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Abstract. The rapid expansion of power transmis-
sion infrastructure necessitates the development of effi-
cient and accurate inspection methods. This paper pro-
poses an autonomous positioning model for Unmanned
Aerial Vehicles (UAVs) that can detect power line in-
sulators on transmission lines to address this need.
The proposed model leverages machine learning algo-
rithms for autonomous detection of insulators. To de-
termine the optimal stopping point and safety distance
between the UAV and the insulator, a mathematical
model is presented that utilises the captured images and
the machine learning algorithm. A simulation model is
utilised to verify the proposed model, ensuring that the
UAV moves to the best-predicted position. The ma-
chine learning algorithms are utilised to identify and
calculate the length of power line insulators. A set of
labelled insulator images is trained in the selected ma-
chine learning algorithm, enabling it to accurately de-
termine the length of insulators in new images. The
mathematical model considers the size of the insulator
in the image to calculate the safety distance between the
UAV and the power line insulator, while also determin-
ing the optimal image shooting coordinate. MATLAB’s
Simulink software is utilised to leverage the UAV’s nav-
igation and control systems, enabling it to move to the
best position for capturing high-quality photos of the
power transmission lines. The model also considers en-
vironmental conditions and operational constraints for
optimisation. The proposed autonomous positioning
model has undergone extensive simulation to demon-
strate its effectiveness. Furthermore, the autonomous
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positioning of the UAV reduces human intervention,
minimises inspection time, and increases efficiency and
cost-effectiveness.

Keywords

Autonomous positioning; UAV (Unmanned
Aerial Vehicle); Power transmission lines; In-
sulator detection; Machine learning.

1. Introduction

With the rise in population and the country’s develop-
ment, the coverage of overhead transmission lines has
continued to expand. Electricity has become a funda-
mental necessity for modern-day living, and the elec-
tricity demand is ever-increasing. This study focuses
on the autonomous positioning of Unmanned Aerial
Vehicles (UAVs) for power transmission line detection,
to replace the traditional power transmission line in-
spection method, which poses significant danger. Using
UAVs can reduce inspection costs, as fewer personnel
are required for the task, and UAVs have a much lower
cost than other vehicles like helicopters.

The efficiency and safety of autonomous UAVs in
power transmission line inspection are affected by three
key problem statements. Firstly, UAVs must stop au-
tomatically after detecting transmission line faults or
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insulators to avoid taking unnecessary and memory-
consuming photos. Fault detection accuracy is critical
to prevent taking unusable photos or missing actual de-
fects. Secondly, the UAV must be positioned correctly
to capture clear photos by considering the trajectory
consistency to optimise time, battery usage, and avoid
collisions. Lastly, maintaining a safe distance from
the power transmission line is crucial to prevent elec-
tromagnetic interference, UAV failure, collisions, and
damage to both the UAV and the transmission line.
Addressing these problems will improve the efficiency
and safety of autonomous UAVs in power transmission
line inspection.

This paper proposes a model for autonomously posi-
tioning UAVs to address the aforementioned shortcom-
ings. Our contributions are: (i) A mathematical model
is proposed to determine the optimal safety distance
between the UAV and the target, (ii) In the model,
machine learning techniques are implemented for au-
tonomous detection of insulators on the transmission
lines and identifying the best positions for capturing
pictures, and (iii) The proposed model is validated by
simulating the UAV’s movement to the predicted opti-
mal positions. This paper focuses on enhancing the
UAV’s ability to detect insulators, capture pictures
from optimal positions, and maintain a suitable dis-
tance from the transmission lines, improving its power
transmission line detection performance.

The outline of this paper is organised as follows. Sec-
tion provides background information on au-
tonomous UAV positioning approaches. Section [3. |
details the proposed model, including machine learning
for insulator detection, optimal distance between UAV
and target, and UAV model simulation. The findings
and analysis are presented in Section [4. | Finally,
Section [5._] draws a conclusion based on the results
obtained.

2. Related Work

This section employs three distinct perspectives to ex-
amine the methods employed for the autonomous po-
sitioning of UAVs. Firstly, the circular trajectory of
UAV movement is studied. Secondly, the mechanism
for capturing images of transmission lines is explored.
Lastly, the mechanism for estimating the position of
UAVs is studied.

