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Abstract. This paper deals with implementing artifi-
cial meural networks for the identification and control
Investigating the stability and stabilization of a single
machine connected to an infinite bus through a trans-
mission line (SMIB) system. Artificial Neural Net-
work (ANN) employs a multi-layer feedforward network
trained using the Backpropagation (BP) algorithm by
simulations using MATLAB/Simulink. Weight coeffi-
cients of the ANN are determined using the Levenberg-
Marquardt algorithm. The proposed approach uses two
types of neural networks: neural controller and neural
identification, neural network control is a single device
on an infinite bus instead of the PID-PSS controller, to
improve the performance of the SMIB system, and neu-
ral identification to emulate the characteristics of the
single machine infinite bus (SMIB) system These neu-
ral networks model system dynamics and nonlinear for
selection and control purposes. The primary objective
is to develop a neuronal identification model that accu-
rately equals the characteristics of the single machine
infinite bus (SMIB) system and a neuro-controller is
implemented to replace traditional controllers such as
Power System Stabilizers (PSS) and Automatic Volt-
age Regulators (AVR). Simulations are performed to
examine the system under various conditions, evalu-
ating rotor speed deviation, stator wvoltage, and rotor
angle delta.

Keywords

Neuro-Identifier and Neuro-controller, Single
Machine Infinite Bus, Automatic Voltage Reg-
ulators, Power System Stabilizers

1. Introduction

When an electric power system is subjected to an exter-
nal disturbance, the ability to recover its original oper-
ational equilibrium and stay in its equilibrium state is
referred to as power system stability [I]. The power
system has grown in size and complexity in recent
years, necessitating strong instruments to address per-
tinent issues. The generator excitation system’s two
primary parts the Automatic Voltage Regulator (AVR)
and the exciter play an active part in keeping the sta-
bility of the power system. It is a device that automat-
ically regulates the output voltage generator to keep it
at a relatively fixed value. This is done by compar-
ing the voltage output with a voltage reference and,
of the variation (or error); making the indispensable
modification in the current field to get the voltage out-
put nearer to the wanted value and control the ex-
citer output, the terminal generator voltage is mea-
sured and compared with the reference voltage. After
any malfunction, the damper and field waveform at-
tempt to dampen the rotor swing. The negative damp-
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ing torques generated by the AVR counter the damp-
ing system [2]. The power system could become un-
synchronized or produce undesirable oscillations. The
Power System Stabilizer (PSS) was extended and up-
dated technologically to address this issue. It provides
a damping component with phase and rotor speed vari-
ations, which serves as the primary signal generator in
the system excitation, by adding a signal extra. There-
fore, installing the PSS device would improve system
stability [3]. As a result of this problem Artificial Neu-
ral Networks (ANN) techniques were demonstrated to
become active implements for determining large power
system problems and they could become widely actual
when properly connected with conventional mathemat-
ical approache [4]. Artificial Neural Networks (ANN)
is a popular solution tool because of their capacity to
understand complex non-linear correlations and their
ability to handle applications with a large amount of
historical data [B]. ANN is made up of various sim-
ple nodes (neurons) such as joined to make either a
single or multiple layers. It is indispensable to study
the weights that exist among neurons [6]. Connections
among different layers and connections into the same
layer are referred to as feedback connections. There
are many varieties of Neural Networks (NNs). A feed-
forward network is termed by the continuous forward
propagation of input and intermediate signals. In this
method, the information at all times gets about from
the input to the output out of the hidden layers in a
forward direction [7] So, ANN more effective gadget
that utilizes identification and control for system com-
plex due to the properties of the non-linear chart to
the neural networks. When the neural network train-
ing is very well and enough to give results, a controller
may be used instead of PSS [8] Adjust different operat-
ing conditions and obtain satisfactory results, to con-
trol different operating conditions and get very good
results; the network must be trained under different
conditions. The use of backpropagation and learn-
ing networks leads to continuous interference problems
[9]. The main suggestion of this work is that utiliz-
ing neural network-instituted controllers and identifi-
cation might highly become better the stability and
execution of SMIB systems compared to conventional
control techniques. So, it is very important for the
competition of high speed and the ability for learn-
ing and generalization [I0]. This new study advances
with comprehensive system networks within the SMIB
framework, which previous research has not extensively
explored. Through careful design of the complex inter-
actions and dynamics between the generator and the
infinite bus, the grid system sports approved voltage
stability and alleviation of terminal damage to volt-
age equipment. Several studies have focused on this
study of NN in power systems [II]. Reference [12]
includes the advanced transient stability assessment
(TSA) method of CNN+GRU, which includes convolu-

