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Abstract. Sound source localization is essential in
many areas such as robotics interaction, teleconferenc-
ing, sound extraction and recognition, noise cancellation
in vehicles, object location detection, assessment of noise
pollution in living spaces, and search and rescue. Inter-
action in natural settings requires the detection of differ-
ent sources of sounds from the environment. Accurately
detecting and differentiating incoming sound directions
always attracts attention and has been researched us-
ing various methods. However, most of these methods
still require complex algorithms or large amounts of
calculations, which are accompanied by the cost of hard-
ware and system resources. In this paper, we present a
novel method and metrics for estimating the direction
of multiple sound sources based on a combination of
beamforming, time difference of arrival (TDOA), and
frequency sparsity. Our new proposals are well-suited
for deployment on resource-limited devices, offering re-
duced processing complexity, short computation time,
and real-time response.

Keywords
Beamforming, TDOA, frequency sparsity, DOA
estimation, sound source localization (SSL), mi-
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1. Introduction
Sound source direction detection is a primary impor-
tance in assisting sound acquisition, exchanging infor-
mation between objects, and navigating other related

information collection devices. Indeed, speaking and
hearing are crucial senses for communication and social-
ization. Interestingly, humans can identify the sound
source positions around them without relying on vision.
Furthermore, with that information, we can even focus
on the desired sound in a noisy environment. These
abilities enable us to process sound more effectively.
In modern times, interactions occur not only between
humans but also between humans and machines. This
is accompanied by a demand for quality and speed in
practical sound processing techniques. For this reason,
sound source localization has gained more and more
attention nowadays due to its wide areas of applications,
such as teleconference, sound extraction and recogni-
tion, robot audition, search and rescue operations, and
aeroacoustics.

The DOA estimation is closely linked to the hard-
ware usage, with almost every study using more than
two microphones. These microphones are installed on
various platforms linked with many characteristics and
approaches. Some methods that simulate head shape
provide algorithms such as the Inverse Head-Related
Transfer Function (IHRTF) [1] or multidirectional recep-
tion microphone arrays [2, 3] to calculate intensity differ-
ence. Another significant type of hardware employs the
microphone array with three main techniques: multi-
signal classification (MUSIC) [4, 5, 6, 7, 8], correlation-
based approach (of which the common is treatment
TDOA) [9, 10, 11, 12], beamforming-based approaches
[13, 14, 15, 16]. The microphone array model is com-
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monly used and offers many advantages for detecting
the sound source direction.

The MUSIC method (first proposed by Schmidt in
1986 [4]) takes advantage of the differentiation between
signal and noise subspace. It falls under the category
of the so-called ’high-resolution’ approach due to the
sharpness of its results. However, since MUSIC as-
sumes that the source signal is narrowband, applying
it to sound signals (which are broadband) requires per-
forming multiple narrowband MUSIC across the fre-
quency bins. Therefore, some extended versions of this
method for acoustic applications, especially robotics au-
ditions, have been developed, including SEVD-MUSIC
[5], GEVD-MUSIC [6]. However, in addition to those
performance advantages, they all require a significant
amount of computational resources to operate in real-
time. Nakamura proposed his own upgraded version
called GSVD-MUSIC [7], which significantly reduced
the computational cost to address this issue. Using the
information-theoretic detection method, Lunati imple-
mented the MUSIC+MAICE version on a system-on-
a-programmable-chip (FPGA Virtex 4) [8] achieving a
processing time of about 22ms for each SSL.

Another approach is to exploit the TDOA between
each pair of the microphone in a microphone array. The
most common method for estimating TDOA is GCC-
PHAT (first proposed by Knapp [9]). Since then, many
adaptations have been made to enhance the perfor-
mance of GCC-PHAT for different purposes. However,
it still faces issues, especially in the presence of broad-
band noise when PHAT is applied [10]. More improved
versions have been introduced to solve this, involving
the application of different weighting functions [11, 12]
based on the online noise calculation. Furthermore,
it is noteworthy that most of the cross-correlation ap-
proaches only focus on a single DOA estimation, which
somehow reduces their practical appliance ability.

Beamforming-based method is perhaps the most
widely used strategy for source localization. This tech-
nique relies on spatial filtering of the signals captured
by a microphone array, enhancing the array’s signal-
capturing capability in the desired direction. The most
basic beamforming technique, also known as delay-
and-sum (DAS) beamforming, involves scanning over
a set of desired DOAs. This process creates a steered-
response power (SRP) map, which can be used to ac-
centuate multiple sound sources. However, it requires
one beamformer per proposed DOA, and also, beam-
forming performance depends on the resolution of the
grid search. Consequently, it is classified as a hardware-
heavy method [13]. Additionally, every beamforming
map can be considered a “dirty map” because it is
spoiled by the influence of the array geometry and the
presence of side-lobes (a side effect when forming the
beam) [14], which results in signals from non-focused
directions. To overcome these challenges, researchers

have recently proposed various variations of beamform-
ing. Some notable examples include Iterative Capon
MVDR [15] and Functional beamforming [16]. Func-
tional Beamforming involves adjusting the total beam-
former output power to enhance its robustness. It also
utilizes a method known as eigenvalue decomposition
of the cross-spectral matrix (CSM), which is also used
in Orthogonal beamforming to separate the signal and
noise subspace (alike MUSIC) [17].

