Secretary bird, a large preda-
tory bird of prey found in Africa. The secretary bird
is known for its unique hunting strategy, using a com-
bination of speed, agility, and intelligence to catch its
prey. During the hunt, the bird uses its powerful legs
to kick and stun its prey and then uses its sharp talons
to grasp and kill it. SBOA was proposed by Fu et al
in 2024 and has shown promise in solving optimiza-
tion problems with complex search spaces, particularly
those with multiple local optima. To simulate the opti-
mization process of SBOA, the position of the secretary
bird was assigned a potential candidate (a solution)
in the search spaces for the considered problems and
firstly initialized by:

Xnew
i = Xmin

i + r × (Xmax
i −Xmin

i );

i = 1, 2, ..., PZ;
(12)

Where Xnew
i signifies the new position of the ith secre-

tary bird; Xmax
i and Xmin

i define the upper and lower
limits, PZ is population size and r is a random num-
ber within [0, 1]. Next, all solutions in population size
will be evaluated for the quality by calculating the ob-
jective function. From these fitness function values,
the best solution with the lowest value for the opti-
mization problem is selected. After that, two distinct
natural behaviors of the secretary bird that correspond
to two strategies for updating solutions have been used
to revise the position of members. Two strategies are
featured as follows:

1) Exploration strategy:

The strategy is devised by studying the hunting be-
havior of secretary birds, which involves seeking prey,
consuming prey, and attacking prey. In other words,
to effectively model the secretary bird’s hunting be-
havior, the strategy has utilized its biological statis-
tics and the highest iteration (HI) to divide the entire
hunting process into three equal intervals: t < 1/3HI,
1/3HI < t < 2/3HI, and 2/3T < t < HI. These
intervals correspond to the three distinct phases of the
secretary bird’s predation. As a result, the position
of secretary birds is updated based on a comparison
between the current iteration (t) and the maximum
iteration using the following equations.

Phase 1: t ≤ 1
3HI

Xnew
i = Xi + r1 × (Xr1 −Xr2); i = 1, 2, ..., PZ

(13)
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Where Xi is the old position of the ith secretary bird,
r1 is a random array within [0, 1], Xr1 and Xr2 are
random solutions among population.

Phase 2: 1
3HI < t ≤ 2

3HI

Xnew
i =Xbest + exp

((
t

HI

)4
)

× (Xbest −Xi)

× (r2 − 0.5); i = 1, 2, ..., PZ

(14)

Where Xbest is the best position of secretary bird, r2
is a random array within [0, 1].

Phase 3: t > 2
3HI

Xnew
i =Xbest +

((
1− t

HI

)
Λ

(
2× t

HI

))
(Xi)

× 0.5× Levy(D); i = 1, 2, ..., PZ
(15)

In Eq. (15), Levy(D) stands for the Levy flight dis-
tribution function, which is determined by:

Levy(D) = 0.01× u× α

(|v|) 2
3

(16)

Where u and v are random number within [0, 1]; α is
standard deviation, given by:

α = 0

(
Γ(3.5)× sin

(
3π
4

)
3
4 × Γ(1.25)

)
(17)

2) Exploitation strategy:

The strategy is constructed by simulating the secretary
bird’s behavior in avoiding threats from predators that
may try to attack or steal its food. Secretary birds are
known for employing a range of evasion strategies to
protect themselves or their food when they face such
threats. In brief, strategies for evasion can be repre-
sented mathematically by eq. (18):

Xnew
i =


Xbest + (2× r2 − 1)×

(
1− t

HI

)2 ×Xi;
if rand < 0.5

Xi + r3 × (Xr3 − k ×Xi);
otherwise

(18)

In Eq. (18), r3 is a random array within [0, 1], Xr3 is
random solution among population, and k is an integer
of 1 or 2.

3) Selection mechanism

After each strategy, the fitness function of the newly
update solution (FFnew

i ) is calculated and then the
selection mechanism is applied to keep Xnew

i or Xi as

shown in Eq. (19):

Xi =

{
Xnew

i ; if FFnew
i ≤ FFi

Xi; otherwise
(19)

4. Applying SBOA to The
Problem

The section offers a constructive approach of the pro-
posed method to address the problems effectively as
follows:

1) Initialization:

Solutions are Xi (i = 1, ..., PZ), in which each solution
is presented by Xi=[X2,i, X3,i, . . . , XT,i]. The power
outcome of TPP from 2 to T in solutions is initially
created, meeting the constraint in Eq. (10).

