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Abstract.

Accurate and efficient human counting is essen-
tial for optimizing public transportation and advancing
smart city infrastructure. This paper evaluates pro-
posed lightweight deep learning models for autonomous
human counting system on low-cost hardware, ensur-
ing real-time monitoring and enhanced operational ef-
ficiency. While existing methods, such as DeepSORT,
Kalman Filters, and YOLO variants, are often im-
plemented on high-end hardware, they typically prior-
itize accuracy over computational efficiency. Few ob-
ject detection and tracking techniques can run in real-
time on low-end hardware. This work advances the
field by utilizing optimized deep learning models suit-
able for embedded systems with constrained resources.
Specifically, fine-tuned YOLOv8 is employed for head
detection, combined with ByteTrack for robust track-
ing, outperforming YOLOv5 and YOLOv11 in accu-
racy and efficiency. Archiving the 15 FPS and more
then 90% accuracy on the real environment deployment

on both RISC-V architecture with an integrated NPU
(MaixCAM) and ARM v8 (Raspberry Pi), The pro-
posed system demonstrates its suitability for real-time,
cost-effective, and scalable autonomous human count-
ing in public transit environments.

Keywords

Deep Learning, Low-cost hardware, Human
counting, Human detection, Human tracking.

1. INTRODUCTION

Efficient and secure transportation systems are essen-
tial for modern urban mobility, particularly in student
transport and public transit. In developing countries
like Vietnam, student safety on school buses is a grow-
ing concern, especially after several incidents since 2020
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where children were left unattended. In the 2023–2024
academic year alone, Vietnam had around 18.5 mil-
lion students in primary to high school, underscoring
the scale of the issue. Addressing these safety con-
cerns through advanced technological solutions has be-
come a necessity. Although regulations—including na-
tional decrees, road traffic laws, circulars, resolution
numbers, and directives—provide a legal framework for
transportation, they lack the integration of modern AI-
driven monitoring technologies [1, 2, 5].

Beyond student transport, public transit efficiency
is directly influenced by real-time passenger counting.
Accurate passenger monitoring is essential for improv-
ing operational planning, optimizing resource alloca-
tion, and enhancing user experience. Traditional meth-
ods, such as manual counting or basic infrared sensors,
suffer from accuracy limitations, environmental depen-
dencies, and scalability challenges [3, 4]. Computer vi-
sion and machine learning techniques offer robust alter-
natives by automating the passenger counting process.
However, deploying these AI-driven systems on low-
cost hardware introduces challenges related to compu-
tational efficiency, power consumption, and model ac-
curacy [6–8].

For instance, MobileNetV3 has been widely adopted
for embedded AI applications due to its ability to de-
liver high performance with minimal computational re-
sources [9]. Similarly, Tiny-YOLO and NanoDet mod-
els have been explored for real-time human detection
on resource-constrained devices [10, 11]. These models
leverage depthwise separable convolutions and quan-
tization techniques to optimize inference speed while
maintaining acceptable accuracy. Additionally, some
works have proposed hybrid approaches that combine
lightweight CNNs with Transformer-based architec-
tures to further enhance detection robustness [12,13].

Recent studies have explored the application of deep
learning in human detection and counting. Convolu-
tional Neural Networks (CNNs) and You Only Look
Once (YOLO)-based models have demonstrated high
accuracy in detecting people in crowded environments
[14, 15]. However, these models often require sub-
stantial computational power, making them less suit-
able for edge deployment on low-cost hardware. To
address this, researchers have investigated lightweight
deep learning models, such as MobileNet, EfficientNet,
and ShuffleNet, which offer a balance between accuracy
and computational efficiency [16,17].