To achieve circular trajectory movement for UAVs,
the autopilot control approach uses waypoint naviga-
tion, which considers the aircraft’s longitude and lat-
itude as Cartesian coordinates [2|. Another study
uses force formulas, design parameters, and Newton-
Euler motion to create a UAV movement model [3].
The model includes parameters such as the three-
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dimensional distance from a fixed origin to the drone’s
centre of mass and Euler angles. The Logarithmic
Barrier Lyapunov Functions (BLF) is utilised in [4]
to achieve circular motion for various types of vehi-
cles, including aerial, ground, and underground ve-
hicles. Other than that, an approximation of the
Bernstein-Bezier polynomial and Pythagorean Hodo-
graph is demonstrated in [5] for the curve trajectory
of the UAV. However, a significant limitation is found
in these studies. The UAVs may have difficulty tak-
ing photos at the lower portion of the power transmis-
sion line, as UAVs need to flip around their body to
expose the camera to the area that needs to be pho-
tographed, which can be inefficient. Besides, Kwon,
Ahn and Song [6] presented a circular route trajec-
tory blending method that considers the end position
effector’s and orientation trajectories’ temporal syn-
chronisation. This algorithm includes the waypoint’s
position, orientation, velocity, and angular velocity pa-
rameters, which are time-synchronised. Another study
in [7] presented circular path planning using posture
control for six degrees of freedom. Two schemes were
used here: Cartesian space and Joint space. The mo-
tion model was generated using piece-wise quintic poly-
nomials with ongoing jerk curves.

In order to successfully capture images of faulty
transmission lines using UAVs, an accurate detection
mechanism is necessary. In [8], a solution for detect-
ing transmission line faults using embedded chip-based
quality optimisation is proposed. The reflection and
coefficients of the transmission line were derived, and
the attenuation rules of voltage and current waves were
explained here. However, further study is necessary to
determine the effectiveness of this method in different
environments. Besides, [9,/10] studied the YOLOv4 al-
gorithm in fault detection on power transmission lines.
Due to the extensive database, deep learning-based
detection algorithms provide precise and fast results.
However, this comes with the downside of requiring
large amounts of memory and bandwidth. In addition,
sensors such as magneto-resistive and non-contact volt-
age for voltage monitoring and near-field voltage detec-
tion in power transmission lines are discussed in [11]
and [12], respectively.

Researchers have studied different mechanisms and
models to estimate the position of UAVs. Two exam-
ples are [9] and [13], which utilise GPS technology to
guide the UAV toward the nearest power transmission
line. They adopt different methods to determine the
distance between the UAV and the power line. Besides,
the Beidou navigation system, a form of GPS devel-
oped by China, is used in conjunction with other posi-
tioning methods to estimate the position of UAVs [14].
Furthermore, a vision-based system is implemented
in |[15H17] to detect the location of the UAV from the
power line. In order of the image processing, Schofield,
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Images X-coordinate Y-coordinate of tt Center Point of InInsulator’s Label Coordinates (x1.y1.x2.y2)
Downloads/InsulatorDataSet-1 540.5 2935 (540.5,293.5) (96,228,985,359)

Downloads/InsulatorDataset-1 492 289 (492,289) (53,412,931,166)
Downloads/InsulatorDataSet-1 428 259.5 (428,259.5) (93,256,763,263)
Downloads/InsulatorDataSet-1 3865 301 (386.5,301) (175,507,598,95)

6 Downloads/InsulatorDataSet-1 394
7 Downloads/InsulatorDataSet-1 aurs
8 Downloads/InsulatorDataSet-1 5175

247 (394,247)
379 (447.5,379)
312 (517.5,312)

(153,377.635,117)
(72,138,823,620)
(138,261,897,363)

9 Downloads/InsulatorDataSet-1 495 302 (495,302) (158,184,832,420)
10 [Downloads/InsulatorDataSet- 413 3735 (413,373.5)  (365,613,461,134)
11 Downloads/InsulatorDataSet- 4985 380.5 (498.5,380.5)  (130,317,867,444)
12 Downloads/InsulatorDataSet-1 521 254 [521,254) (55,162,987,346)
13 Downloads/InsulatorDataSet-1 520 288 (520,288) (89,467,951,109)
14 Downloads/InsulatorDataSet-1 463 285 (463,286) (85,317,841,255)

15 Downloads/InsulaterDataSet-t
16 Downloads/InsulaterDataSet-o
17 Downloads/InsulatorDataSet-r

416.5
5145
4925

361 (416.5,361)
316 (514.5,316)
330 (492.5,330)

(38,433,795,289)
(32,428,997,204)
(153,517.832,143)