tional neural networks and gated recurrent units, and
the advanced focal loss (FL) function that can ap-
ply self-adaptive changes according to neural network
training and model training ordered for guidance.In
reference [9] intends to explicate and explore the ap-
plication of artificial neural networks to enhance the
probabilistic transient stability of the electric power
system assessment process. In reference [§] to manage
the low-frequency oscillation that exists in the single-
machine infinite bus system (SMIB), a PSS based on
neural networks is developed in this research. Neuro-
PSS consists of two neurons: Neuro-identity, which
simulates power flow, and the Neuro-Controller, which
generates additional excitation signals. Reference [13]
study uses multilayer perceptron (MLP) neurons to of-
fer an approach for determining the normalized tran-
sient stability margin. The neural networks are used
to construct the intricate link between the input and
output variables. The MLP neural network is used
to construct the nonlinear mapping relationship be-
tween the normalized transient stability margin and
the operating circumstances of the power system. In
[14] study the load margin in power systems using ar-
tificial neural networks (ANN) and genetic algorithms
occurs in the publication. The load margin is an indi-
cator that shows how close the system is to instability.
Voltage stability requirements are often considered in
load margin calculations; however low-frequency oscil-
lation modes with slow damping rates can also have
an impact on system performance. The suggested ap-
proach monitors the load margin by synchronizing data
from Phasor Measurement Units (PMUs), considering
the need for voltage stability and small-signal stability.
A technique based on genetic algorithms is utilized to
choose a smaller number of buses for the ANN input
layer. The outcomes show that the approach can be
used to track the load margin in real-time. In [I5]
the review of power systems for voltage stability us-
ing artificial neural networks (ANN) is covered in this
article. The authors stress the need for voltage stabil-
ity evaluation in maintaining the secure functioning of
power systems, particularly in light of the rising de-
mand for electricity and the scarcity of available power
sources. In this study, several line voltage stability in-
dices are introduced, and the IEEE 9-Bus and IEEE 14-
Bus systems are used to test each of them. A real-time
voltage stability monitoring system employing ANN is
also shown, illustrating the value of computed and es-
timated indices in foretelling voltage breakdown. Ac-
cording to the results, operators can take the required
steps to stop voltage collapse mishaps. This paper is
organized as follows Section 2 is a review of recent liter-
ature on stability and control of power systems with a
comparison of all methods for ANN by using control
and Identification, Section 3, introduction to power
system control, Section 4, is methodology contained
system dynamic modeling, the architecture of the Neu-
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ral Network design in SMIB, Process of System Identi-
fication, Architecture and training for Neural Identifier
(NI), detailed with the design system controller, train-
ing of the Neural Controller (NC), Section 5, Studies
and Simulation Results, Section 6 Simulation and re-
sults of the Neural Identifier (NI), Section 7, Simula-
tion and results of the Neural Controller (NC), Sec-
tion8, Simulation Training of the Neural Identifier and
Neural Controller (NINC) that will be a comparative
plant with and without NINC, Section 9, Conclusions
this all results.

2. Recent Works

The AVR and PSS applied procedures have helped to
give noticeably improved stability, especially while run-
ning in normal and minor-disturbance situations. To
improve stability conditions and control systems under
operating systems, more effective controller parame-
ters must be sought. It is important to note that,
as was already said, several unique optimization tech-
niques have been explored in the pertinent literature.
A sizable collection of generators, transmission lines,
transformers, safety equipment, and other related com-
ponents make up an electric power system. A power
system’s primary function is to generate, move, and
distribute electrical energy. The system’s end users
can be linked at different voltage levels (such as sub-
transmission, primary distribution, and secondary dis-
tribution), and they control the necessary generation
needs through their continually shifting demand [I] and
[2]. Reference |[I6] shows how to develop feedforward
and feedback controllers for discrete and continuous-
time dynamical systems using the ideas of recurrent
neural networks and reinforcement learning. An ele-
gant foundation for system identification and control
design is provided by neural networks. Neuro con-
trollers or neural controllers are often created utilizing
a feedforward-feedback control rule, which uses a sta-
bilizing controller and model compensation provided
by any neural network structure.In [I7] research on
the nonlinear control of a single-machine infinite-bus
(SMIB) system for steady-state and transient stability
is presented in this publication. The research looks at
how the system responds to making a difference can
be life changing. The findings demonstrate that the
method produces accurate and reliable information on
transient stability. Control methods applied to power
systems to improve transient stability are also include
in the paper. Reference [18] study looked at how arti-
ficial neural networks (ANNs) may be used to identify
different types of faults in electric power system trans-
mission lines. The ANN network architecture chosen
for each stage of detection was trained and simulated
using the two versions of the parameters. The find-
ings demonstrate that the system experienced three