Artificial Neural Networks (ANNs) and Deep Rein-
forcement Learning (DRL) have been widely applied in
the field of autonomous systems, particularly for path
planning and robotic control. Reinforcement learning-
based approaches have shown promising results in opti-
mizing coverage path planning (CPP) for robotic clean-
ing and maintenance applications. Artificial Intelli-

gence (AI) has significantly advanced robotics, partic-
ularly in autonomous navigation, path planning, and
medical imaging. Deep reinforcement learning (DRL)
has been successfully applied for complete coverage
path planning in reconfigurable robots [18, 19], while
deep learning techniques have enabled autonomous op-
erations such as staircase cleaning [20]. Addition-
ally, convolutional neural networks (CNNs) have en-
hanced medical image segmentation, improving diag-
nostic accuracy in applications like breast nodule detec-
tion and intracranial hemorrhage segmentation [21,22].
Lakshmanan et al. (2020) proposed a DRL-based
CPP strategy for tetromino-based cleaning and main-
tenance robots, demonstrating improved efficiency in
large-scale environments [23]. Similarly, Kyaw et
al. (2020) employed DRL for solving the Traveling
Salesman Problem (TSP) in grid-based decomposition
maps, enhancing the coverage efficiency of reconfig-
urable robots [24]. These studies highlight the effec-
tiveness of DRL in dynamically generating optimal cov-
erage paths while adapting to different environmental
constraints. Prabakaran et al. (2020) [25] introduced
Hornbill, a self-evaluating hydro-blasting robot for ship
hull maintenance. The work in [26] improvements
could integrate deep learning and fuzzy logic classifier
for defect detection. The Tetris-inspired reconfigurable
floor-cleaning robot [27, 28], the polyiamond inspired
self-reconfigurable floor tiling robot [29] and the Pan-
thera reconfigurable pavement-cleaning robot [30, 31]
present promising platforms for future research, partic-
ularly in integrating reinforcement learning and com-
puter vision techniques to enable adaptive and intelli-
gent navigation.

In addition to DRL, heuristic and evolutionary al-
gorithms have also been explored for autonomous sys-
tems. Cheng et al. (2020) proposed a multi-objective
genetic algorithm (GA)-based autonomous path plan-
ning approach for reconfigurable tiling robots, bal-
ancing multiple objectives such as energy efficiency
and coverage completeness [32]. Similarly, Le et al.
(2020) utilized an evolutionary algorithm for complete
coverage path planning, optimizing tiling-based sur-
face coverage [33]. Graph-based and learning-based
models have also been considered for CPP tasks.
Cheng et al. (2019) introduced a graph-theoretic ap-
proach for accomplishing complete coverage in recon-
figurable robotic systems [34], while Yin et al. (2020)
applied deep learning techniques for robotic table-
cleaning tasks, demonstrating the potential of neural
networks in adaptive coverage solutions [35]. These
works [36–38] demonstrate the application of reinforce-
ment learning in robot path planning, energy effi-
ciency, and autonomous coverage. By leveraging adap-
tive learning mechanisms, RL helps improve decision-
making in coverage path planning, energy-aware nav-
igation, and environment perception, making robotic
systems more efficient and autonomous.
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Deploying lightweight AI models for people counting
in transportation systems presents several challenges,
including occlusions, varying lighting conditions, and
real-time inference on low-power hardware. Studies
have shown that pruning and knowledge distillation
techniques can reduce model size while maintaining ef-
ficiency [39,40]. Additionally, advancements in edge AI
hardware—such as NVIDIA Jetson Nano, Coral Edge
TPU, and Raspberry Pi-based accelerators—have en-
abled real-time deep learning inference for transporta-
tion applications [41,42].

To successfully implement a lightweight AI model
for human counting, several key challenges must be
addressed: Applying quantization and pruning tech-
niques to reduce model size while preserving accuracy.
Evaluating real-world performance across diverse en-
vironmental conditions, including varying lighting and
occlusions. Conducting a comparative analysis of dif-
ferent lightweight AI architectures for human detection
in transportation scenarios.

Basing on the problem formulation, in this work, we
propose an optimized lightweight deep learning model
for real-time human counting in transportation sys-
tems. Our approach aims to achieve over 93% accuracy,
a frame rate exceeding 15 FPS, and stable operation
for at least 12 hours while keeping the total system cost
under 150. Development of an efficient deep learning
model optimized for low-cost hardware deployment.

The study contributions are summarized as follows:

• Design and develop a complete system for count-
ing students on schoolbus.

• Provide a proposed lightweight model combing ob-
ject detection and object tracking suitable for em-
bedded applications, ensuring up to 93% accuracy,
developing a multiobject counting algorithm for
moving objects with FPS up to 15 FPS, and web-
based monitoring.

• Evaluate the proposed model and present re-
sults from the real-world deployment using various
models and hardware.