Furthermore, to improve the resolution and obtain a
“cleaner map”, deconvolution approaches like CLEAN-
SC [18] and DAMAS [19] have been developed. However,
because of the "super-resolution" results they produce,
these deconvolution methods require an extreme amount
of computational load. Most importantly, all of these
improved beamforming-based methods only focus on
enhancing the results and still rely on the DOA scanning,
which is considered an exhaustive search and forms the
basis of the grid scan resolution and side-lobes problem
[20].

Therefore, inversion methods have been gaining in-
creasing interest over the years. Although these meth-
ods are not classified as beamforming since they do not
form beams or perform scans, they are still categorized
as beamforming-based because their idea is to find the
combination of sources that can reconstruct pressure
as closely as possible to the actual pressure measured
at each measurement point (hence the name ‘inverse’).
The calculation depends on the source definition, such
as plane waves for SONAH [21] or a cloud of monopoles
for Bayesian approaches [22, 23]. However, these meth-
ods can be susceptible to noise, require a regularization
procedure, and are generally underdetermined [24]. It-
erative inverse methods have been presented to address
this issue, such as the L1-Generalized beamforming [25].
Nevertheless, this method brings about the computa-
tional cost problem once again.

It is worth mentioning that the source and array’s
specific properties have been shown to affect DOA es-
timation [26, 27]. Therefore, in combination with the
existing methods, they are often utilized to enhance the
efficiency of the DOA estimation process. For example,
sparsity in time-frequency domains is a valuable feature
that can be exploited for sound source localization and
blind source separation [28, 29, 30]. Additionally, it is
noteworthy that sound, especially speech, often exhibits
robust short-term correlations. The signal power is not
evenly distributed across the entire frequency range,
even though it is a wide-band signal; instead, it is con-
centrated at a set of equally spaced discrete frequency
points, i.e., harmonics of the pitch frequency.

As can be seen, various strategies have been employed
in the SSL field, each with its own set of strengths and
weaknesses. Several challenges are still being addressed
by researchers interested in overcoming them. For ex-
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ample, when real-time computation is required, some
methods still demand a significant amount of computa-
tional resources. The hardware size and the necessity
of using large microphone arrays like beamforming and
MUSIC also limit their practical applicability. Further-
more, implementing SSL in real-life situations remains
a significant challenge, as it requires the ability to op-
erate in flexible environments with noise, reverberation,
and variations in the number and movement of sound
sources.

Sound source localization is a challenging task that
traditionally relies on complex and computationally in-
tensive techniques. This complexity can lead to slower
processing speeds, increased hardware requirements,
and higher costs, making it a formidable challenge for
many applications. Our method addresses these chal-
lenges by combining beamforming, time difference of
arrival (TDOA), and frequency sparsity in a way that
reduces computational complexity while maintaining
high accuracy. In addition to its simplicity, our method
can be executed in real-time on low-resource devices,
such as the ARM STM32 microcontroller, which is
widely available and easy to use.

Next, the main contribution of this paper can be
summarized as follows:

• Hardware Requirements: The proposed method
is designed to run on a low-resource device, such
as the ARM STM32 microcontroller, which has
limited computational power and memory. Other
methods often require more powerful hardware,
such as PCs, FPGAs, or larger arrays of micro-
phones, making the proposed method more efficient
in terms of hardware use.

• Processing Time: The paper reports an average
processing time of 20ms, including 16ms for data
sampling and 4ms for calculations. Other methods,
such as those using SRP-PHAT or MUSIC, typi-
cally have longer processing times due to complex
algorithms and hardware requirements. This makes
the proposed method faster and more suitable for
real-time applications.

• Computational Load: The method avoids complex
matrix operations, Fourier transforms, or DOA
scans, which are computationally expensive in
other methods like beamforming or MUSIC. In-
stead, it uses a simplified scoring method (SCORE)
that significantly reduces the computational bur-
den.

• Memory Usage: The implementation occupies only
44KB of memory on the microcontroller, making it
lightweight compared to other methods that need
larger memory resources for complex calculations
or larger microphone arrays.

• Algorithmic Simplicity: By using frequency spar-
sity and simpler data types (phase shifts rather
than full signal processing), the method reduces
the overall algorithmic complexity compared to
traditional approaches like GCC-PHAT or beam-
forming, which involve heavy signal processing and
grid searches.

This paper is divided into in 6 sections. Section 2
presents background knowledge of the techniques used
to develop our proposal. Our novel approach, including
the methodology and calculation system, is presented
in section 3. Section 4 covers hardware implementation
and performance evaluation. Results and discussions of
related issues are presented in Section 5. Finally, Sec-
tion 6 concludes the paper and recommends directions
for future development.

2. Background
Beamforming is a signal processing technique used for
directional signal transmission. It requires multiples
antennas in close proximity (phased array), all broad-
casting the same signal but at a slightly different time
(phase shifting). This causes the signals to experience
constructive/ destructive interference in particular di-
rections. For example, Fig. 1 demonstrates how the

Fig. 1: Beamforming demonstration.

simplest form of beamforming, known as delay-and-sum
beamforming (DAS) works. It contains an array of an-
tenna elements (A) powered by a transmitter (TX).
The feed current for each antenna passes through a
phase shifter (ϕ) controlled by a computer (C). The
individual red waves are omnidirectional or spherical
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shapes but they combine and create an overlapping
plane wave or a beam of the signal wave traveling in a
specific direction. The phase shifters delay the signal
so that each antenna radiates its wave later than the
one below it. This causes the beam to be directed at an
angle θ to the antenna’s axis. By adjusting the phase
shifts, we can steer the beam in the desired directions.