line-ground faults, three line-line faults, three double-
line-ground faults, and one three-phase fault. Refer-
ence [19] discusses the application of an artificial neu-
ral network (ANN) neuro controller for the control of
a hydropower plant (HPP). The study compares the
performance of the neuro controller with a conven-
tional PID controller. The neuro-controller, based on
the NARMA-L2 technique, offers faster system stabi-
lization and better dynamic performance. The results
show that the neuro-controller outperforms the PID
controller in terms of rise time, stability, and response
speed. The study highlights the potential of using neu-
rocontrollers in complex non-linear systems like HPPs.
In [20] artificial neural network (ANN)-based black-
box modeling strategy for synchronous generators is
presented in this article. The performance of the ANN
is evaluated in comparison to other nonlinear models
after it has been trained using experimental data from
an actual generator. The suggested ANN model ex-
ceeds the competition and displays great accuracy. The
study also provides a test method that does not call
for extra tools or disconnecting the generator from the
grid. The issue of oscillations in a synchronous gener-
ator connected to an endless bus through transmission
lines is covered in this article. It suggests using sim-
ulated annealing (SA) and artificial neural networks
(ANN) as online control approaches to eliminate these
oscillations. Through the suppression of low-frequency
oscillations brought on by disruptions from power grid
faults, the control techniques try to avoid system insta-
bility. The simulation results demonstrate that both
the SA and NN controllers successfully increase the
stability of the synchronous generator while solving
optimization difficulties. In [2I] the necessity of an
intelligent excitation control system in power plants is
covered to maintain the generator’s terminal voltage.
To get around the problems of time delay, nonlinearity,
and load variations, it suggests a unique architecture
utilizing a neural controller. Through simulation, the
suggested system’s performance is assessed and con-
trasted with traditional controllers. The benefits of
the intelligent controller over current controllers are
emphasized. In [22] the construction of a Simple Neu-
ral Network stabilizer (SANN-PSS) for a synchronous
machine in a power system is covered in the publi-
cation. It highlights the problems with conventional
power stabilizer design based on linearized models and
suggests using an artificial neural network to enhance
system dynamics and adjust to shifting operating cir-
cumstances. The article discusses the SANN-PSS’s de-
sign and comparison to a traditional Lead-Lag PSS, as
well as the mathematical model of the power system.
The suggested SANN-PSS outperforms other systems
in terms of overshoot, settling time, and dependabil-
ity, according to digital simulation findings. Paper [23]
examines the use of artificial intelligence (AI) meth-
ods in the design of power system stabilizers (PSS),
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including fuzzy logic, neural networks, and optimiza-
tion algorithms. It draws attention to the drawbacks of
conventional control systems and the advantages of em-
ploying Al-based PSS to increase system performance
and stability. The study examines several Al meth-
ods used in PSS design, such as controllers based on
artificial neural networks, fuzzy logic, and optimiza-
tion.In [24] used the artificial neural networks (ANNs)
for system stability is covered in the publication. It
suggests replacing traditional power system stabilizers
with a predictive controller based on two neural net-
works. MATLAB and DIgSILENT PowerFactory ex-
change data to represent the control hierarchy. The
simulation results show how effective the suggested
structure. In [25] it is based on a combination of Con-
volutional Neural Network (CNN) and Graph Atten-
tion Network (GAT), and this paper shows that the
multi-task transient energy analysis method captures
time change properties captured by CNN time feature
types, and correlations between objects associated with
the embedded map are fetched using GAT. To identify
the important characteristics affecting transient stabil-
ity and to improve power grid operators’ perceptions
of stability conditions, the model further applies the
Shapley additive explanation (SHAP) method. Ma-
terials findings indicate that the proposed model has
strong topographic generalisation, interpretable analy-
sis, and accuracy. In [26, 27] and [28] the article ex-
amines the use of a neuro-controller in the context of
hydropower plant control, drawing a comparison with
the standard PID controller. The focus studied on the
examination of dynamics system behavior and the for-
mulation of mathematical models. The controllers are
simulated and compared using the MATLAB/Simulink
program. The findings indicate that the implementa-
tion of the neuro-controller yields superior outcomes in
terms of system stabilization speed and dynamic per-
formance when compared to the PID controller. In
reference [29] discuss power system transient stability
improvement through STATCOM (static synchronous
compensator) and neural networks. The authors pro-
pose an auxiliary controller for the STATCOM that
adjusts the shunt sensitivity based on the device angle
and speed severity The control method is applied to
a New England 10-machine, 39-bus test system, and
simulation results are shown STATCOM according to
the system operation point to obtain the critical time
you want to fix it. The controller must adjust the gain
A multilayer perceptron neural network-based method
is proposed to speed up the gain estimation process
in online applications. Simulation results obtained by
the proposed method are also presented and discussed.
In general, monitoring the synchronous alternator has
always been crucial to the proper operation of the gen-
erator. Load angle and other parameters of SG affect
alternator output; however, when the parameter is in-
creased, the power system’s security reaches its maxi-

mum level. As a result, generators are operated much
below their steady state stability limit for the secure
running of a power system. An effective instrument for
operating and managing power systems, the artificial
neural network (ANN) is proliferating. Weight tuning
for ANN takes a lot of work, but once done correctly,
it runs quickly and accurately. Previously, ANNs have
been trained either online or in a high-dimensional in-
put space. As a result, either taking a long time to pro-
duce the control signal or using it in associated power
systems is a little unsafe [20].

This paper’s goal is to investigate and then provide
a solution to improve transient stability and stabiliza-
tion regulation while removing steady-state faults. It
focuses on designing two neural networks (the neuro-
identifier and the neuro-controller) of nonlinear sys-
tems. Both identification and control are emphasized.
This object has two principal objectives. The first and
most important objective is to suggest neural identi-
fication to emulate the result of the generator, and
the other is neuro controller is applied to replace a
PSS/AVR with a PID controller (E¢q) to provide a
neuronal identification model that accurately emulates
the characteristics of the single-machine infinite bus
(SMIB) system. It focuses on designing two neural
networks for nonlinear dynamical systems’ steady-state
stability and voltage regulation of nonlinear dynamical
systems.