From the initialized solutions, the fitness function to
each solution for the applied problem is formulated as
follows:

FFi = FCTPP,i(Xi) + FCSP +M × (P1,i − P limit
1,i )2

(20)

In Eq. (20), M is a penalty factor; and P1,i is the
power outcome of slack TPP 1 and given by

P1,i =

T∑
t=2

PTPP,t +

S∑
s=1

PSP,s − PD + Ploss (21)

The limit for slack TPP 1 in Eq. (20) is constrained
by

P limit
1,i =


Pmax
1 ; if P1,i > Pmax

1

Pmin
1 ; if P1,i < Pmin

1

P1,i; Else
(22)

2) The first new updated solution by
Exploration strategy

In the section, the first new updated solution is per-
formed as shown in Section 3.1. It noted that each up-
dated solution can be violated its limitations. There-
fore, the power output of TPP must be checked vio-
lates its limitations as shown in Eq (23) below.

Pi,t =


Pmax
i,t ; if Pi,t > Pmax

i,t

Pmin
i,t ; if Pi,t < Pmin

i,t

Pi,t; Else
(23)

After that, the slack TPP 1 is computed as Eq. (21)
and FFi is obtained as Eq. (20). Finally, the selected
mechanism is used to keep better solution as shown in
Eq. (19).
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3) The second new updated solution by
Exploitation strategy

In the section, the second new updated solution is per-
formed as shown in Section 3.2. It noted that each up-
dated solution can be violated its limitations. There-
fore, the power output of TPP must be checked vio-
lates its limitations as shown in Eq. (23). After that,
the slack TPP 1 is computed as Eq. (21) and FFi is
obtained as Eq. (20). Finally, the selected mechanism
is used to keep better solution as shown in Eq. (19).

The iterative algorithm for implementing the pro-
posed method to solve the problem is outlined clearly.
Step 1: Set up PZ and HI
Step 2: Create random solutions

• Calculate and check P1,i using Eqs. (21) and (22).

• Calculate FFi using Eq. (20)

• Select the best solution with the best fitness func-
tion

• Set t to 1

Step 3: Generate the first solutions using Section 3.1

• Check and repair solutions as violation

• Calculate and check P1,i using Eqs. (21) and (22)

• Compare old and new solution using Section 3.3

Step 4: Generate the first solutions using Section 3.2

• Check and repair solutions as violation

• Calculate and check P1,i using Eqs. (21) and (22)

• Compare old and new solution using Section 3.3

Step 5: If t < HI, set t = t + 1 and back to Step 3.
Otherwise, stop the process and save results.

5. Numerical Results

In this section, we have tackled the ELD and
RES_ELD problems by employing three different
meta-heuristic methods: SBOA [35], PSO [36], and
TSA [37]. Subsection 5.1 provides parameters selection
of three methods. Subsection 5.2 details and discusses
the outcomes of System 1 with twenty TPPs, catering
to a power demand of 2500 MW. Subsection 5.3 has im-
plemented the three methods to address the RE_ELD
with twenty TPs and four SPs for 24 load levels span-
ning 24 hours. Finally, subsection 5.4 presents a so-
lution map for System 1, which considers various load
demands based on the total generating power of TPPs.

Fig. 1: The results obtained by SBOA as setting PZ of 30 and
value of HI being changed.

Authors utilize a personal computer with 8GB of
RAM and a 2.2GHz CPU for all our work and apply
MATLAB software version R2018a for coding and sim-
ulations.