This means that there is a direct relationship between
the phase shift ϕ and the beam angle θ, and we can
leverage this relationship using the same theory when
capturing acoustic signals. In other words, it can be
used to estimate the direction-of-arrival (DOA) of sound
waves by utilizing the time difference of arrival (TDOA)
of the signals captured in an array of sensors as delayed
time. This relationship between them can be described
as [27]:

θ = arcsin

(
Vsound × τ

fsample × d

)
, (1)

where Vsound is the speed of sound (∼340 m/s); fsample

is the sampling frequency in Hz; d is the distance be-
tween microphones in meters; τ is the TDOA of the
sound source in samples, and θ is angle of the coming
sound to the microphone array’s axis.

With this relationship, we can apply the DAS beam-
forming processing technique to signals captured in an
array of microphones to synchronize back the signal as it
came from a specific direction. For example, assuming

Fig. 2: Apply DAS beamforming technique to DOA estimation.

the sound DOA is approaching from a human speech
source, as shown in the upper part of Fig. 2. Using (1)
we can determine the TDOA between microphones as
t1, t2. The primary purpose of the DAS beamformer
is to artificially shift the signals to counter such time
difference and then add the shifted signal to simulate
the assumed sound source’s original waveform. As the
pre-assumed direction gets closer to the actual DOA,
the alignment between shifted signals gets tighter, re-
sulting in a more amplified output. Applying the same
process, but with the input coming at a different angle
than the pre-assumed DOA, as depicted in the lower
part of Fig. 2, the shifted signals do not line up, and

resulting in a scattered, smaller output. Thus, with a
recorded sound frame, a polar coordinate DOA estima-
tion map can be created by scanning through a set of
pre-assumed DOAs, steering the beamformer toward it,
and measuring its output power. Here’s how it is done,
assuming the sound DOA creates an angle θ with the
microphone array’s axis, and the output of the DAS
beamformer is given as [27]:

ŝθ[t] =

N∑
n=1

xn[t− τn(θ)], (2)

where ŝθ is the beamformer’s output; t is the time bin;
xn is the signal received at microphone n; N is the
number of microphones; and τn(θ) is TDOA of the
source in microphone n with the incoming angle θ.

The energy of the beamformer’s output steered to-
wards θ (Eθ) can be calculated as [27]:

Eθ =

T∑
t=0

ŝθ[t]
2
. (3)

where T is time windows. Then, the time delay of DAS
can be converted to phase delay of the signals in the
frequency domain. However, in reality, an audio signal
is a wideband signal, so in order to shift the signal in the
time domain, a frequency band separation is required.
Each band should be treated differently with different
amounts of phase shift. This can be accomplished by
using Fourier transform as [27]:

Xnτn(θ)
[f ] = e−j2πfnτn(θ)Xn[f ], (4)

where Xn[f ] is the Fourier transform of xn[t]; f is the
frequency bin; and Xntn (q)[f ] is the Fourier transform
of xn[t− τn(θ)]. The time delay τn(θ) is constrained by
physical constraints based on microphone spacing and
the speed of sound. The arrangement of shifts related to
angle θ can be expressed as the complex-valued N × F
matrix Wθ, as shown [27]:

1 1 · · · 1
e−j2πf1τ2(θ) e−j2πf2τ2(θ) · · · e−j2πfF τ2(θ)

e−j2πf1τ3(θ) e−j2πf2τ3(θ) · · · e−j2πfF τ3(θ)

...
...

. . .
...

e−j2πf1τN (θ) e−j2πf2τN (θ) · · · e−j2πfF τN (θ)

 ,

(5)

where the f ’s are the frequency bin; N is the number
of microphones; F is the frequency window size; and
Wθ is the broadband steering matrix.

The Fourier transform of the output of the beam-
former can be constructed via [27]:

Ŝθ[f ] = Wθ[f ]
HX[f ], (6)

where {.}H is Hermitian transpose operator, X is a
N×F matrix holding all of the X’s elements in its rows,
Wθ[f ] is the column of Wθ holding the beamforming
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weights for the frequency f , X[f ] is the column holding
the frequency information in f out of N microphones,
and Ŝθ[f ] is the beamformer’s frequency domain output
steered towards θ in the frequency f . Because Ŝθ is
the Fourier transform of ŝθ, ŝθ = F−1(Ŝθ). From ŝθ
obtained, we can use (3) to get the energy value, and
apply the same steps with different θ of the pre-assumed
DOAs set.

However, employing beamforming for multiple DOA
estimation has a crucial weakness. This process in-
volves making predictions and subsequently evaluating
those predictions. Accuracy depends on the density of
the proposed DOA prediction set, and it requires one
beamformer per proposed DOA. Moreover, due to the
complexity of Fourier data and trigonometric Euler’s
function, executing this requires a substantial amount of
computational resources. The following section presents
our modified approach for multiple DOA estimation
using beamforming.

TDOA is a feature that has proven to offer excellent
advantages in DOA estimation. It can be calculated in
various ways, typically cross-correlation. Furthermore,
it can also be exploited in a custom way, based on
the propagation pattern or specific array geometries to
improve robustness as well as to reduce computational
load [31, 32, 33]. Therefore, in this study, we will
also use it in conjunction with an array of microphone
geometry to simplify the algorithm.