3. Power System Control

Numerous interrelated components make up an elec-
trical power system. Several of these pieces are in-
credibly nonlinear, and some of them like synchronous
and induction machines, are made up of a combination
of mechanical and electrical parts. Thus, the opera-
tion and control of power systems have evolved into
complex systems with various unstable properties [30].
These systems are vulnerable to various interruptions
because they diffuse across such large geographic re-
gions. Systems become considerably more brittle as a
result of generators working under these disturbances
having smaller stability margins [3I]. A wide range
of issues have started to surface with the introduc-
tion of the connectivity of massive electrical power net-
works. Some of these issues are caused by the oscilla-
tions (inter-area oscillations) between electrical power
subsystems connected to huge networks [32]. It may
be said that a system is stable if an oscillation brought
on by a disturbance in the power system quickly stabi-
lizes. If not, the system is unstable. An average power
system is a multivariable system that is influenced by
a variety of devices with various dynamic properties.
The nature of the disturbance, operating mode, and
system architecture all affect how instability manifests
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Fig. 1: Classification of power system stability.

itself. The system will typically return to normal op-
erating conditions with the help of automated controls
and/or operator intervention. Power system stability
is categorized, with its categories and subcategories,
in Fig. [ The classification of power system stabil-
ity makes it easier to spot instances of instability, de-
cide how to effectively handle them, and use the right
analysis techniques [33] and [34]. The power system’s
capacity to return to synchronism after a small dis-
ruption, such as a slight change in the loads, is known
as small signal stability. In this case, the nonlinear
equations of the system may be linearized to a point of
equilibrium. The period for this type of stability that
is important is ten to twenty seconds after a distur-
bance. In transient stability investigations, the time
window of interest is typically 3 to 5 seconds after the
disturbance; however, it might go up to 10 or 20 sec-
onds for large systems. Voltage stability is described
as a power system’s ability to keep the voltage level of
all busbars within an acceptable range under varying
operating conditions. The most typical result of volt-
age instability is loading loss, which is accompanied by
the tripping of transmission lines and other elements
by their protective systems, resulting in cascading out-
ages. Voltage stability may also be classified as either
a significant disruption in voltage stability or a minor
disturbance in voltage stability, depending on the type
of disturbance. This type of stability issue can be clas-
sified as either short-term or long-term, depending on
the period of interest, which ranges from a few sec-
onds to 10 minutes. The capacity of a power system to
maintain a steady frequency in the face of major supply
and demand imbalances is referred to as frequency sta-
bility. It is stated if this is a short-term or long-term
phenomenon. Because more than one form of insta-
bility may be seen in a power system, there is some
overlap between the many types of instability [33] [34]
and [35].

4. Methodology

4.1. System Dynamic Modelling

The power system is a highly complex, non-linear sys-
tem; thus, when choosing a power system, the stability
of the rotor angle and generator voltage management

Infinite bus

Vi 26t Vs205

jE -

e [T T T
$ % m c | External Power
- f5s= 5 s T System
Valve Coupler | i
| —
Exciter & \
- -

Fig. 2: Single-line diagram of the power system under study.

should be taken into consideration. Because of this,
the power system has an Automatic Voltage Regulator
(AVR) to control generator voltage and ensure the sta-
bility of the power system, as well as a power system
stabilizer (PSS) [36] and [37]. This research takes into
consideration the single-machine connected to infinite-
bus (SMIB) power system configuration shown in Fig.
[38, 39, [40, [4T] and [42]. The synchronous generator
model is a seventh-order detailed dynamic model, but
the excessively used model third order is still a very
important tool for control and stability analysis once
the generator is coupled to the power system, as stated
in [33] and [34].

da(t) _
7 = w(t) — Wo (1)
W) ED o) o + 22 1P~ Pett)] (2
dE)(t) 1
p7 = fd’o [Efd(t) - Eq(t)] (3)

In which § relates to the rotor angle of the gener-
ator, w the speed deviation between the synchronism
and the generator, P, is the generator-delivered elec-
trical output power, The transient EMF on the g-axis
is dE;17 the input mechanical power is P, Etq is the

input voltage excitation. The values of T;io and Kp, H,
denotes the system components that correspond to the
excitation circuit time constant, dumping torque coef-
ficient, and inertia constant respectively. Other alge-
braic equations are:

Epa(t) = KaEr(t) (4)

B0 = 32 B0 - XK coss(t)  (5)
_ B,V
P.(t) = Xidssmé(t) (6)

Vi(t) = 5 [(X2Ey (1) + X2X7 + 2X, X4V, Ey)
‘ + (t)cosd(t)) 1 }
(7)
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where X =X7+3L, Xqs=Xq+Xs, = X, +X,. The
terminal voltage magnitude is Vi (t), V5 is the volt-
age to the infinite bus, X, and X4 are the (q-d-axises)
synchronous reactance, X/ is the transient reactance
at the d-axis, Xy, and Xt denoted to the single-line
reactance and the transformer. While the active elec-
trical power, P, (t), is genuinely measure in practice,
the generator’s internal transient voltage. Therefore,
in the system dynamic related to Eq. (1), the differen-
tial of E (¢) might be replace by the electrical power
differential (see equation (8))):

T = T sin(8) Bra(t) + 350t Viwsin® ()

g{fgd ))gdd V2wsin? () + (w cot(d) — ))((’d;s Tléu> Fe(®)

(8)

Eq. and provide a comprehensive description
of the rotor dynamics, which include a known inertia
constant. The control action Egq that adjusts the field
voltage to stabilize the system. We can use a combi-
nation of PID control and PSS control to achieve this.
Let’s denote the PID controller as up;p and the out-
put of the PSS controlle upgs. The control law for the
combined control system can be formulated as: Where
TA and K A denote, respectively, gain constant of the
exciter time constant and the exciter gain constant and:

9)