5.1. The parameters selection for
applied methods to System 1

Before applying three applied methods for reaching the
total cost of two problems, setting the decision param-
eters such as population size (PZ) and the highest iter-
ation (HI) for these methods will be investigated care-
fully because the work acts important role in the fair
comparison of these methods to specify the best one.
Firstly, SBOA will be run by adjusting the value of
PZ and HI based on previous studies to find the best
couple value, which gives the best solution to the con-
sidered problem. After the couple value will be applied
for PSO and TSA to reach more results for compari-
son. Figures 1, 2, and 3 show different cases for setting
PZ and HI, in which Figure 1 is the case that 30 is
for PZ and HI is changed from 50 to 500 iterations,
Figures 2 and 3 are the cases that HI is fixed at 200
and 250 iterations and PZ is increased the small to big
value. In addition to HI and PZ, the total generation
(TG) of producing solutions and the corresponding fit-
ness are shown in three figures. In Figure 1, the fitness
provided by SBOA is from $ 62457.0287 to the optimal
one of $ 62456.6331 as increasing HI from 50 to 500
iterations, corresponding to TG from 3,000 to 18,000
solutions. However, if TG continuously increases, the
fitness will remain unchanged. As a result, PZ of 30
and HI of 300 are considered as the best parameters of
SBOA for this investigation. Like Figure 1, 80 and 200
in Figure 2 and 40 and 250 in Figure 3 are the best for
setting PZ and HI to reach the optimal fitness, high-
lighted in red. Although the fitness for both cases is
the same, TG is different. Namely, TG is 32,000 solu-
tions for Case 2, but that of Case 3 is 20,000 solutions.
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Fig. 2: The results obtained by SBOA as setting HI of 200 and
value of PZ being changed.

Fig. 3: The results obtained by SBOA as setting HI of 250 and
value of PZ being changed.

In comparing three cases with the optimal fitness
of $ 62456.6331, Case 1 is less than Case 2 by 14,000
solutions and Case 3 by 2,000 solutions. From here, it
can be concluded the best parameters of SBOA are 30
for PZ and 300 for HI.

PSO, TSA, and SBOA are each run fifty times with
the parameters: PZ set to 30 and HI set to 300 for
SBOA and PZ set to 60 and HI set to 300 for PSO and
TSA. Fifty cost values for System 1, obtained through
different methods, are detailed in Figure 4. The fig-
ure shows these costs in three colors: red for PSO,
black for TSA, and blue for SBOA. The costs obtained
by PSO are significantly fluctuating, with the highest
being over $ 62454 and the smallest being around $
62470; the black costs of TSA fluctuate slightly while
these costs of SBOA are on the straight line.

To demonstrate the solution-reaching process of
three methods, Figure 5 displays the search progress
of these methods from the best run among 50 runs.
Among the methods, the process from PSO is the least
effective as it fails to reach the optimal solution for Sys-
tem 1, with the red line over the black and blue lines,
and that of TSA is better than compared to PSO. In
comparison to PSO and TSA, SBOA is the most ef-
fective because SBOA is easy to reach the best solu-
tion from the 45th to the end iteration. Besides, the
time of SBOA running to each run is 1.53 s, which is
faster than PSO (1.7s) and TSA (1,91s). These costs

Fig. 4: Results obtained by three methods over 50 runs.

Fig. 5: Results obtained by three methods from the best run.

from Figure 5 will be presented under Minimum cost
(Mi.C), Average cost (Av.C), Maximum cost (Ma.C),
and standard deviation (SD), as shown in Figure 6.

The cost structures of SBOA, TSA, and PSO vary
significantly. SBOA’s Mi. C is $ 62456.63309, the low-
est among the three, while PSO’s cost is the highest.
Furthermore, it’s noteworthy that Av. C and Ma. C
of SBOA are identical to the Mi. C, whereas TSA and
PSO costs differ. This leads to the conclusion that
SBOA demonstrates superior performance compared
to TSA and PSO.

5.2. Result discussion on System 1

This section utilizes information from reference [39, 40,
41, 42] to describe a power system of twenty thermal
power plants. Sufficient power must be available for
the system to accommodate the 2500 MW demand
load. In addition, the system also takes transmission
losses into account. The results obtained from the
PSO, TSA, and SBOA methods in terms of Mi.C, Av.C,
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Fig. 6: The results given by three methods.