18 Downloads/InsulaterDataSet-1 568 255 [568,255) (85,258,1051,252)
19 Downloads/InsulatorDataSet-1 541 288.5 (541,288.5) (107,457,975,120)
20 Downloads/InsulatorDataSet-1 530 282 [530,282) (144,426,916,138)
21 Downloads/InsulatorDataset-1 540 255.5 (540,255.5) (102,341,978,170)
22 Downloads/InsulatorDataSet-1 504 228 (504,228) (46,264,962,192)

23 Downloads/InsulatorDataset-1 490.5
24 Downloads/InsulatorDataSet-1 4875
25 Downloads/InsulatorDataSet-1 480 2195 (480,219.5)
26 Downloads/InsulatorDataSet-1 487 261 (487,261)

3315 (490.5,331.5)
307 (487.5,307)

(105,525,876,138)
(63,337,912,277)
(77,300,883,139)
(7,263,967,259)

Fig. 1: Part of Training Data Set

Iversen, and Ebeid use the LiIDAR system, while
Wang uses the localisation and recognition of land-
marks, as well as feature tracking among consecutive
frames. According to Liu, Shao, Cai, and Li [17], the
data obtained by LiDAR can be used to construct a
path based on the secant slope properties of the power
transmission line. In addition, the magnetic field is
considered to determine the UAV’s position from the
power transmission line \ A positioning and nav-
igation model for the UAV can be established based on
the power transmission line’s electric field strength dis-
tribution [20].

To summarise, there are several areas where research
is needed to improve the use of autonomous positioning
UAVs for power line detection. These include finding
ways to capture images more efficiently during circu-
lar flight paths, improving fault detection mechanisms,
reducing memory and bandwidth usage in detection al-
gorithms, integrating various positioning technologies,
developing real-time navigation algorithms, and creat-
ing comprehensive UAV positioning models. It is also
important to develop strategies for adapting to differ-
ent environmental conditions to ensure optimal UAV
performance. Addressing these issues is essential for
efficient and adaptable UAV operations in power line
detection. Therefore, this paper focuses on determin-
ing the optimal positions for capturing the defective
power transmission line insulators.

3. Methodology

3.1.  Overall Procedure

This study involves several key steps: data collection,
image labelling, data management, machine learning
model training, model selection and export, insulator
position prediction, and UAV simulation. Images with
feature insulators from various online source was sys-
tematically collected. These images encompassed dif-
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1. Data Collection

2, Image Labelling

l

3. Data Management

4. Machine Learning Model Training

l

5. Model Selection and Export

6. Target Position Prediction

l

7. UAV Simulation

Fig. 2: Part of Training Data Set

ferent angles, lighting conditions, and variations in in-
sulator appearance to create a comprehensive training
dataset. The images were then labelled using the 'ITm-
age Labeler’ app within the MATLAB environment, al-
lowing precise marking of the insulator’s location and
boundaries. The labelled information, including posi-
tion coordinates and insulator attributes, was exported
to the MATLAB workspace for further analysis and
model training. The training set comprised 600 im-
ages. Within this dataset, each entry contained the
images themselves along with the corresponding coor-
dinates of their centre points, essential for determining
optimal coordinates as shown in Figure[I]

The collected data was then managed and organised
in a table format, facilitating subsequent data analy-
sis and model training. The table contained various
information such as image file paths, exported insula-
tor label information, individual coordinates, and tar-
get centre point coordinates. The table served as the
foundation for training the machine learning model.

The machine learning model training was conducted
using MATLAB’s ’Classification Learner’ toolbox, the
process was done offline. After evaluation, the selected
machine learning models were used for prediction and
further analysis. Two distinct models were trained: one
to predict the centre point of the target insulator within
an image and another to detect the size of the target.
Three machine learning models were exported to pre-
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Fig. 3: Criteria for (a) y14 > x12 and (b) z12 > y14

dict the centre point. The results were compared to de-
termine the most suitable model. The trained machine
learning models were then used to predict the position
of the target insulator in input images. Then, Simulink
was used to verify the autonomous UAV model, as ex-
plained in Section Figure [2] shows the flowchart
of overall procedure.

3.2. Mathematical Model for

Optimal Distance Between UAV
and Target

This step mainly calculates the optimal distance be-
tween the insulator and the camera for the best shoot-
ing position. Here, the size of the insulator appearing
in the vision of the UAV should be maximised to obtain
a good image for insulator defect detection later.