U(t) =upss + uprp

Consequently, the emphasis of this research is on the
use of neural networks to analyze nonlinear power sys-
tems. The analysis uses a single-machine infinite bus
(SMIB) model in the power system, which interfaces
with artificial neurons generated in MATLAB using
the neural interface toolbox. A time-delayed feedfor-
ward neural network is used to capture the nonlinear
dynamics of the system. Notably, the discrete model is
important for the training process [25]. Let us consider
a system with general nonlinear discontinuity-time dy-
namics represented by:

(10)

Y1) = F (U)o Yk—nt1)> Uk)s - Uk—m-+1))

Where y and u represent scaler output and input vari-
able respectively. The function f: R™ — R is believed
to possess differential ability with respect to its inputs
The discrete time for the third-order model with sam-
pling time T of the generator electrical and rotational
dynamics equations is represented as:

(11)

wk_ws )

(12)
(13)

S(kt1) = Ory + T

1
w(k+1):wk+Ts ((Pm_Pe

2H

B kt1)

1
=E, + T9~ﬁ[Efd(k) Eqi)]

Where:

(k) represents the discrete time step.

(K+1) represents the discrete next time step
Ts is the sampling time.

This research uses neural networks with two types,
the neuro (identifier and controller). The architecture
of the multi-layer neural network, trained using the
backpropagation (BP) technique, is characterised by a
feedforward network. This network exhibits a nonlin-
ear behaviour, as it operates with inputs and outputs.
The model consists of weight parameters and neurons,
each of which employs a nonlinear sigmoid function.

4.2.  Neural network design in SMIB

This study demonstrates the effectiveness of neural
network implementation in single-machine infinite bus
(SMIB) systems. We utilize two neural networks, iden-
tifiers, and controllers to capture the dynamics of non-
linear systems. It focuses on developing appropriate
models for system identification and control. A feed-
forward neural network trained with a backpropaga-
tion algorithm can accurately represent a model of
a nonlinear dynamical system. Effective training re-
quires discrete modeling. This study presents two mul-
tilayer feedforward neural networks: one for the neu-
ral identifier and the other for the neural controller.
The multilayer neural system includes nonlinear func-
tions that capture the system’s dynamics [I7]. In
this work, we suggest a Feedforward Neural Network
(FNN) construction with a Backpropagat algorithm.
A FNN is one of the modest and extremely widely
utilized kinds of artificial neural networks, especially
for tasks such as classification and regression. The
structure of an FNN combined with backpropagation
for training forms a fundamental building block in the
field of neural netwoWe suggest training methods for
neural networks, including Feedforward Neural Net-
works (FNNs), so they are critical for adjusting the net-
work’s weights to minimize the error between predicted
and actual output [43]. The Levenberg-Marquardt
(trainlm) method compares with two other methods
Bayesian Regularization (trainbr) and Scaled Conju-
gate Gradient (trainscg) methods. The neural network
proposed was trained using the training data set. Tab.
[] and [2] summarizes the results of training the pro-
posed network using the three training algorithms dis-
cussed in this paper. Each entry in the table repre-
sents 50 different trials, with random initial weights
taken for each trial to rule out the weight sensitiv-
ity of the performance of the different training algo-
rithms. The table is shown below for the control and
identifier. At this network when training it, the Lev-
enberg-Marquardt algorithm takes the least value of
time on average. Otherwise, the Scaled Conjugate Gra-
dient Descent algorithm takes the most time on aver-
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age. The Bayesian Regularization-based training algo-
rithm varies its execution function more often than the
Levenberg-Marquardt algorithm; thus, it takes longer.
yet, this method takes a lot less time than the Scaled
Conjugate Gradient Descent method.

Tab. [[] and 2] explain that the Levenberg-Marquardt
method performs better than all other training algo-
rithms calculated, in this investigation of the expres-
sion of speed when training a neural network to recog-
nize the multimachine power system.

4.3. System identification

The neuro-identifier is designed as a multilayer feedfor-
ward neural network. We utilize the multi-layer neu-
ral network with a feedforward network trained with
the BP algorithm. This training algorithm contains
a delay component to increase the network’s capacity
to catch the behavior systems’ tentative aspects. The
process training employs discrete modeling to enhance
the neural network to efficaciously learn and generalize
the implicit patterns of the SMIB system. The training
system of the Neuro-Identifier model is determined as
described in Fig. [3] To train this NN model, it is neces-
sary to have enough sets of input-output patterns and
trained around stable operating points. The training
procedure of a multi-layer neural network model in cap-
turing the complex dynamics of power systems via the
Levenberg-Marquardt algorithm. It is used to train the
neural network efficiently and is renowned for its versa-
tility and quick convergence in non-linear optimization
system issues. The multi-input multi-output (MIMO)
model proposed in ANN utilizes the multi-layer neural
network with a feedforward network trained with the
BP algorithm by trial and error test. For each input
sample, perform forward propagation to compute the
outputs of the network. So the input variables are (Aw,
AEq, Ad, APy, Egq) with a set of the delay values to
the input layer of the neural network and the output
variables (Aw, A, AE,) to the output layer of the
neural network.

@ » Generator+

E¢q Power System

i

A5(k+1)
AE (k+1)

Time delay

[ TDL
Acwlk)

AS(k) +
AE (k) 10

BP

Ak +1)
880+ 1)
AE,(k+ 1)

Neuro-ldentifier

Y vy

Fig. 3: Block diagram for training the neuro-identifier.