Frequency sparsity is another property that pro-
vides excellent advantages in SSL with multiple sources
or, furthermore, in blind source separation (BSS) [29].
When it comes to music or speech sources, when multi-
ple sources play simultaneously, their signals are mixed
on the time domain [28]. However, in the frequency
domain, the signal strength is not evenly spread across
the domain, but is concentrated at some points, i.e., the
pitch’s harmonic [30, 34]. We find that this particular
property can be used for the performance improvement.

3. Proposed method to
estimate direction of sound
sources

The previous section explains the DAS beamforming,
known as the basic principle of every beamforming-
based approach. Section 1 also introduces various im-
provements developed from the conventional beamform-
ing approach. However, these approaches mainly fo-
cus on increasing resolution, nullify side-lobe presence,
or amplify robustness against noise and reverberation.
This section will propose the adaptation from beam-
forming, which obtains advantages, in terms of unique,
fast and light-weight.

3.1. New evaluation method

Fig. 3: Frequency domain processing demonstration.

To obtain the output energy Eθ of the proposed
DOA from Ŝθ, we execute an Inverse Fourier transform
(IFFT) ŝθ = F−1(Ŝθ) and (3). However, as shown
in Fig. 2, we have a direct relationship between the
alignment of after-counter-shifted element signals and
the amplitude of the output, the square root of Eθ.
Therefore, we can take advantage of this relationship,
and set up our evaluating method with a variable (called
SCORE). The proposed SCORE can show us how well
the DOA prediction performs without executing the
IFFT. Indeed, the proposed SCORE is obtained by

SCOREθ =

F∑
f=1

Ē[f ]

σ2
Ŝθ[f ]

, (7)

where Ē[f ] is the average energy captured in f , σŜθ[f ]
2

denotes the variance of the after-counter-shifted signals
steered toward θ, F is the frequency window size, and
SCOREθ is the evaluation score of the assumed DOA.
We calculate the SCORE of the arrival angles, and
then use the obtained SCORE value to find the angle at
which the phase-shifted signals merge together, ensuring
that the best direction is found.

The numerator is used to accentuate the actual
sound away from the background noise. Here, we
utilize the energy of the captured signal in each fre-
quency bin which can be calculated in the frequency
domain. As shown in (7), the signals in the fre-
quency domain can be described in a complicated polar
plane as follows: Xn[f ] = An[f ]e

jfn[f ], where modulus
An[f ] =

√
Re(Xn[f ])2 + Im(Xn[f ])2. We then obtain

the energy of the signal captured by microphone n in
f(En[f ]) as

En[f ] = An[f ]
2 = Re(Xn[f ])

2 + Im(Xn[f ])
2. (8)

This captured energy can be uneven between micro-
phones due to differences in distance from the source
to a sensor or other hardware variations, but these dif-
ferences are not significant. Therefore, we can use the
mean Ē[f ] =

∑N
n=1 En[f ]

N as a measure of balance.
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The denominator is the variance of Ŝθ complex-values
in the frequency domain. Its primary purpose is to
evaluate the time synchronization of the after-shifted
element signal as

σ2
Ŝθ[f ]

=
1

N

N∑
n=1

(
Ŝθn[f ]− S̄θ[f ]

)2
, (9)

where Ŝθ[f ] is the Fourier transform of the output of
beamformer in the frequency bin f , N is the number
of microphones, S̄θ[f ] is the mean of the output in f

(i.e., S̄θ[f ] =
∑N

n=1 Ŝθn[f ]

N ), and σŜθ[ f ]
2 is variance of

the complex-valued output in f .

3.2. Metric in frequency domain

Let us take a closer look at (7), which contains two
indicated components: θ is the scanning angle, and
f is the frequency bin. At each candidate angle, the
SCORE of a single frequency is calculated, and summed
up repeatedly to obtain the results. This process cre-
ates a steering-response map, similar to beamforming,
which can be considered a construct of multiple single
frequency beamforming. However, these elements ex-
hibit typical beam patterns, including the beam-width
and side-lobes. When summed up, these characteristics
can lead to results in the non-focus area, resulting in
inaccurate and false peaks. Additionally, the peaks on
the map are the places relied to decide the DOA of the
sound sources. Hence, we can alternatively rearrange
the construction order of the SCORE, perform the scan
at each frequency, and focus only on its maximum value.

As mentioned in Section 2, the spoken audio signals
in the frequency domain are not only stationary at one
frequency but dispersed across a range of the related
frequencies. Taking advantage of this feature, we have
converted the evaluation method by using SCORE in
the frequency domain:

SCOREf = max

(
Ēf

σ2
Ŝθ,f

)
,∀θ ∈ [0, 2π]. (10)

Fig. 3 illustrates result of a multiple single-frequency
execution with a speech signal played at an angle of
ϕ = 180◦ on the azimuth plane. We set up a grid scan
containing 128 scan points from 0◦ to 360◦. The SCORE
value of each frequency is calculated at each scan point,
similar to performing multiple single-frequency beam-
forming. However, instead of using the output power
as discussed in Section 2, we use our SCORE method.
In other words, we break down (7) into a set of SCORE
for each frequency. The resulting lines are color-coded
resemble their frequencies, represented by blue to red
corresponding to increasing frequency. To differenti-
ate the results for easier analyzing, all the scans with
SCORE’s peak positions varing from 175◦ to 185◦ are

plotted on the upper part, while the rest are plotted
on the lower part. As we can see, the SCORE of the
speech signal is relatively high, which is predicted since
the signal’s power is dominant. Additionally, not only
one SCORE plot line matches the signal but four lines
at different frequencies also match. However, there are
only two results with moderately sharp peaks; the oth-
ers are less sharp and can have a negative impact on
the overall result. This pattern implies that using only
the maximum SCORE can be simpler, more precise and
open up more opportunities for further improvement.