In order to determine the insulator size on the power
transmission line, y14 and x12 are defined. ¥4 is the
vertical length from y; to y4, or ys to y3, and x12 is the
horizontal length from z; to xo, or x4 to x3 as shown
in Figure 2. The length of y14 and x5 is calculated by
Equation and Equation .

(1)
(2)

Y1a = [y1 — yal,
12 = |CU1 — (,C2|.

Based on the dataset’s images, the optimal vertical
length, y14 or ys3, and horizontal length, x1o or x43,
equals 800. The optimal length of 800 units is deter-
mined by finding the ideal size of the target as it ap-
pears in the image. This distance is optimal when the
target occupies % of the captured image. Two crite-
ria are set here: when ¥4 is longer than x5, and x12
is longer than yi4, as shown in Figure |3| (a) and (b)
respectively.

If (y14 > 212) happens, the length of y;4 will be
considered. When y14 exceeds 800, the UAV is too
near the insulator and must move away from the insu-
lator until y14 = 800. Conversely, if the y14 is shorter
than 800, the UAV must move closer to the insulator
until y14 = 800 to get a clearer image. However, if
(212 > y14) happens, the length of 215 will be consid-
ered. When x15 exceeds 800, the UAV is too close to
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Fig. 4: UAV Simulation
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Fig. 5: Controller

the insulator and must move away from the insulator
until x1o = 800. Conversely, if the z15 is shorter than
800, the UAV must move closer to the insulator until
12 = 800.

3.3.  UAV Simulation in Simulink

The UAV simulation model is developed using MAT-
LAB Simulink, which has three main components:
Controller, UAV Model and Animation. It involves
connecting several blocks to establish the necessary
functionality and visualisation, as shown in Figure [

The predicted coordinates from the machine learn-
ing algorithm were obtained from the workspace using
the 'From Workspace’ block. This block and a con-
stant block are both connected to the Controller. The
constant block is used to determine the lookahead dis-
tance, which determines how far ahead the UAV looks
to anticipate and plan its trajectory.

In the Controller, the "UAV Waypoint Follower’
block received the coordinates and lookahead distance
as input and generated the required information for
heading control. The output ports 'Desired Yaw’ and
"Look ahead Distance Flag’ were connected to the ter-
minator. The "Heading Control’ block processed the
outputs from the "UAV Waypoint Follower’ block and
produced the roll angle as its output, which served as
the output of the Controller as shown in Figure

The subsequent component, named UAV Model as
shown in Figure[f] consists of the UAV guidance model,
which provides environmental information. Their val-
ues are manipulated to observe the behaviour and tra-
jectory of the UAV under different conditions. The
environment information is also feedback to the Con-
troller. The state of the UAV was the output of the
UAV model.
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Fig. 7: Animation

The component of Animation incorporates the UAV
Animation block, which facilitated the observation of
the UAV’s trajectory. The state information obtained
from the UAV model is decoded and classified into
"Translation’ and 'Rotation’. The ’Quaternion to Eu-
ler’ block converts the angles into Euler format, en-
abling the "'UAV Animation’ block to interpret the in-
formation and display the UAV’s trajectory. For the
algorithm of animation block, illustrating a UAV’s tra-
jectory through translations and rotations, this block
visually depicts the UAV’s flight path based on in-
put translations and rotations relative to the inertial
frame. Ensuring consistency, the plot’s z-axis con-
sistently points upwards irrespective of the inertial
frame’s z-axis orientation. Translation is encapsulated
in a 3-element vector denoting the UAV’s xyz-position
relative to the inertial frame, while rotation is encap-
sulated in a 4-element quaternion vector signifying the
UAV’s rotation relative to the inertial frame. The de-
tail of animation block is showed in Figure [7]

4. Result and Discussion

4.1. Insulator Detection

The insulator’s predicted coordinates are presented
here, which were obtained using three different ma-
chine learning models: Naive Bayes, support vector
machine (SVM), and Decision Tree. Figure [§] displays
the ground truth coordinates of the target in Image A

while Figure [0 indicates the predicted coordinates in
Image A by Naive Bayes, SVM and Tree Decision.
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Fig. 8: Animation

The process of predicting the coordinates, as shown
in Figure[8] is replicated to determine the target’s coor-
dinates in the remaining images. The resulting ground
truth and predicted coordinates are then documented
in Table [T

Tab. 1: Distribution of the types by rank.