Ma.C, and SD are gathered by running 50 independent
runs with the setting HI and PZ as Section 4.1 and
then compared with results from other methods such
as CSA [14], BBO [16], PSO-GSA [22], GQBA [23],
CGQBA [23], backtracking search algorithm (BSA)
[39], class topper optimization (CTO) [40], aggrandized
CTO (ACTO) [40], improved stochastic fractal search
algorithm (ISFS) [41], CSA [42] and one rank CSA
(ORCSA) [42] as illustrated in Table 1. Moreover, pop-
ulation size and the number of iterations are presented
in such a table for comparison. The minimum oper-
ating cost of three applied and compared methods is
shown in the second column, which is the important
criterion for proving the searchability. Regarding this
criterion, PSO is the worst method with the Mi.C of
$ 62,466.02576, while A-CTO [40] is the best method
with the Mi.C of $ 62,452.5. The Mi.C of SBOA and
the rest of the methods is $ 62,456.6331, except for TSA
and CTO [40], which has a higher cost ($ 62,459.1463
and $ 62,457.9, respectively). Although the Mi.C of
A-CTO is smallest, solutions in [40] did not report,
leading to the unsure cost.

The third and fourth columns are the Av.C and
Ma.C of methods, in which six methods, including CSA
[14], BBO [16], CTO [40], A-CTO [40], CSA [42], and
ORCSA [42] were not available. Regarding the two cri-
teria, only SBOA and PSOGSA [22] have the same val-
ues of $ 62,456.63309 and $ 62,456.63311, respectively,
which are equal to the Mi.C. As a result, it can be indi-
cated that SBOA and PSOGSA have robust searching
ability. To further prove SBOA’s stability, we can see
that the SD of SBOA is approximately zero while the
value of PSOGSA is not present. The table also shows
two parameters-HI and PZ-that represent the search
speed of approaches based on the number of fitness
evaluations (FE). FE is defined by multiplying HI,
PZ, and ω, in which ω represents the frequency of gen-
erating a new solution in an iteration. Noted that ω is
different from different methods and it is dependent the
solution producing structure of each method. The ta-
ble shows that ω is equal to 1 for BBO [16], PSOGSA
[22], GQBA [23], CGQBA [23], BSA [39], PSO, and

TSA, and 2 for CSA [14, 42], ORCSA [42], and SBOA,
and 2.5 for ISFS [41]. Namely, FE of SBOA is 18,000
is less than that of CSA [14], PSOGSA [22], GQBA
[23], CGQBA [23], and BSA [39] but higher than CSA
[42], ORCSA [42], and ISFS [41]. The results validate
SBOA’s potential as a workable solution for the system
with 20 units in light of the quadratic fuel cost function
and the limit of power loss in line.

5.3. Result discussion on System 2

This section will offer a thorough analysis of the pro-
posed approaches (PSO, TSA, and SBOA) in order
to ascertain how well they work in locating the best
solution and how stable their search procedure is on
System 2. The combined functioning of the thermal
power plants of System 1 and four solar power plants
are built to form System 2. In System 2, the data of
TPP is comparable to that of System 1 and data of
four SP s are collected by accessing the map of global
solar [43]. Namely, SP1 is Binh Nguyen project with
geographical coordinates of (15.333270°, 108.709070°),
SP2 is Lac Dien project with geographical coordi-
nates of (12.967340°, 109.096410°), SP3 is Phuoc Huu
project with geographical coordinates of (11.540740°,
108.872940°), and SP4 is Tien Hanh project with ge-
ographical coordinates of (10.905840°, 108.010450°).
The rated power of four SP s is 50MW, 45MW, 40MW,
and 49MW, respectively. From accessing the location
of these solar power plants from global solar, the power
output of SP in MW for 24h can be calculated and
shown in Figure 7. In such a figure, some hours do
not have irradiation, resulting in a zero power output;
however, the remaining hours in the day have power
because of existing irradiation. In one day, the power
output of SP is changed from the minimum power at
the 6th hour to the maximum power at the 12th or
13th hour. The load demands of System 2 within a day
are established using data from the electricity national
control center, as depicted in Figure 8, in which PD in
black is the case without SP s while PD called PDnew
in red is the case with SP s. In addition, PDnew is ap-
plied to System 2 as the required load for power plants,
and the task of these power plants is to find the suitable
power so that the total cost of System 2 is as minimal
as possible while meeting PDnew.

We configure PZ and HI parameters specifically for
PSO, TSA, and SBOA in the initial stage, as presented
in System 1. Subsequently, we execute each of the three
methods 50 times to comprehensively obtain the costs
for comparison. As a result, the most favorable costs
in one day from the best-performing run are carefully
aggregated and visually presented in Figure 9. The
figure shows the 24 values of Mi. C from three methods
over 24 hours in three bar colors: the blue bar is for
SBOA, the orange bar is for TSA, and the green bar
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Tab. 1: The result comparison of three applied methods and other methods for System 1.