3.3. Simplify the data type and
function

The phase-shifting step in (4) shows that
it only affects the argument Xnτn(θ)

[f ] =

|Xn[f ]| ejϕn[f ]e−j2πfnτn(θ) = |Xn[f ]| ej(ϕn[f ]−2πfnτn(θ)).
The uneven amplitude or modulus elements An[f ]
should not be involved in time alignment evaluation
σŜθ[f ]

2, and it is also such a waste of computational
resources to store and use complex data as shown in
(9). Instead, we can use a much simpler argument data
ϕn,f such that ϕn,f = arctan(Im(Xn,f ),Re(Xn,f )).

Next, the phase shifter function is reconstructed via
simple addition/subtraction, as (11), without the need
of complex-value matrices, Hermitian transpose or Eu-
ler’s function:

ϕθn ,f = (ϕn,f − 2πfτn (θ)) mod (2π), (11)

where τn(θ) is the TDOA of the source in microphone n
related to the incoming angle θ; f is the frequency bin;
ϕθn ,f is the argument of signal captured by microphone
n in frequency domain in f ; θ is the assumed DOA
angle; and ϕθn ,f is the ϕn,f after-counter-shifted signal
toward θ.

With this, equation (9) can be improved as

σ2
ϕθ,f

=
1

N

N∑
n=1

(
ϕθn ,f − ϕ̄θ,f

)2
, (12)

with ϕ̄θ,f =
∑N

n=1
ϕθn ,f
N . Therefore, we have the im-

proved version of (10) as

SCOREf = max

(
Ēf

σ2
ϕθ,f

)
,∀θ ∈ [0, 2π]. (13)

Combining with (11), (12) can also be expressed as

σ2
ϕθ,f

=
1

N

N∑
n=1

[
ϕn,f−ϕ̄f−2πfτn(θ)+

N∑
n=1

2πfτn(θ)

N

]2
.

(14)

However, the argument data that we are process-
ing is in circular data form (data of a periodic na-
ture). Any kind of linear treatment can lead us to
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incorrect conclusions, including the usual arithmetic
mean ϕ̄f =

∑N
n=1 ϕn,f

N . However, if we consider them as
vectors, there is a natural way to calculate ϕ̄θ,f through
vector addition

∑N
n=1 Xn,f . After that, since we don’t

care about the magnitude, the angle difference can be
calculated via multiplication as

ϕn,f − ϕ̄f = arg(Xn,f

N∑
n=1

Xn,f ), (15)

where arg(.) denotes the argument of a complex num-
ber.

The ϕn,f −ϕ̄f elements can be calculated as soon
as the Fourier transformation complete. In (15), the
function arg extracts the phase angle (or argument) of
the complex number, representing the phase shift of
the signal. This phase shift is critical for computing
the phase difference between the signals received at
different microphones, allowing for the alignment of the
signals when estimating the direction of arrival (DOA).

3.4. Geometric meaning of
microphone array

The previous modification leaves our SCORE with the
τn(θ) elements which have a direct relation with the
DOA scan. Equation (1) mentioned this relationship
as θ = arcsin

(
Vsound×τ
fsample×d

)
, but this only tells the angle

created by the proposed DOA and the planar micro-
phone array. These TDOAs are normally calculated
based on a reference microphone acting as an origin
point. Therefore, the TDOA links closely with the scan
grid, microphone array, and can be pre-calculated, used
as a lookup table. However, the planar array seems to
suffer from an ambiguity problem that cannot specify
the sound’s direction from the front or the back of the
array. Furthermore, a symmetrical array with the ori-
gin point at its center can nullify TDOA’s summary

value
N∑

n=1
τn(θ) and keep the sum of its square value

N∑
n=1

(τn(θ))
2 at a constant in (14). This array type

usage will simplify our method more and eventually
lead to the calculation of the SCORE’s maximum value
without the DOA scan, which is a huge drawback of
the overall beamforming-based method.

Assume that we have N points on a circle centered
on O. Let An(xn, yn) denote one of these points; a line
passing An(xn, yn) creates the angle α with the Ox axis,
which can be considered as the sound direction. Let Bn

be the intersection point of the normal line connecting
O to that line. Let Dn(α) be the distance from the
point A to the point B, which is the distance between
microphone n and the origin point that sound waves
have to travel more or less if they come from angle α.

We then have

Dn(α) = xn cosα+ yn sinα, (16)

where xn, yn are the microphone n coordinates in meters.
In addition, we obtain that

τn(α) = −Dn(α)× fsample

Vsound
. (17)

Equation (17) means that we can skip the DOA scan.
Next, each frequency bin has its optimal DOA with an
angle as

αf = arccot

(
xn

yn

)
+ kπ,

where k is an integer. Thus, we have

max
Ēf

σ2
ϕθ,f

= SCOREf .

Through experimentation, this SCORE tends to get
boosted with a signal in the lower frequency since it
contains the 4(2πf × fsample × x1/Vsound)

2 component.