The paper is structured as follows: Section 1 delves
into introduction, while Section 2 presents the pro-
posed system to evaluation the light deep-learning
model based human counting for low cost hardware
implemenation. Experimental results are detailed in
Section 3, then followed by the conclusion and remarks
in the final section.

2. Proposed System

2.1. Hardware and software
components

Fig. 1: Overview hardware components of the proposed system

Fig. 2: Overview software of the proposed system

Fig.1 illustrates the system components, used along-
side the website in Fig.2. Housed in a 115×90×55 mm
enclosure, the system includes a MaixCAM, GPS mod-
ule, antennas, LED indicators, IR LED, and a DC fan
for active cooling.

The GPS module is used to locate the position of
the bus while it is moving, allowing for accurate route
tracking. The green LED indicator will be on when
the system is active and off when the system is inac-
tive.MaixCAM supports camera modules with resolu-
tions up to 5 megapixels (MP), specifically GC4653 and
OS04A10 sensors with 4 MP resolution. The GC4653
sensor has a size of 1/3" and supports a maximum
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frame rate of 60 FPS at 720P resolution, while the
OS04A10 sensor is larger (1/1.79") and optimized for
low-light conditions, supporting a maximum frame rate
of 90 FPS at 720P resolution. During experiments, the
configuration used includes: Resolution: 416 × 416
pixels, Frame rate: 5 FPS (frames per second). Maix-
CAM uses the RISC-V C906 chip with a clock speed
of 1 GHz for the main core and 700 MHz for the sec-
ondary core, enabling smooth execution of AI and IoT
tasks.

The system transmits the real-time counting results
over Wi-Fi using the MQTT protocol to a central
server. A TP-Link router with a SIM attached is used
to provide a stable internet connection to the system
during the bus’s travel. At the same time, the resulting
image is stored locally on a microSD card for further
analysis. This hybrid approach ensures both instant
data reporting and offline data backup, enabling flexi-
ble deployment in a variety of environments.

The system is installed at the bus entrance (assum-
ing a single-door layout), with hardware costs totaling
around $150. As shown in Fig. 3, this placement allows
the camera to capture passengers’ heads and movement
area, enabling accurate tracking and direction infer-
ence.

Fig. 3: System is deployed on schoolbus at real environment

2.2. Light Deeplearning Model based
Human Counting

The AI model for human counting is fine-tuned from
YOLOv8n using a dataset of 5,000 annotated images,
specifically curated to enhance detection accuracy in
crowded and dynamic environments such as school
buses and public transit. This dataset includes diverse
scenarios with varying lighting conditions, occlusions,
and different passenger postures to ensure robust per-
formance. Preprocessing and augmentation methods,
as shown in Fig. 4, were also applied to enhance the

uniqueness of the data. To optimize the model for real-
time inference on low-cost hardware, we employed in-
teger quantization (INT8), resulting in a model size
of approximately 3.28 MB. We did not utilize pruning
techniques in this process.

Fig. 4: Image preprocessing and augmentation methods

To optimize the model for real-time inference on
low-cost hardware, the trained YOLOv8n model is
converted into the .cvimodel format, a lightweight
structure designed for efficient deployment on Maix-
CAM. This conversion significantly reduces the com-
putational overhead, enabling smooth operation on
resource-constrained devices while maintaining high
detection accuracy. The .cvimodel format is partic-
ularly suited for embedded AI applications as it mini-
mizes latency and optimizes memory usage. Fig. ??
illustrates the .mud file, which encapsulates criti-
cal model information, including architecture details,
quantization settings, and hardware compatibility.

Further improvements include the application of
post-processing techniques to refine detection accuracy
and reduce false positives. Non-Maximum Suppression
(NMS) thresholds are adjusted to enhance multi-object
detection, ensuring that overlapping passenger detec-
tions are accurately counted. Additionally, inference
speed is optimized through model pruning and quanti-
zation, which lower computational complexity without
significantly affecting accuracy.

To validate the model’s effectiveness, extensive test-
ing was conducted under real-world conditions, includ-
ing varied illumination and different passenger densi-
ties. Fig. 5 and Fig. 6 presents several examples and
size of the Yolov8n.cvimodel where students are suc-
cessfully detected using the custom-trained YOLOv8n
model. These results demonstrate the system’s ability
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to provide reliable and consistent human counting, re-
inforcing its suitability for autonomous monitoring in
transportation environments.