Method Mi.C ($/h) Av.C ($/h) Ma.C ($/h) PZ HI SD
CSA [14] 62,456.63 NA NA 50 500 NA
BBO [16] 62,456.7926 NA NA NA NA NA

PSOGSA [22] 62,456.6330 62,456.63311 62,456.63310 100 500 NA
GQBA [23] 62,455.86154 62,455.8921 62,471.521 20 1000 1.73

CGQBA [23] 62,455.41276 62,455.4912 62,469.123 20 1000 1.65
BSA [39] 62,456.6925 62,457.1517 62,458.1272 20 20000 NA
CTO [40] 62,457.9 NA NA NA 1000 NA

A-CTO [40] 62,452.5 NA NA NA 1000 NA
ISFS [41] 62,456.633 62,456.6331 62,457.94 10 100 0.2

ORCSA [42] 62,456.6331 NA NA 10 500 NA
CSA [42] 62,456.6331 NA NA 10 500 NA

PSO 62,466.02576 62,495.26406 62,540.48056 60 300 17.78
TSA 62,459.14628 62,460.12714 62,461.3271 60 300 0.573

SBOA 62,456.63309 62,456.63309 62,456.63309 30 300 0.0000007

Fig. 7: Power from SP s.

is for PSO. The height of each bar from methods is
different because the load demand level of each hour is
different. Moreover, cost savings of SBOA over TSA
and PSO cannot show clearly due to the values being
much smaller than the value of the vertical axis. To
cover this issue, Figure 10 is plotted with the aim of
giving more details about the cost difference of SBOA
over TSA and PSO.

In the figure, SBOA can identify costs as low as $
0.0023 at the 14th hour, increasing to $ 110.0 at the
9th hour. Meanwhile, PSO ranges from $ 1.7 in the 5th
hour to $ 18.6 in the 22nd hour. The hourly cost of
SBOA is on average $ 8.5 less than that of TSA and $
41.6 less than that of PSO. The total one-day cost from
the three methods is indicated in Figure 11, in which
the height of SBOA is lower than that of TSA and PSO.
Namely, SBOA, TSA, and PSO costs $ 1,917,450.3, $
1,917,649.0, and $ 1,918,426.3, respectively. It means
that the one day cost of SBOA is less than TSA by $

Fig. 8: Load demand levels of System 2.

198.68 and PSO by $ 976.04, in turn. Solutions ob-
tained by SBOA is given in Table 2.

5.4. Discovering solution data with
step size of 1 MW to System 1

The section utilized SBOA to derive solution data for
System 1 by adjusting the load demand from 1010 MW
to 3650 MW with a step size of 1 MW. These values
represent the system’s smallest and largest load de-
mands. It’s worth noting that the minimum and max-
imum generated power output of all TPP s fall within
the range of 1010 MW to 3865 MW. However, it’s im-
portant to acknowledge that the maximum load de-
mand cannot match the maximum power output of
all TPP s due to power loss in the transmission line.
The results obtained through SBOA are depicted in
Figure 12, with solutions corresponding to each PD
being represented by different color lines. With every
load value, we can systematically analyze the cost and
power of 20 TPP s, as well as the power loss, as il-
lustrated in Figure 13. The green line represents the
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Tab. 2: Solutions obtained by SBOA of System 2.