Moreover, this value, with
N∑

n=1
(ϕn,f − ϕ̄f )

2, can have

different effects on the final prediction without any
DOA information. Now, we consider the other SCORE
function which relates to the DOA more strongly:

SCOREf = Ēf ×
σ2
ϕα,f

σ2
ϕα,f

. (18)

where

σ2
ϕα,f =

1

N

[
N∑

n=1

(
ϕn,f − ϕ̄f

)2
+ 4

(
2πf × fsample × x1

Vsound

)2
]
.

Finally, (18) is used to calculate and evaluate the
direction of sound sources.

The main contributions of the proposal when com-
pared with some previous studies as follows. The pro-
posed method is designed to operate efficiently on low-
resource devices, such as the STM32 microcontroller,
which has limited computational power and memory.
Unlike other approaches that often require powerful
hardware like PCs, FPGAs, or larger microphone ar-
rays, this method minimizes hardware requirements. By
avoiding computationally expensive operations, such as
matrix manipulations, Fourier transforms, or direction-
of-arrival (DOA) scans, the method significantly reduces
computational load through a simplified scoring tech-
nique (SCORE). It also stands out for its lightweight
memory usage, unlike other methods that need larger
memory resources for complex calculations or bigger mi-
crophone arrays. Furthermore, the method leverages fre-
quency sparsity and simpler data representations, such
as phase shifts, to reduce algorithmic complexity. This
contrasts with traditional methods like GCC-PHAT or
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beamforming, which rely on intensive signal processing
and grid searches, making the proposed method a faster
and more practical solution for real-time applications.

4. Experimental and evaluation
The experiment involves a simple 4-microphone grid
array, as shown in Fig. 4, with a spacing d = 5.5cm.
The type of microphone used is a CZN-15E Omnidirec-
tional Microphone with a self-made amplifier to magnify
the output. Since the sound source can appear any-
where, an omnidirectional microphone is handy because
it can capture sound uniformly, regardless of the direc-
tion. The signal was sampled and processed, using an
STM32F103c8t6 microcontroller (ARM Cortex-M3 32-
bit RISC core operating at a 72MHz frequency), which
can also connect to a computer through UART commu-
nication for testing and analysis. An LED-ring module
at the center of the microphone array will indicate the
DOA estimation when the device works independently.

Fig. 4: The architecture of the capturing and processing device.

The capture signals were sampled at fs = 16kHz at
16-bit using the STM32’s A/D converters. The frame
size was set to N = 256, with 50% overlap between
the frames. The speed of sound was set to 343.2 m/s.
Due to the spacing of d = 5.5cm, these signals were
passed through a low-pass filter with a cutoff frequency
of 3120Hz to prevent the spatial aliasing. Additionally,
to minimize DC bias and spectral leakage effect, a
processing of DC Off-set Removals with Hann window

was applied. Then, these signals were immediately
processed by our proposed method. By incorporating
some hardware-friendly algorithms such as CORDIC
and some data management, our microcontroller was
able to handle all the calculations and provide the real-
time results.

4.1. Evaluation method

In this sub-section, several experiments were conducted
to assess the device’s ability to rapidly and accurately
estimate multiple DOAs. All experiments were con-
ducted in a 3.3m x 3m x 3m room, a reverberation time
of RT60 = 0.98ms, background noise was introduced
to simulate real-life scenarios. In each experiment, the
number of sound sources varied from 1 to 4, with the
sources playing simultaneously from different locations
within a radius of r = 0.4m at the azimuth plane.

1) Ability examination of the proposed
approach

In the first test, we investigated the ability to simulta-
neously identify multiple sound sources in the frequency
domain. The test uses 1 to 3 sine wave sound sources,
with different frequencies transmitted by loudspeakers
at different room positions. The sound sources were
positioned in the room at angles ϕ1 = 120◦, ϕ2 = 280◦,
ϕ3 = 0◦ , with the frequencies at 1250Hz, 625Hz, and
1800Hz, respectively. The results obtained at a time
frame are extracted in Fig. 5 for evaluation.

Next, another experiment was also performed to ex-
amine the device’s ability to track a moving sound
source at a specific frequency. A loudspeaker was moved
around the device in a full circle, starting from ϕ = 0◦

and completing the circle in 20 seconds while broadcast-
ing sine wave signal at 875Hz. The actual movement
of the sound source and the trajectory estimated by the
device are shown in Fig. 6.

2) Localization with multiple static speech
sources

We evaluated the device’s performance with multiple
speech sources using four speech sources played by loud-
speakers located at azimuths ϕ1 = 30◦, ϕ2 = 250◦,
ϕ3 = 130◦, and ϕ4 = 310◦, as shown in Fig. 8. For the
first session, only source 1 was played; the second one
involves sources 1 and 2 played simultaneously, and so
on. All the tests were carried out in 30 seconds. Since
the potential source is rated by the SCORE value, all
potential sources are plotted with the SCORE intensity
on the decibel scale. Fig. 7 shows the visualization of
the result and the potential DOA’s SCORE distribution
in each case. However, these cannot be considered as
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(a) (b)

(c) (d)

(e) (f)

Fig. 5: Survey results with sound sources: (a)(b) One sound source; (c)(d) Two sound sources; and (e)(f) Three sound sources.
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Fig. 6: Trace investigation of the sound source is a sine signal.

the final result since this is just raw data that requires
a threshold to filter out the undesirable results, and we
need some metrics to evaluate the device’s performance.
The device’s recovery capabilities and accuracy were
measured as follows because of the unique way of the
estimating DOA.

