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Abstract. Data association and registration is an im-
portant and actively researched topic in robotics. This
paper deals with registration of two sets of line seg-
ments, which is especially useful in mapping applica-
tions. Our method is non-iterative, finding an optimal
transformation in a single step, in a time proportional
only to a number of the corresponding line segments.
The procedure also provides diagnostic measures of re-
liability of the computation and of similarity of the data
sets being registered. At this point, the method pre-
sumes known correspondences, which is limiting, but
the discussion, in the end, reveals some possibilities to
overcome this issue. Practical properties are demon-
strated on a typical task of localization of a robot with
a known map.
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1. Introduction

In robotics, a perception system of a robot is essen-
tial for its operation in the environment. Basic be-
haviour, such as collision avoidance, can work without
any higher interpretations of the sensed data, because
the geometrical information needed is either directly
measured (laser scanning) [1] or derived exclusively
from the incoming data (stereo-vision) [2]. Complex
behaviour of the robot, possibly leading to Artificial
Intelligence (AI), requires much more. One of the key
operations is association of the recent measurements
with previous knowledge of the robot, which should
open a way for learning (accumulation of knowledge)
and reasoning (usage of the learned facts) [3].

Data association problem is tightly coupled with the
concept of similarity. Geometrical similarity is not suf-
ficient in this case because of its binary nature - ob-
jects in traditional geometry can be similar or not, but
nothing in between. In our everyday human experi-
ence, similarity of objects is a smooth metric, describ-
ing intuitively evident, but hardly evaluable "distance"
between two objects. Modern robotics in search of AI
aims at complex object recognition, which also leads to
extremely complex similarity evaluation. This is the
reason why data association problem is so hard and
why it is still an open research topic.

Similarity can be examined in various ways for a pair
of objects because there are usually many distinct fea-
tures possible to identify on them. Overall similarity is
then a function of similarities between corresponding
features. Of course, if a feature is too complex, it can
be deconstructed again and again, possibly until its
mathematical and physical foundations are revealed.
Human introspection is not able to dive into the un-
conscious mind deep enough, but according to some
scientists [4], this is how our sense of similarity works
as well.

A frequently examined feature is correlation of two
data sets. In the case of robotics, this task appears ev-
ery time a new measurement of the robot’s surround-
ings is acquired and needs to be aggregated with its
internal representation of the world. The process of
data fitting is usually referred to as registration, and
an optimum is reached when the correlation (aka sim-
ilarity in this case) is maximal. Our method registers
two sets of line segments (vector maps) in a single step
and provides diagnostic information on reliability and
actual similarity of both sets. A downside is the neces-
sity of data association before computation, but in the
final discussion about further research, we will show
that the method is usable for correspondence search as
well.
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2. State of the Art

As can be seen in a wide range of literature, robotic
mapping was based on point-like features for a long
time [5], [6] and [7]. On the other hand, this method
seems to face its limits, and the recent research changes
its direction towards more complex objects [3].

2.1. Iterative Closest Point Method

Iterative Closest Point (ICP) [8] is by far the most pop-
ular method for registration of geometrical data today
[9]. It is able to work both in 2D and 3D space and can
be applied on point sets as well as many other geomet-
rical primitives as well. Authors also provide a proof of
convergence to the local minimum. If used with a fast
space partitioning data structure, the method is com-
putationally efficient and easily parallelizable.

Generalized ICP [10] extends the original method
with a probabilistic approach and promises better con-
vergence and accuracy. Many other variants exist [11]
and [12], especially those, that address the problem
of convergence to the local minimum. Various pre-
optimization techniques are used for this reason, for
example, geometric features [13], or genetic algorithms
[14].

2.2. Alternatives to ICP

Many alternatives to the ICP method exist, but their
usage is much less frequent because there is usually
some significant drawback reducing their applicability.

Correlation already mentioned in the introduction is
a good example. Although it is theoretically capable
to find a globally optimal registration transformation,
the exhaustive search algorithm cannot do it with rea-
sonable computational costs, which disqualifies it from
most of the practical applications.

Random sample consensus method [15] is based on
a random sampling of possible correspondences. Al-
though it is a stochastic method, which does not guar-
antee convergence, it is frequently used as a part of
more complex registration systems.

Principal component analysis stems from statistical
properties of the processed point cloud. It is useful
for point clouds with a simple shape [12], but more
complex geometrical primitives or dissected shapes of
the data sets are out of its possibilities.

Computer vision provides methods based on feature
extraction, which are easier to associate and much
sparser, reducing computational costs. Scale-Invariant
Feature Transform (SIFT) [16] and Speeded Up Ro-
bust Features (SURF) [17] are well-known examples,

but their applicability in geometrical measurements is
limited.