4.4.  Architecture and training for NI
We utilize the multi-layer neural network with a feed-
forward network trained with the BP algorithm. So,
the neuro-identifier is composed of two hidden layers
and three output neurons, and the number of hidden
neurons will be constant in later learning trials the acti-
vation function for the hidden layer is that of a sigmoid
and the linear for input and output, the output of the
neuron at each layer by expression the following:

k)(id k)(id
a0 = 1 (X w0l ey

In which f is the activation function. In order to
training procedure of a multi-layer neural network
model in capturing the complex dynamics of power
systems. The neural model has been trained around
some stable operating points and after training trails,
the better option artificial for data set requires
are 16 inputs based on the number of delays, two
hidden layers, each having 10 neurons, the algo-
rithm for backpropagation is utilized for train the
neuro-identifier. The Neuro-Identifier is placed in
parallel with the system and has the following input:
[Aw, Aw(k — 1), Aw(k — 2), Aw(k — m),..., AE, AE,
(k= 1),AEq(k — 2), AEq(k — m),..., Ad, Ad(k — 1), A
5k —2),Ad(k —m),Pp,...,u(k),u(k — 1),...,u(k — n)].
Where Aw is the generator speed deviation, AE, a
qraxis component of the steady-state internal emf
proportional to the field winding self-flux linkages, Ad
rotor angle, u(k) is the output of the neuro controller
(generator input and neuro-identifier input) and it is
referred to [Egq], it is noted that P, is the input me-
chanical power, and E¢q the input excitation voltage.
The multi output of the identifier is the predicted
(Aw speed deviation, Ad rotor angle, AEq). This
model is a comprehensive nonlinear framework that
accounts for the interconnected nonlinear relationship
between the output of the plant and previous values of
both plant inputs and outputs. The backpropagation
algorithm regulates the network for the weights to
reduce the error among the actual system responses
and the predicted outputs. One reason for choosing
different values for time steps is that a third model
of the system is sufficient to study the transient
stability. Another reason is that more time delay
means more computation previous studies have shown
that differences in time delays are larger for such
problems [44]. The cost function used for the NI is:

Ji= 35 (e (1) = § 5, ((Awk) — AD(R))? +

(Aé(k%Aé(k)) g (AEq(k)fAEAq(k)) 2

(14)

(15)

The learning rate for this data set to 0.01 to control
the step size through weight updates, and the data un-
der study is typically divided into; Training data typi-
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Tab. 1: Statistical comparison of different training algorithms for the identifier.

Traini Al ith Average Maximum Minimum Standard
aining Algorithm Time (s) Time (s) Time (s) Deviation
Levenberg
Marqual.'dt 7.1867 13.803 0.05 4.0405
Scaled Conjugate 78.344 151.38 0.063 42.796
Gra(‘]lépnf Descent
ayesian 41.364 82.677 0.06 23.997
Regularization
Tab. 2: Statistical comparison of different training algorithms for the control.
. . . Average Maximum Minimum Standard
Training Algorithm Time (s) Time (s) Time (s) Deviation
Levenberg
Marquardt 0.1246 0.147 0.08 0.074
Scaled Conjugate 0.23 0.353 0.082 0.5165
Gracﬁpnf Descent
ayesian 0.494 0.862 0.092 0.5165
Regularization

Best Validation Performance is 5.5727e-06 at epoch 603
T T T T T

=)
>

v
'
'
——Train [l
'

——Test
- - -Best
Goal

3
)
3
e

Mean Squared Error (mse)

. I L . I
0 100 200 300 400 500 600
609 Epochs

Fig. 4: Evolution of the mean square learning errors for NI.

cally comprising 70%, validation data typically makes
15% and test Data makes 15%, also measured the per-
formance in expression of mean squared error. The evo-
lution of these mean square learning by the Levenberg-
Marquardt algorithm and the best validation perfor-
mance is an average of 5.5727e-06 at epoch 603 at Fig.
21}

4.5. System controller

In a single machine infinite bus (SMIB) system, the
main components include a synchronous generator,
power system stabilizer (PSS), excitation system, tur-
bine and governor system, and load dynamics. The
synchronous generator is responsible for converting me-
chanical energy into electrical energy [44]. The PSS
helps in stabilizing the system by adjusting the gen-
erator’s excitation level. The excitation system regu-
lates the terminal voltage and reactive power output of
the generator. The turbine and governor system main-
tain the rotor speed at the desired level. Finally, load
dynamics refer to the behavior of loads connected to
the system that may cause fluctuations in the power
output. These components collectively contribute to
the functioning and stability of the SMIB system [45].
The role of the neuro-controller in regulating system
parameters is essential to achieving stability and op-

timal performance in the single-machine infinite bus
system. Various training methods can be employed for
the development of a neuro-controller in the context
of a SMIB. One approach is the supervised learning
technique. So, this work role of the Neuro-Controller
is applied to replace a PSS/AVR and PID controller to
provide E¢q. The neuro- controller is also design from a
multilayer feedforward neural network. We utilize the
multi-layer neural network with a feedforward network
trained with the BP algorithm.