If a potential source’s DOA is estimated within a
range of ±15◦ of an actual source in a single time frame,
it is considered a real positive. If a source is estimated
outside of that range, it is considered a false positive.
If an actual sound source is not estimated at the recent
time frame, it is considered a false negative. Using these
metrics, the precision and recall rates with different
thresholds ranging from 0 to the maximum SCORE
value were calculated. Fig. 9 shows the Precision-Recall
Curves (PRC) used to assess the device performance in
each case.

There is a trade-off between precision and recall, and
we do not prioritize any parameters but need to flexibly
calculate the suitability for each case to achieve the goal
of obtaining results as accurately as possible. To find
the threshold that produces the most optimal results,
in terms of accuracy and responsiveness, we used the
balanced harmonic mean of precision and recall, known
as F1, as a measurement. Fig. 10 shows the relationship
between F1 scores and thresholds. An ideal threshold
would maximize F1 and gave us the optimum precision
and recall. Then, the Mean Absolute Error (MAE) is
calculated for every accurately optimistic prediction
from the actual DOA. These metrics are presented in
Table 1 for every sound source in each case.

3) Localization with multiple mobile speech
sources

The similar setup and performance metrics from local-
ization with multiple static speech sources are applied
in this case. However, at this time, the sound source will

be moving around with different trajectories. In the first
scenario, source 1 with ϕ1 = 160◦ → 320◦, the second
one involving 2 sound sources, with ϕ1 = 70◦ → 250◦

and ϕ2 = 290◦ → 110◦, and the third one is 3 sources,
with ϕ1 = 80◦ → 170◦, ϕ2 = 130◦ → 220◦, and
ϕ3 = 180◦ → 0◦ → 280◦ (Fig. 11). Fig. 12 shows
the result for each considered case. Indeed, with the
same threshold as in the previous ’Localization with
multiple static speech sources’ scenario, we evaluate
the performance of the device through Table 2, with
the same metrics F1, precision, recall and average error
from the reference of the expected trajectories, instead
of a static value.

4) Computational load

The implementation of the proposed method resulted
in a 30KB program using a 14KB of data and BSS,
which is a total of 44KB of memory occupied in an
STM32F103c8t6 microcontroller. Additionally, when
active, the device took an average of 20ms to provided
results, this includes 16ms of data sampling process and
4ms to execute all the calculations.

5) Comparison with other methods

To provide context for these results, Table 3 presents a
comparison between our proposed approach and other
state-of-the-art methods in terms of hardware usage
and performance. Given the uniqueness of our imple-
mentation, we selected studies that provide sufficient
detail in both hardware and performance aspects as
references. One such study is the Steered Response
Power with Phase Transform (SRP-PHAT), which em-
ploys a scanning approach enhanced by the Hierarchical
Search technique with a Directivity model and Auto-
matic calibration (HSDA) [26]. Another method is the
Intensity Difference approach, implemented on a bio-bot
equipped with lightweight capture hardware designed
for the bot’s constraints. However, the data processing
for this method still relies on a laptop [2]. Additionally,
the Circular Integrated Cross Spectrum (CICS) method,
which incorporates a time-frequency (TF) assumption,
was included due to its similarity in leveraging sparsity
principles [35]. Finally, two variations of the MUSIC
algorithm, GVSD and GEVD, combined with Hierarchi-
cal SSL (H-SSL) and the Minimum Akaike Information
Criterion Estimate (MAICE), were selected for their
demonstrated effectiveness in handling multiple source
sound source localization (SSL) scenarios [7, 8].

5. Results and Discussion
Firstly, as can be expected, the performance of the pro-
posed device decreases as more sources appear in the
environment, which can be expected. However, increas-
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(a) (b)

(c) (d)

Fig. 7: Potential DOA distribution with static sources: (a) A static source; (b) Two static sources; (c) Three static sources; and (d)
Four static sources.
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Fig. 8: Setup for static sources.

Fig. 9: Precision-Recall Curves of static sound source scenarios.

ing the number of sources does not affect the precision
and recall equally. More specifically, the precision rate
is not as significantly impacted, as the drop-down rate
is much slower. Additionally, the PRC for cases 1 and
2 show an almost horizontal line and only curve down-
wards at the end. This implies that when there are one
or two sound sources in the environment, the device’s
precision is high and stable. Also, Fig. 7 shows that
the distribution peak is narrow, resulting in a small
Average Error in most case (≤ 7◦) (Table 1,2).

In contrast, the recall drops at a higher rate than
precision. One explanation for this is observation spar-
sity, which means that the speech sound sources have
to share the potential sources, and the estimation at
each frequency bin can not provide multiple values. We
can see in Fig. 7 and Fig. 12, when more sound sources

Fig. 10: F1 and threshold correlation.

Fig. 11: Setup for mobile sources.

were present in the environment, the signal started to
become less dense and detached in the time domain, and
causing the estimation to tend towards other sources.
This leads to an increase in false negatives, resulting in
a lower recall rate. However, due to the short interval
time between each result, which is only 20ms, we can
still observe the continuity of the sources.

Furthermore, when the sources began to move around
with different trajectories, both parallel and crossing
each other, the differences in metric values can be seen
as insignificant (Table 2). This means that the move-
ment of the sources does not significantly affect the
system performance. In conclusion, the proposed ap-
proach can carry out real-time multi-DOA estimations
in a realistic environment, using a microcontroller with
fair accuracy.