Unit (MW) 1 2 3 4 5 6 7 8
TPP1 600.00 600.00 599.99 570.04 570.01 589.92 600.00 600.00
TPP2 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00
TPP3 169.28 166.89 165.36 151.09 151.08 159.27 169.69 199.60
TPP4 135.51 131.09 130.23 120.03 120.03 125.76 134.18 173.13
TPP5 135.79 133.83 132.68 125.20 125.20 129.25 134.78 159.63
TPP6 98.62 95.64 95.46 86.40 86.41 91.21 97.92 100.00
TPP7 125.00 125.00 125.00 120.59 120.60 123.71 125.00 124.98
TPP8 149.43 144.37 144.32 132.98 132.97 139.09 147.92 150.00
TPP9 124.58 121.35 120.28 112.55 112.54 116.68 123.64 164.42
TPP10 140.54 134.80 133.14 119.20 119.22 126.62 138.55 150.00
TPP11 163.91 160.52 159.90 155.25 155.26 156.98 163.31 189.22
TPP12 313.86 311.20 310.75 303.32 303.30 306.78 315.20 352.80
TPP13 132.38 130.40 130.04 125.95 125.95 127.82 132.04 158.35
TPP14 38.45 35.72 35.30 32.38 32.39 33.20 37.26 62.73
TPP15 142.24 138.96 137.59 128.93 128.95 133.47 142.20 184.30
TPP16 38.51 37.82 37.85 37.18 37.18 37.50 38.08 41.53
TPP17 85.00 85.00 85.00 80.07 80.06 84.75 85.00 85.00
TPP18 110.70 108.29 107.30 100.30 100.31 103.76 111.44 119.99
TPP19 119.98 120.00 119.56 112.17 112.18 116.14 119.98 120.00
TPP20 80.55 76.41 75.81 67.19 67.17 71.60 79.31 99.99
SP1 0.00 0.00 0.00 0.00 0.00 0.43 5.82 13.87
SP2 0.00 0.00 0.00 0.00 0.00 0.37 5.24 12.60
SP3 0.00 0.00 0.00 0.00 0.00 0.26 4.21 10.89
SP4 0.00 0.00 0.00 0.00 0.00 0.22 4.10 11.45

Tab. 3: Solutions obtained by SBOA of System 2 (cont).

Unit (MW) 9 10 11 12 13 14 15 16
TPP1 600.00 600.00 600.00 600.00 600.00 600.00 600.00 600.00
TPP2 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00
TPP3 200.00 200.00 199.97 199.99 200.00 200.00 200.00 200.00
TPP4 199.93 200.00 199.99 194.50 200.00 200.00 200.00 199.99
TPP5 160.00 159.99 159.95 160.00 160.00 160.00 160.00 160.00
TPP6 100.00 99.99 99.99 100.00 100.00 100.00 100.00 100.00
TPP7 124.96 125.00 125.00 125.00 125.00 125.00 125.00 125.00
TPP8 150.00 150.00 150.00 150.00 150.00 150.00 150.00 150.00
TPP9 199.95 193.22 199.99 176.58 200.00 200.00 200.00 200.00
TPP10 150.00 150.00 150.00 150.00 150.00 150.00 150.00 150.00
TPP11 223.90 205.05 218.57 201.87 260.19 300.00 300.00 287.47
TPP12 398.40 384.99 401.51 374.13 467.52 500.00 500.00 499.74
TPP13 159.98 159.96 159.97 159.93 159.97 160.00 160.00 160.00
TPP14 108.44 87.40 111.88 79.84 129.90 130.00 130.00 130.00
TPP15 185.00 185.00 185.00 185.00 184.98 185.00 185.00 185.00
TPP16 46.35 43.13 45.21 42.90 50.28 76.51 77.26 53.05
TPP17 85.00 84.98 85.00 85.00 84.99 85.00 85.00 85.00
TPP18 119.99 120.00 120.00 119.94 119.99 120.00 120.00 120.00
TPP19 120.00 120.00 120.00 119.95 120.00 120.00 120.00 120.00
TPP20 100.00 99.96 99.97 99.99 99.99 100.00 100.00 100.00
SP1 21.42 27.25 30.54 32.12 31.87 28.99 23.28 15.65
SP2 19.48 24.47 27.44 27.89 26.40 23.94 19.40 13.32
SP3 17.06 21.56 24.12 25.07 24.42 22.11 17.34 11.73
SP4 18.58 23.95 27.32 28.77 28.44 26.09 21.11 14.16
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Tab. 4: Solutions obtained by SBOA of System 2 (cont).