2.3. Geometrical Primitives in the
Registration Process

Methods specifically designed to work with line seg-
ments, curves etc. are very rare. More possible reasons
for this situation might be found, but most probably it
was the generality and simplicity of the ICP method,
which prevented researchers from further investigation.
In addition, paper [18], published shortly after the orig-
inal ICP proposal, came with criticism of the primitive
based approach and suggested points as a more robust
alternative.

On the other hand, the problem of registration and
association is not yet satisfyingly solved, and isolated
attempts to achieve this goal using geometrical prim-
itives can be found. Iterative closest line algorithm
[19] directly generalizes ICP to line segments, while
the other approaches [20] and [21] present completely
novel approaches. Some modifications to the original
ICP method make use of geometrical primitives as well
[10] and [22].

All of these examples prove that geometrical primi-
tives have their benefits. In [23], we have shown, that
proper approximation using a more complex geomet-
ric primitive can reliably reduce the noise inherently
present in the point cloud, which disproves the criti-
cism in [18]. In combination with the general tendency
towards object-oriented mapping in robotics [3], the
complex object registration seems to be a viable re-
search direction.

3. One-Step Registration
Method

As stated in the Introduction, the method is de-
rived for corresponding pairs of line segments in two-
dimensional space, where one line segment in the pair
belongs to the static set (in robotics usually a map) and
the second comes from the dynamic one (new measure-
ment). The output of the method is a transformation
applicable to the dynamic set, which leads to optimal
registration with the static line segments. Figure 1
depicts one corresponding pair with labelling, as used
in the following computations. Note that the line seg-
ments are oriented by begin and end points with appro-
priate directional vector. If the points were swapped,
they would denote different line segment.

We can find an infinite number of transformations of
the dynamic line segment `D in each pair, which will
move it on the same line with its static counterpart `S .
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Fig. 1: Static (`S) and dynamic (`D) line segments before the
fitting process. All points, vectors and distances impor-
tants for further computations are marked out.

To allow registration of incomplete data, all of them are
treated as equally suitable. An object in a 2D space has
three degrees of freedom, therefore each transformation
is described by three independent variables and corre-
sponds to a single point in a three dimensional space
of all possible transformations T. The set of all ideal
transformations bringing `S and `D in line can be de-
scribed as a one dimensional subspace ti of T. Using
notation from Fig. 1, we get an equation:

ti :

[
(pDi − pSi)~nSi

αi

]
+ τi

[
~dSi
0

]
= ~Pi + τi~vi, (1)

where pDi = ~BDi · ~nDi, pSi = ~BSi · ~nSi and arbitrary
coefficient τi ∈ R. ~Pi and ~vi are denominations for fur-
ther computations, all written for an i-th correspond-
ing pair from the input sets of line segments. An ex-
ample of those transformation lines in T is shown in
Fig. 2.

The optimal transformation for the whole data set
is then found as the closest point to all of the transfor-
mation lines t1 . . . tN , where N is the number of cor-
responding pairs. Using standard vector formula for
point-to-line distance, we get:

li =
‖ (~T − ~Pi)× ~vi ‖

‖ ~vi ‖
, (2)

where ~T is the optimal transformation, and ~Pi and ~vi
come from Eq. (1). ~T is found using the total least
squares method, and for additional flexibility, an arbi-
trary weight wi for each pair was added. The problem
formulated by the equality:

N∑
i=1

wi
∂l2i (

~T )

∂ ~T
=
∂(‖ ~T − ~Pi ‖2 −(~T − ~Pi) · ~vi)2

∂ ~T
= ~0,

(3)

∆x

∆y
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Fig. 2: An example of the search for an optimal transformation
in the space of all possible transformations T. The dou-
ble lines stand for the perfect transformations of each
corresponding pair and the optimal transformation is
shown as a black dot in the magnified area.

leads to an equation:

N∑
i=1

wi ~T −
N∑
i=1

wi~vi(~T · ~vi) =
N∑
i=1

wi ~Pi, (4)

which in matrix notation looks as follows: ∑
wiv

2
yi −∑wivxivyi 0

−∑wivxivyi
∑
wiv

2
xi 0

0 0
∑
wi

TxTy
Tα

 =

=

∑wiPxi∑
wiPyi∑
wiPαi

 . (5)

For convenience, let us define a simplified notation
for terms of the matrices: Sy2 −Sxy 0

−Sxy Sx2 0
0 0 Sw

TxTy
Tα

 =

SPxSPy
SPα

 . (6)

Equation (5) clearly shows, that translational and
rotational parts of the optimal transformation can be
found independently, which is a consequence of single
optimal rotation for each corresponding pair. Solutions
for the translational part is straightforward:

Tx =
D1

D
, Ty =

D2

D
, (7)

where (using the simplified notation):

D = Sx2Sy2 − S2
xy,

D1 = SPxSx2 − SxySPy,
D2 = SPySy2 − SxySPx.