Other methods don’t provide detail to make a direct
side-by-side technical comparison. However, with gen-
eral benchmark, there are 5 criteria can be assessed:
hardware requirements, processing time, computational
load, memory usage, algorithmic simplicity. As com-
pared to the other research methods, as we can see
in Table 3, the medium and heavy hardware meth-
ods [7, 8, 26] are the ones that provide the accurate
and quick results. Lighter hardware methods [2] tend
to perform worse than the others. This pattern has
been around for quite a long time in this particular
field. Our proposed approach is an exception, being the
fastest in terms of processing time, requiring only an
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Tab. 1: Device performance with static sources.

Case Sound F1 Precision Recall Average Error
Scource (degree)

1 1 0.81 0.76 0.87 5.46

2 1 0.75 0.74 0.75 6.22
2 5.18

3
1

0.67 0.68 0.66
6.23

2 5.79
3 6.43

4

1

0.63 0.62 0.64

7.02
2 6.30
3 6.85
4 6.93

Tab. 2: Device performance with mobile sources.

Case Sound F1 Precision Recall Average Error
Scource (degree)

1 1 0.82 0.78 0.86 6.34

2 1 0.73 0.74 0.71 6.73
2 6.73

3
1

0.69 0.70 0.68
6.21

2 6.58
3 6.96

Tab. 3: State-of-the-art method in comparison.

Method Hardware Performance
Capture Processor Accuracy Time

SRP-PHAT Medium-Heavy Light-Medium (12-42% 5 sources,
Not mentioned-HSDA[26] (2019) (8-16mic) In compare with Medium-High

Raspberry Pi3 single
CPU core)

Intensity Light (3 unidirectional Heavy 1source, 720msDifference[2] (2015) mic (PUM-3046LR)) (Matlab on a Laptop) Low (27.3◦)
CICS + TF Medium (8mic) Heavy (Standard PC, High (≤ 2.5◦) Not clearly mentionedsparsity[35] (2013) (Shure SM93) 2.4Ghz CPU, 2GB RAM)

MUSIC Medium (8mic) Heavy (FPGA-Virtex4) 3sources, 22ms+ MAICE[8] (2012) High (1◦-5◦)
GSVD-MUSIC Medium Heavy (Laptop, Core i7 Medium-High GVSD MUSIC: 5.52ms

+H-SSL[7] (2012) (8mic in circular array) 2Ghz CPU, 8GB SDRAM) (≤ 10◦) H-SSL: 18.4-20.8ms

Our propose Light (4 omnidirectional Light (44KB program 4 sources, 20msmic (CZN-15E)) in STM32F103) Medium-High(≤ 7◦)

average of 20ms for capturing, sampling (16ms), and
calculations (4ms). It also uses the lightest hardware,
occupying only 44KB of memory in an STM32F103
microcontroller. Moreover, it employs a small number
of microphones (only four) while maintaining medium
to high accuracy.

It is important to note that among all of these above
approaches, the designers will select the appropriate
ones, depending on the final product’s practical applica-
tion. For example, in a search and rescue mission where
a swarm of biobots uses sound to navigate and locate
survivors [2], highly precise results may not be necessary.
Instead, a compact capturing device is essential to allow
the robot to carry it while exploring deep inside rubble.
Our proposed approach has demonstrated its perfor-
mance capabilities and provides flexibility, allowing the
precision and recall rates to be focused on separately
depending on the goals. This is why its potential is sig-

nificant, with room for further development in various
applications.

One ongoing challenge with this work is that the
sources abruptly discontinue when three or more sound
sources are present in the environment. We observed
that this is due to observation sparsity and can po-
tentially be addressed by increasing the density of fre-
quency bins. In future work, the proposed method
could incorporate a standard and lightweight tracking
method such as the Kalman filtering technique to track
the movement of sources. Additionally, this approach
could be extended to create a real-time wireless sensor
network capable of tracking movement through sound.
Furthermore, the detection plane of the method can be
expanded to both azimuth and elevation planes. Re-
search could also focus on source separation methods
to create a comprehensive speech recognition module
for broader applications.
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(a)

(b)

(c)

Fig. 12: Potential DOA distribution with mobile sources: (a)
One mobile source; (b) Two mobile sources; and (c)
Three mobile sources.

In this study, the impact factors such as environmen-
tal noise, limited microphone array size, and simpli-
fication of SCORE data can reduce the performance
and accuracy of the device. Some solutions to improve
the performance will be further studied such as: ap-
plying advanced filtering techniques, larger microphone
arrays, multi-frequency integration, machine learning
algorithms, and source tracking methods [36], [37], [38].

6. Conclusion
This paper introduced a novel method for estimating
the directions of multiple sound sources based on three
primary techniques: beamforming, time difference of
arrival (TDOA), and frequency sparsity. The results of
this new method are presented through a novel com-
puting system that we have proposed and fully demon-
strated using mathematical theory and signal process-
ing techniques. The effectiveness of frequency-domain
beamforming in sound source localization (SSL) has
been established. Additionally, by leveraging a sym-
metrical geometry array, we reduced the complexity
of the entire method. We also implemented the pro-
posed approach on a compact device using the popular
ARM STM32 microcontroller, ensuring resource effi-
ciency and real-time performance. Preliminary surveys
and evaluation results have provided evidence of the
method’s accuracy. Despite limitations in our testing
equipment, which involved a high amount of substrate
and low-quality components, the received signal con-
tained significant noise, further confirming the method’s
robustness. These promising results indicate that the
proposed method can be deployed in real-time IoT
systems (as well as edge computing equipments), infor-
mation acquisition, robotics, and location-based appli-
cations.
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