Fig. 5: The File .mud structures archived after fine-tun the
lightweight model

Fig. 6: File size of YOLOv8.cvimodel deployed on MaixCAM

3. Experimental Results

3.1. Evaluation metrics

The performance of lightweight deep learning models
is evaluated using standard object detection metrics.

Intersection over Union (IoU) quantifies the over-
lap between a predicted bounding box and the ground
truth, defined as:

IoU =
Area of Overlap
Area of Union

(1)

IoU ranges from 0 (no overlap) to 1 (perfect overlap).

The accuracy A represents the proportion of correct
predictions:

A =
TP + TN

TP + FP + TN + FN
(2)

The F1-score is the harmonic mean of precision and
recall:

F1 =
2× Precision × Recall

Precision + Recall
(3)

Precision P measures the proportion of true posi-
tive predictions among all positive predictions:

P =
TP

TP + FP
(4)

In object detection, a predicted bounding box is con-
sidered a true positive (TP) if its IoU with the ground

truth exceeds a defined threshold; otherwise, it is a
false positive (FP).

Recall R measures the proportion of correctly pre-
dicted positive instances:

R =
TP

TP + FN
(5)

False negatives (FN) represent undetected objects.

The Precision–Recall Curve (PRC) illustrates
the trade-off between precision and recall at varying
confidence thresholds and is especially useful for eval-
uating performance on imbalanced datasets.

Average Precision (AP) is the area under the
PRC and summarizes the performance for a specific
class. The mean Average Precision (mAP) is the
average of AP across all classes. Common benchmarks
include mAP@50 (IoU = 0.50) and mAP@50:95
(averaged across IoU thresholds from 0.50 to 0.95 in
steps of 0.05).

Frames per Second (FPS) quantifies the model’s
processing speed. Higher FPS values indicate better
real-time performance, which is crucial for embedded
and edge AI applications.

Here, TP , FP , TN , and FN follow standard confu-
sion matrix terminology [43,44].

3.2. Results and analysis

Initial tests using traditional models on a Raspberry Pi
4 Model B (8GB RAM) showed poor performance, as
detailed in Table I. The hardware proved insufficient for
real-world scenarios, especially with fast-moving sub-
jects.

We then switched to hardware with a RISC-V CPU
architecture featuring an integrated NPU, MaixCAM,
with a performance of 1 TOPS@INT8. The experi-
mental results, as shown in Table II, demonstrate more
promising performance, making it suitable for practi-
cal deployment. To further improve the performance
of the model, we utilized a dataset consisting of 10,128
images, divided into a training set (9,990 images) and
a validation set (138 images). To enhance the general-
ization ability of the model, data augmentation tech-
niques such as image rotation, brightness adjustment
(from -15% to +15%), noise addition, Flip (horizontal,
vertical), 90-degree rotation, Shear, Hue change, Sat-
uration, and Exposure were applied. All original im-
ages are collected during the day; the use of light aug-
mentations helps the model better adapt to different
lighting conditions in practice. The photo is resized to
640x640, turned into grayscale, and the contrast is au-
tomatically adjusted. During development and testing,
various real-world challenges were observed, including
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Fig. 7: Results after training 100 epochs

motion blur, partial occlusions, and students moving
in groups. However, by leveraging the lightweight deep
learning model, particularly the fine-tuned YOLOv8n
for head detection combined with ByteTrack for track-
ing, the system consistently achieved precise counting.
The real-time tracking mechanism ensures that each
student is only counted once when crossing the respec-
tive ROI lines, preventing duplication or discounts.

In training process, we employ image preprocessing
and augmentation methods then train that dataset for
100 epochs with YOLOv8n. This approach ensures
consistency and enables direct comparison with the re-
sults outlined in the paper. The F1 curve and overview
of the results after training the model with YOLOv8n
in Fig. 7, on the other hand, is a graphical represen-
tation that shows how the F1 Score varies with differ-
ent classification and provide visualizations of the re-
sult charts from the training process. The loss graphs
(train/box-loss, train/cls-loss, train/dfl-loss) show how
the model is learning and improving over training itera-
tions. Initially, the losses decreased rapidly, indicating
that the model learned important characteristics effec-
tively. After that, the rate of loss reduction slows down
and goes into a stable state, indicating that the model
is fine-tuning the parameters. This indicates that the
pattern is converging, i.e., gradually achieving the best
possible performance.