Image Ground Predicted Coordinates(x,y)
Truth Naive SVM Tree
Coordinates | Bayes Decision
Image (511.5, (511.5, | (511.5, (517.5,
A 477) 460) 360) 299.5)
Image (480.5, (470.5, | (500.5, (487.5,
B 390) 360) 219.5) 291.5)
Image (505, (500, (463.5, (305.5,
C 471) 460) 298) 361)
Image (425, (425, (473, (306.5,
D 475) 475) 290) 361)
Image (517.5, (517.5, (565, (487.5,
E 305.5) 209.5) | 242) 291.5)

To evaluate the accuracy and efficiency of the predic-
tion, the Euclidean distance is calculated between the
actual values and the predicted coordinates as shown
in Table The Euclidean distance serves as a quan-
titative measure to assess the level of agreement be-
tween the predicted and actual coordinates, providing
valuable insights into the performance of the different
machine learning models in accurately predicting the
target locations. The Euclidean Distance can be cal-
culated using the Equation (3)):

Distance = \/(xa — £1)% + (y2 — y1)2. (3)

These observations highlight the varying perfor-
mance of the three machine learning models in pre-
dicting the target coordinates. The Naive Bayes
model stood out for its overall accuracy, while the
SVM model exhibited greater consistency, particularly
in the x-coordinate predictions. The SVM model
may have exhibited greater consistency, particularly
in x-coordinate predictions, due to its robustness to
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(b)

Fig. 9: Predicted Coordinates in Image A bym Naive Bayes SVM

Tab. 2: Distribution of the types by rank.

Image Euclidean Distance between Actual
Coordinates and Predicted Coordinates
Naive Bayes | SVM Tree Decision
Image A 17 117 177.6
Image B 31.6 171.7 98.7
Image C 12.1 177.9 227.8
Image D 0 191.1 164.4
Image E 6 79.3 33.1

outliers, effective handling of non-linear relationships
through kernel functions, optimization of margin sepa-
ration, and ability to handle high-dimensional data. By
maximizing the margin between different classes and
finding the optimal hyperplane in the feature space,
SVMs can provide more robust and generalizable pre-
dictions, especially in tasks involving coordinate pre-
dictions where data may be high-dimensional and non-
linear relationships may exist. The limitations and
strengths of each model should be considered when
selecting the most suitable model for similar tasks or
further improving the prediction accuracy in future ap-
plications.

Table [3] presents the recorded values of the z coor-
dinate for the predicted coordinates, which play a cru-
cial role in determining the zoom level for the system.
The table includes the z coordinate itself and the corre-
sponding Q value, representing the target size observed
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Tab. 3: Distribution of the types by rank.

Image Q / unit | Z Coordinate
Image A 597 -20.30
Image B 793 -0.70
Image C 537 -26.30
Image D 836 3.60
Image E 884 8.40

in the images. The relationship between the z coordi-
nate and Q value is calculated using a specific method,
as demonstrated in the part of Code Implementation
Details. This table provides valuable insights into the
zooming mechanism and its correlation with the pre-
dicted coordinates, contributing to the system’s overall
functionality.

The Z-coordinate is found using Equation . In
this context, 800 units represent the desired size of
the target appearing in the images. Considering an
assumption where each unit increase in UAV altitude
corresponds to a 10-unit increase in the size of the in-
sulator in the image, the difference between Q and 800
is divided by 10 to account for this relationship. The
target’s size within the image should ideally represent
4/5 of the entire image size. While the target’s size
may vary depending on the UAV or camera used for
image capture, in the context of the dataset, an opti-
mal size of 800 units ensures that the target appears
appropriately in the image, neither too distant nor too
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Fig. 10: UAV Simulation Based on coordinates Predicted in
Image A

close to the UAV.

— 800
= QT> (4>

To maximize the size of the insulator in the UAV’s
vision while accounting for the UAV’s speed, careful co-
ordination between the UAV’s movement and the dis-
tance to the target is necessary. If the UAV’s speed
causes the distance to exceed 800, adjustments must
be made to maintain the optimal distance. In this sce-
nario, the UAV would need to slow down or change
direction to reduce the deviation and ensure that the
insulator remains within the desired range of visibil-
ity. By dynamically adjusting its trajectory, the UAV
can effectively manage its speed to maintain optimal
viewing conditions for insulator detection.