Unit (MW) 17 18 19 20 21 22 23 24
TPP1 600.00 600.00 600.00 600.00 600.00 600.00 600.00 600.00
TPP2 200.00 199.97 200.00 200.00 200.00 200.00 200.00 181.84
TPP3 200.00 200.00 199.99 199.98 200.00 200.00 200.00 200.00
TPP4 199.99 199.80 199.98 200.00 199.98 200.00 179.74 145.85
TPP5 160.00 159.99 160.00 160.00 160.00 160.00 160.00 145.62
TPP6 100.00 99.99 100.00 100.00 99.98 100.00 100.00 99.99
TPP7 125.00 125.00 124.99 125.00 125.00 125.00 124.93 124.97
TPP8 150.00 150.00 150.00 150.00 150.00 150.00 150.00 150.00
TPP9 200.00 200.00 199.96 200.00 200.00 199.91 171.66 134.73
TPP10 150.00 149.97 150.00 150.00 149.99 150.00 149.97 149.78
TPP11 287.47 225.51 270.07 235.35 244.27 230.79 191.28 172.31
TPP12 499.74 410.16 485.40 429.79 446.70 421.65 356.99 323.52
TPP13 160.00 159.91 159.99 160.00 159.99 159.99 158.92 140.18
TPP14 130.00 114.93 129.99 130.00 129.99 129.62 71.02 46.94
TPP15 185.00 185.00 184.99 185.00 185.00 185.00 184.84 155.76
TPP16 53.05 46.14 50.45 46.53 47.47 46.37 41.34 38.75
TPP17 85.00 85.00 85.00 84.99 85.00 85.00 84.96 85.00
TPP18 120.00 120.00 120.00 120.00 120.00 120.00 119.96 118.92
TPP19 120.00 120.00 120.00 120.00 119.99 119.97 120.00 120.00
TPP20 100.00 100.00 100.00 100.00 100.00 100.00 100.00 88.81
SP1 7.88 1.68 0.00 0.00 0.00 0.00 0.00 0.00
SP2 6.62 1.32 0.00 0.00 0.00 0.00 0.00 0.00
SP3 5.61 1.05 0.00 0.00 0.00 0.00 0.00 0.00
SP4 6.85 1.36 0.00 0.00 0.00 0.00 0.00 0.00

Fig. 9: Costs obtained by three methods of System 2 over 24
hours.

cost in $, the orange array displays Ploss in MW, and
the dark blue array indicates the load demand in MW.
From the figure, when PD increases, Ploss significantly
escalates, and this is true for the cost. It means that
the financial prospects of the entire power system are
significantly affected by even a slight decrease in the
cost of electric energy because of increasing load de-
mand. Nowadays, the penetration of renewable energy
resources is increasing, and the fluctuation of PD is
different. Therefore, operators of power systems must
make a quick decision to require suitable power allo-
cation from power plants with the aim of reducing the
cost of electric energy as small possible as. As a result,

Fig. 10: Cost saving of SBOA compared TSA and PSO on Sys-
tem 2 over 24 hours.

creating solution data with a step size of 1 MW to Sys-
tem 1 plays a vital role because if load demand is given,
system operators can receive detailed information such
as power generated by all thermal power plants, power
loss, and system cost immediately as importing the PD
into the solution map. This ensures that the supply
side always meets the consumption side, allowing the
system to operate efficiently and safely.

6. Conclusions

The study has successfully utilized three methods
(SBOA, PSO, and TSA) to achieve optimal solutions
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Fig. 11: One day cost of three methods on System 2.

Fig. 12: Solutions given by SBOA for System 1 with step size
of 1 MW.

for ELD problems with the hybrid operation of tradi-
tional power plants and renewable power plants. Three
study cases were examined to serve two primary pur-
poses: firstly, to evaluate the effectiveness of the three
methods by implementing the first two study cases,
and secondly, to offer solution data for operators by
implementing the last study case. The results revealed
that SBOA outperforms TSA and PSO in solving the
ELD problems for Systems 1 and 2. These findings
demonstrate that SBOA is an effective search method,
capable of achieving the same best cost or better than
the other methods. Furthermore, by adjusting the load
from the lowest to the highest demand of System 1,
SBOA can identify a set of solutions that can aid op-
erators in making informed decisions for power plants
when loads are provided. Going forward, SBOA’s per-
formance can be enhanced by refining its mechanism
to update itself with new solutions. Additionally, the
study will explore the uncertain aspects of renewable
energy sources to illustrate how energy instability im-
pacts the technical and economic considerations of the
power system.

Fig. 13: The cost, load demand and power loss obtained by
SBOA for System 1.
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