4.6. Architecture for NC

The network has multiple layers and is feed-forward.
The expected voltage at instant (k-+1) in the future,
the real voltage at the end, and the generator devia-
tion speed make up its input. The neural controller
emits the actual energy that excites the machine. The
NN controller takes as its inputs either the delayed val-
ues of the neural network’s outputs either the control
signal or the system output or both. The network is
trained to reproduce the given target (control signal).
In this case, the difference between the NN output and
the reference is used for adjusting weights during train-
ing. We utilize the multi-layer neural network with a
feedforward network trained with the BP algorithm.
So, the neuro controllers are composed of one hidden
layer and one output neurons and with three inputs
(w(k),d (k),E, (k)) number of hidden neurons will be
constant in later learning trials the activation function
for the hidden layer is that of a sigmoid and the linear
for input and output linear. Architecture of the neural
control suggested in Fig. [ the output of the neuron at
each layer by expression the following:

oM _ g (Z wl(jly)(co)a(co)(kfl)) (16)
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4.7.

Training of the NC

ai(k+1)
—
ui= Egy (k)

Fig. 5: Structure of Neural controller.

A simulation approach is employed to assess the per-
formance of a neuro-controller in regulating SMIB
system is shown in Fig. NC is designed as a
multi-layer feedforward neural network trained using
the Levenberg-Marquardt backpropagation algorithm
(trainlm) method. With three input, twelve hidden
layer, and one output layer. The NC cascades with the
training of the NI during this part the input to the NC
are (rotor speed deviation (w), load angle (¢), and sta-
tor voltage (Eq) and output is to generate the control
signal E¢q, it is then sent to the neuro identifier, which
compares it to the target. The desired control signal
is calculated through the neuro-identifier by compar-
ing it with the desired response of the system through
the neuro-identifier. Simulations are conducted using
MATLAB/Simulink, with the neuro-controller replac-
ing (PSS) and (PID) controllers or Automatic Voltage
Regulator (AVR) controllers. The objective function
used to train the neuro of the controller is given by:

1

T0) = 5 30 (alk+1) = y(k+1))

(17)

The gradient descent of the error for the network
weights is a function of the back-propagation method
as follows:

TP aJ (k)
wi(k +1) = wi(k) 58w¢(k) e
dJ(k)  9J(k) OE(t) (19)

dwi(k)  OEw(t) ow;(k)

Where ¢ is the learning rate for this data set to 0.01
to control the step size through weight updates, and
the data under study is typically divided into; training
data typically comprising 70%,validation data typically
makes 15% and test data makes 15% also, measured
the performance in expression of mean squared error.
The evolution of these mean square learning by the
Levenberg-Marquardt algorithm and the best valida-
tion performance is an average of 1.2748e-07 at epoch
200 at Fig. [6] This section presents simulation results
obtained through a specialized learning approach for

neural networks. To develop a neural network con-
troller, the initial step involves defining appropriate
network architecture by specifying the number of layers
and neurons in each layer. Following several learning
trials, the number of hidden neurons remains constant,
and the architecture that yields the fewest errors is cho-
sen. For the hidden layer, the sigmoid activation func-
tion is commonly employed, while the input and output
layers typically utilize the linear activation function.

Best Validation Performance is 1.2748e-07 at epoch 200

E —Train
£ —Validation
- —Test
g Best
5o
g 10
©
3
=3
n
c i ¥ 1 i i i T T T
3 0 20 40 60 80 100 120 140 160 180 200
= 202 Epochs
Fig. 6: Evolution of the mean square learning errors for NC.

5. Studies and Simulation

Results

In this part, the performance and reliability of the sys-
tem controller shown in Fig. [2]is assessed using a single
generator linked via a transformer to an infinite num-
ber of buses. The assumed values for the voltage exci-
tation are as follows:

E¢gmin = —4p.u. and Eigmax = 4p.u.

The system operates at a steady state and becomes
result as follow:
(50 =55.1 deg, qu = 1.57p.u.,Efd0 = 1.82p.u.,
P,y = 0.75p.u., Py = 0.75p.u., Vg = 1pu.,Vy =
1p.u.,
T. = 0.7516 pu and w,, =1 (p.u).

This result was obtained by using a steady-state
condition design for (SMIB) by using solver types
of Simulink with the following choices: solver (ode4
Runge-Kutta), type (fixed step) and the primary sam-
ple time (10-4 s). At steady state (before fault) and
the transient stability based on a three-phase short cir-
cuit applied at the system of the infinite bus with the
comparison of the system responses cases, which are
described as follows:

The system is exposed to a three-phase short circuit
fault that occurred near the infinite bus at t= 3m s and
cleared at 100ms by the disconnection of the faulted
and the result shows the rotor speed deviation (w),
load angle (§), and stator voltage (E) is shown in Fig.
a, b, ¢) respectively.
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Fig. 7: Three-phase short-circuit responses of the case with and
without fault: (a) Rotor speed deviation; (b) load angle
delta(c) stator voltage.