To evaluate the generalizability of the model, we
compare the losses on the training and validation sets.
The val/box-loss, val/cls-loss, val/dfl-loss graphs show
losses on the test set similar to those on the training
set. The small gap between the losses on these two
data sets shows that the model has good generaliza-

tion ability and is not overfitting, that is, it not only
learns well on the training data, but also performs well
on the new data.

The evaluation metrics (metrics/precision(B), met-
rics/recall(B), metrics/mAP50(B), metrics/mAP50-
95(B)) show how well the model performs in object
recognition. The graphs show that these metrics have
increased over time and reached a stable level. This
proves that the model has learned to recognize objects
accurately and completely, with high precision and re-
call.

Fig. 8and Fig. 9illustrate the Precision (P) curve,
Recall (R) curve, Precision-Recall (PR) curve, and the
confusion matrix. [44]

Fig.10 shows detections using the pretrained
YOLOv8n, while Fig.12 shows results from proposed
custom YOLOv11n. As seen in Fig.5 and Fig.11, head-
focused model outperforms the baseline, detecting stu-
dents more reliably.

After installing the hardware components and load
to the model to main processing unit, the system is un-
derwent a deployment he system operated for 14 days
at 6 hours per day with a 0% failure rate. Startup takes
about 30 seconds to power on, connect to Wi-Fi, be-
gin counting, send data via MQTT, and initialize GPS.
GPS acquisition, averaged over 10 trials, takes approx-
imately 5 minutes depending on the infrastructure.

By tracking student heads as they pass through the
predefined Region of Interest (ROI) 1 and ROI 2 lines,
the system effectively distinguishes between individ-
uals entering and exiting the bus. Figure 11 illus-

© 2025 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 6



Anh Vu LE et al. VOLUME: XX | NUMBER: X | 2025 | MONTH

Fig. 8: (P) curve, Recall (R) curve and F1 curve

trates the output of the human counting system dur-
ing real-time deployment, maintaining a stable frame
rate of 15 FPS. This high processing speed ensures
that even when students board and disembark rapidly,
their movements are accurately tracked without miss-
ing detections. During development and testing, vari-
ous real-world challenges were observed, including mo-
tion blur, partial occlusions, and students moving in
groups. However, by leveraging the lightweight deep
learning model, particularly the fine-tuned YOLOv8n
for head detection combined with ByteTrack for track-
ing, the system consistently achieved precise counting.
The real-time tracking mechanism ensures that each
student is only counted once when crossing the re-
spective ROI lines, preventing duplication or discounts.

Furthermore, the system demonstrates robust perfor-
mance under different environmental conditions, in-
cluding varying lighting and passenger density. This
accuracy is critical for ensuring student safety, as it
provides reliable data on the exact number of passen-
gers on board at any given time. The integration of
efficient AI-based tracking with optimized model de-
ployment enables the system to function effectively on
low-cost hardware, making it a scalable and practical
solution for real-world transportation monitoring.

Without cooling, the system stabilizes at 77°C after
12 hours in a non-air-conditioned environment. With
cooling and air conditioning, the temperature stays be-
low 55°C—a reduction of over 22°C. In terms of energy

© 2025 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 7
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Fig. 9: Precision-Recall (PR) curve and the confusion matrix

Fig. 10: Students are detected using a pretrained YOLOv8n
model in the following cases: (a) 1; (b) 2; (c) 3; (d)
4; (e) 5; (f) 6.

usage, the system runs on a 20,000 mAh portable bat-
tery, supporting about 6 hours of daily use for up to 3
days.