Among the images analysed, Images A, B, and C ex-
hibit z-coordinates with negative values based on Table
indicating that the UAV is progressively approach-
ing these targets. Conversely, for Images D and E, the
UAV moves away from the target to maintain a consis-
tent target size within the images. By carefully eval-
uating the z coordinates, the UAV can effectively reg-
ulate its distance from the targets, ensuring accurate
and consistent observations throughout the mission.

4.2. UAV Simulation in Simulink

The results of the UAV Simulation in Simulink provide
a visual representation of the UAV’s flight path as it
navigates towards the target coordinates by following
predefined waypoints. The initial x, y and z coordi-
nates are set to zero to establish the origin. Building
upon the previous section of the results, the coordi-
nates of the target in Image A, which the Naive Bayes

model predicted, are used to simulate the UAV and
the result is shown in Figure The first set of results
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Fig. 11: UAV trajectory in a Windless Environment

showcases the UAV’s trajectory in the default environ-
ment setting, characterised by calm wind conditions.

To further explore the UAV’s behaviour under dif-
ferent conditions, variations in the wind values are in-
troduced, and the trajectory waypoints serve as a con-
stant variable in this section. By manipulating the
wind parameters, the way that the UAV’s flight path
is influenced and its ability to adapt to changing envi-
ronmental factors can be observed. These simulations
provide valuable insights into the UAV’s performance
and enable a comprehensive analysis of its behaviour
in various scenarios. Figure [I0] to Figure [I7] indicate
the trajectory of UAV under different wind conditions.

Under the wind direction solely northward, the UAV
exhibited a slightly snakelike trajectory when travelling
perpendicular to the north axis. However, it travelled
smoothly when moving north, resulting in a shorter
time to reach the final point than the windless sce-
nario. This can be attributed to the northward wind
"pushing" the UAV, enabling faster flight. When the
wind direction was solely in the eastward direction, the
UAV changed its trajectory and reached the final point
in a shorter time. Conversely, in the presence of a
downward wind, the trajectory resembled that of the
windless environment, but the time required to reach
the final point was longer, as indicated in Table [

Tab. 4: Distribution of the types by rank.

Wind Direction Time (sec)
Windless 200
Northward 190
Eastward 180
Downward 250
Northward and Eastward 200
Northward and Downward 300
Eastward and Downward 500

Further analysis focused on the effects of wind in two
directions. When both northward and eastward winds
were applied, the UAV’s trajectory became highly er-
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Fig. 12: UAV Trajectory under Northward Wind Condition

Fig. 13: UAV Trajectory under Eastward Wind Condition

ratic, deviating from the target point. Similarly, when
both northward and downward winds were present, the
trajectory exhibited initial instability but later became
smoother. However, the time required to reach the final
point was significantly longer in this scenario. Finally,
with eastward and downward winds, the UAV’s tra-
jectory was most affected when travelling in the north
direction (perpendicular to the eastward wind), and it
took the longest time to reach the target.

In short, the UAV demonstrated faster travel when
moving parallel and in the same direction as the wind,
while perpendicular travel to the wind resulted in tra-
jectory deviations. Among the analysed wind direc-
tions, the downward wind had the most significant im-
pact on the time required for the UAV to reach its final
position.

5. Conclusion

The main objective of this study was to enhance the
inspection of power transmission lines by developing
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Fig. 14: UAV Trajectory under Downward Wind Condition

Fig. 15: UAV Trajectory under Northward and Eastward Wind

an autonomous Unmanned Aerial Vehicle (UAV) sys-
tem. During the research, certain gaps in the exist-
ing literature were identified, such as the optimal dis-
tance between the UAV and the transmission line and
the challenges of capturing clear photos. The research
team addressed these gaps by introducing a methodol-
ogy that involves machine learning for insulator detec-
tion and simulation modelling for UAV positioning. In
this simulation, the UAV’s behaviour is significantly
influenced by environmental elements such as chang-
ing wind speed and direction. Although factors like
temperature and sunlight intensity were not investi-
gated in this study, they could be potential avenues
for future research in this field. Additionally, further
considerations, such as integrating features for natu-
ral disaster conditions, should be explored in upcom-
ing studies. The results of this study showed that the
approach was effective in enhancing the accuracy of
insulator detection and assessing the impact of wind
on UAV trajectory. Overall, this study improves UAV
technology in power transmission line inspection, which
can significantly enhance the efficiency and reliability
of maintaining power infrastructure.
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Fig. 16: UAV Trajectory under Northward and Downward
Wind

Fig. 17: UAV Trajectory under Eastward and Downward Wind
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