6. Simulation of the NI

The neural model has been trained around some stable
operating points. The artificial neural network (ANN)
requires 16 inputs based on the number of delays. The
network design includes two hidden layers, each hav-
ing 10 neurons, which helps capture intricate patterns
and correlations present in the data. The proposed
framework has a hierarchical learning procedure, with
the first hidden layer capturing intermediate charac-
teristics and the second hidden layer amalgamating
these features to generate more abstract representa-
tions. This can potentially improve the network’s ca-
pacity to generalize and acquire complex associations
within the input data and we suppose two cases:

Case 1: Suppose the system has a fixed mechanical
power (P,,) and the field voltage is variable. The re-
sults of training the neuro-identifier are shown in Fig.
il

Case 2: When power mechanical (Py,) is variable and
field voltage is variable. The result from the training
of the NI is shown in the Fig. [9

7. Simulation of the NC

In this study, a simulation approach is employed to
assess the performance of a neuro-controller in regu-

(b)

-
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)
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(c)

o
N
IS
o
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I
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Fig. 9: The result from the training of the Neuro-Identifier case
2: (a) Rotor speed deviation (b) load angle delta (c)

stator voltage.
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lating SMIB system is shown in Fig. With three
neurons in the input layer, twelve neurons in the hid-
den layer, and one neuron in the output layer. The
NC cascades with the training of the NI during this
part the input to the NC are rotor speed deviation
(w), load angle (9), stator voltage (Eq) and output is
to generate the control signal E¢q, it is then sent to the
neuro identifier, which compares it to the target. The
desired control signal is calculated through the neuro-
identifier by comparing it with the desired response
of the system through the neuro-identifier. Simula-
tions are conducted using MATLAB/Simulink, with
the neuro-controller replacing (PSS) and (PID) con-
trollers or Automatic Voltage Regulator (AVR) con-
trollers. This section presents simulation results ob-
tained through a specialized learning approach for neu-
ral networks. To develop a neural network controller,
the initial step involves defining appropriate network
architecture by specifying the number of layers and
neurons in each layer. Following several learning trials,
the number of hidden neurons remains constant, and
the architecture that yields the fewest errors is cho-
sen, it is essential to select a suitable structure for the
neural network.

Neuro-controller

P (k)
—_—

[ Generator+Ps
Uy ;J

Ayy

Neuro-
Identifier

Aya(k+1)

Fig. 10: The neural network controller of training proceses.

8.  Simulation training of the

(NINC)

A simulation is performed for the several types of faults
in the system. The training process of the NINC takes
place in both. neuro-controller with the training of
the neuro-identifier in cascade shown in Fig. dur-
ing this stage, the input to the neuro-controller is (w),
(0), and (Eq) and the output is the (Ey4). which is
then fed to the NI and plant system, the output signals
are calculated through the NI by comparing the output
of the neuro identifier and output signals of the plant.
The process of training the neuro-controller and neuro-
identifier is conducted for various operating points and

Generator+
Ps

Je (k+1)

@k +1)
8§(k+1)
AE,(k+1)

Neuro-
Identifier

Fig. 11: Block diagram for training the NINC.

system configurations until the weights of the neuro-
controller reach convergence. So, to assess the efficacy
of the neuro-controller, it is necessary to analyze the
system response of the NINC. The investigation occurs
inside various disturbances. These disturbances are the
three-phase to ground fault at the infinite bus. The
comparison is carried out under two types of faults.
The system is subjected to a three-phase to ground
fault that occurred near the infinite bus at t= 3 ms and
cleared at 100 ms by the disconnection of the faulted,
it can be seen that the result of the NINC for the rotor
speed deviation (w;), load angle (¢), and stator volt-
age (Ey) is better than the output of the plant without
the result shows the rotor speed deviation (w;), load
angle (§), and stator voltage (E,) is shown in Fig.
and the neuro controller improves its performance on
the design. Neuro-Identified Neuro-Controller (NINC)
objects show how well they work to improve the sta-
bility and performance of power systems in a range of
operating conditions and disturbances. It is clear from
the simulations and tests that the NINC works better
than the uncontrolled plant because it lessens the ef-
fects of disturbances like three-phase ground faults near
the infinite bus. When there are different problems,
the NINC can handle them without any problems and
does a great job of keeping the system stable and re-
ducing changes in important variables like rotor speed
deviation, load angle, and stator voltage. Also, the
NINC’s training process, which includes training the
NINC’s training program continues in both directions.
The neuro-controller is accompanied by the training of
the one after the other, causes the weights to converge,
which shows that the system has learned and adapted
to its surroundings. This shows that the approach is a
good one for controlling and managing power systems
because it is more stable, flexible, and effective than
traditional control methods. As evidenced by the vary-
ing system response between different fault-clearing
times, the NINC represents a promising approach for
power system control and management, offering en-
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Fig. 12: Three-phase short-circuit responses of the case NINC:
(a) Rotor speed deviation (b) load angle delta (c) sta-
tor voltage.

hanced stability, adaptability, and performance com-
pared to traditional control strategies.

9. Conclusions

This study produced a power system design was com-
plex which included a single generator equipped with
an IEEE type-1 excitation system. The system was
simulated and designed to utilize MATLAB Simulink.
The detection made in this research displays that the
employ of this pattern allows for the evaluation of
power system stability over a broad spectrum of op-
erational scenarios. Additionally, it is crucial to in-
corporate additional controllers for the excitation sys-
tem of the synchronous generator, commonly known as
Power System Stabilisers (PSS and PID), to improve
its stability and increase the maximum limit of power
transmission capacity in response to changes in load
conditions. It is easier for the artificial neural network
(ANN) to adapt and use in different situations, which
means it can manage a wider range of problems that
can happen in power systems at various times. The re-
sults show that the suggested artificial neural network
(ANN) controller and identifier could work well in a
wide range of situations because they are very accu-
rate, have a quick response time and can change with
the situation. Hence, the suggested artificial neural
network (ANN) controller is seen to be more appropri-

ate for addressing the issue of tiny signal stability in
power systems.
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