Metric Run 1 Run 2 Run 3
Total Images 2540 4609 10,128
Training Set 2112 4578 9,990
Validation Set 428 31 138
Lighting Augmentation Yes Yes Yes

Tab. 1: Dataset Summary Across Experimental Runs

4. Conclusion and Future
Works

This paper presents a cost-effective AI-driven people-
counting and location-tracking system designed for
public transportation. Despite operating on low-cost

Fig. 11: TStudents are detected using proposed custom
YOLOv11n model. (a) 1; (b) 2; (c) 3; (d) 4; (e)
5; (f) 6.

hardware priced under 150, the system achieves a frame
rate exceeding 15 FPS and an accuracy of over 93%,
with potential for further improvement. By optimizing
power consumption and leveraging efficient AI models,
the system aligns with Green IT principles, contribut-
ing to advancements in multimedia processing, commu-
nication technology, and IoT-powered smart city initia-
tives.

The proposed solution integrates real-time AI-based
passenger monitoring with seamless IoT connectivity,
ensuring scalability and sustainability while enhancing
public transit efficiency. If widely adopted, it could sig-
nificantly contribute to IoT innovation and national de-
velopment, particularly in improving commuter safety.
Moreover, this system holds substantial societal value,
especially in safeguarding children and vulnerable pas-
sengers.

To further improve the system, future research will
focus on: Enhancing Accuracy and Robustness – In-

© 2025 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 8
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Input Model Other Com-
ponents

People Counting FPS Performance
Evaluation

Webcam
300x300

pre-trained mo-
bilenet_v1 (tflite)

- Yes 6-8 Stable for indi-
vidual counting

Webcam
640x480

pre-trained mo-
bilenet_v1 (tflite)

- Yes 5-7 Stable for indi-
vidual counting

Video
1920x1080
& 640x480

pre-trained mo-
bilenet_v1 (tflite)

- Yes ∼5 Counting errors,
incorrect detec-
tion

Video
1920x1080
& 640x480

Fine-tuning Yolov9
(350 images, 79
epochs, mAP =
0.96) tflite16/32

- Yes <1 Poor perfor-
mance

Webcam
640x480

pre-trained yolov8n
(tflite16/32)

- No <1 Poor perfor-
mance

Webcam
640x480

pre-trained yolov8n
(tflite)

Deep sort real-
time

No <1 Poor tracking,
errors

Webcam
640x480

pre-trained mo-
bilenet_v2

pytorch +
FasterRCNN

No <1 Poor perfor-
mance

Webcam
640x480

pre-trained
SSD300_VGG16

pytorch No <1 Poor perfor-
mance

Webcam
1920x1080

openCV color de-
tection

- Yes ∼30 Webcam testing
only

Video 640x480 MOG2 background
subtraction

- Yes ∼12 Suitable for
ideal input
conditions only

Video
1080x1920

pre-trained yolov8s Centroid track-
ing, Euclidean
distance, ID
management
(1/3 frame rate)

Yes 0-6 ∼50% error rate

Video
1080x1920

pre-trained yolov8n Centroid track-
ing, Euclidean
distance, ID
management

Yes 0-6 Accurate

Webcam
1080x1920

pre-trained yolov8n Centroid track-
ing, Euclidean
distance, ID
management

Yes <1 Poor perfor-
mance

Webcam
640x640

Track objects with
Camshift using
OpenCV

- No 12-16 Inaccurate
tracking

Tab. 2: Performance Evaluation of Various Person Detection and Tracking Models on Raspberry Pi

© 2025 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 9
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Fig. 12: the output of counting the students get in and out the
school bus when deploying the system on realtime.

Model Tracking Objects FPS

yolov5s ByteTrack

0 34
1 30

1-5 19
5-10 14
>10 12.5

yolov8n ByteTrack

0 35
1 29

1-5 19
5-10 16
>10 14

yolov11_int8 ByteTrack

0 34
1 29

1-5 20
5-10 18
>10 14

Tab. 3: Performance Evaluation of Pretrained Models on
MaixCAM

corporating advanced deep learning architectures and
sensor fusion techniques to improve tracking precision
under varying lighting and environmental conditions.
Optimizing Energy Efficiency – Exploring low-power
AI hardware and model compression techniques to ex-
tend operational hours while maintaining high perfor-
mance. Integrating Edge Computing – Leveraging edge
AI to minimize latency and enhance real-time decision-
making without relying on cloud-based processing. Im-
plementing Privacy-Preserving AI – Adopting feder-
ated learning and anonymization techniques to protect
user data while ensuring system effectiveness. Scaling
and Real-World Deployment – Conducting large-scale
field trials across multiple cities to validate system per-
formance in diverse public transportation networks.
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