(8)
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Situation of the rotational part of the transforma-
tion is more complicated because an angle is a circular
quantity, so the classical average computation:

Tα =
SPα
Sw

, (9)

might lead to an unexpected result. When averaging
two angles, there are always two possible outcomes due
to circularity, and there is no guarantee, that the right
one (expected one) will be obtained. To get the correct
results, the Mitsuta’s averaging method [24] has been
used. An algorithmic implementation of the method
is based on [25] and follows the pseudocode of Alg. 1.
The output variables Swα and Swα2 should be used in
place of

∑
wiαi and

∑
wiα

2
i in all equations in this

paper.

Algorithm 1 Mitsuta’s averaging of angles.

Input: [α1 . . . αN ], such that −π < αi < π,
[w1 . . . wN ] such that wi ∈ R.

Output: Correct weighted sums of αi (Swα) and α2
i

(Swα2).

1: Swα = Swα2 = αold = 0
2: for all αi, wi do
3: if i = 1 then
4: αold = αi
5: Swα = wiαi
6: Swα2 = wiα

2
i

7: else
8: δ = αi − αold
9: if δ < −π then

10: δ += 2π
11: else if δ > π then
12: δ −= 2π
13: end if
14: αold += δ
15: Swα += wiδ
16: Swα2 += wiδ

2

17: end if
18: end for

The core of the method is finished at this point be-
cause we are able to compute the optimal transforma-
tion of the dynamic line segment set in a single step.
On the other hand, there are several further topics
worth discussion, which will be addressed in the fol-
lowing sections.

3.1. Alternative Computation of
Optimal Rotation Compatible
with 3D Pose Estimation

The previously explained procedure of computation of
Tα is perfectly suitable for 2D problems, but in prac-
tice, we often need to take into account the third di-

mension as well. Pose estimation and especially orien-
tation estimation in 3D is more tricky compared to 2D
case because direct computation with angles leads to
non-linear equations. To keep linearity, an alternative
formulation of the error metric is being used. The first
proposal of this approach was the Wahba’s problem
[26] stated as follows:

Given two sets of N points {~v1, ~v2, . . . , ~vN} and
{~v′1, ~v′2, . . . , ~v′N}, where N ≥ 2, find the rotation matrix
R (i.e. the orthogonal matrix with determinant +1)
which brings the first set into the best least-squares
coincidence with the second. That is, find R which
minimizes:

N∑
i=1

‖ ~v′i −R~vi ‖2 . (10)

We see from Eq. (10) that the minimized quantity is
not the angle between corresponding vectors from both
sets, but rather the Euclidean distance between their
tips. Different criterion function gives slightly different
optimal rotation; therefore, strictly speaking, makes
both methods incompatible. If the perfect compatibil-
ity of computation of Tα with the Wahba’s approach is
required, we provide the following procedure.

State of the art contains plenty of methods for deal-
ing with the Wahba’s problem in 3D [27], but for 2D
vectors, a great simplification is possible. Let us restate
the Eq. (10) using the notation from Fig.1:

Eα =

N∑
i=1

wi ‖ ~dSi −R~dDi ‖2, (11)

where Eα is the total error and the rotation matrix R
is as follows:

R =

[
cosTα − sinTα
sinTα cosTα

]
=

[
c −s
s c

]
. (12)

For optimal Tα, the Eq. (11) differentiated with re-
spect to Tα should be equal to zero. First, we expand
and simplify the relation to the form:

Eα = 2

N∑
i=1

wi − 2s
∑

wi ~nSi · ~dDi − 2c
∑

wi ~dSi · ~dDi,

(13)
which can be trivially differentiated:

∂Eα(Tα)

∂Tα
= 2s

∑
wi ~dSi · ~dDi − 2c

∑
wi ~nSi · ~dDi = 0,

(14)

and rearranged giving tangent of the optimal Tα:

tanTα =
sinTα
cosTα

=

∑
wi ~nSi · ~dDi∑
wi ~dSi · ~dDi

. (15)

Tα can be easily retrieved by an atan2(y, x) function
provided by every decent mathematical library.
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3.2. Metric for the Transformation
Space and an Isomorphism with
a Spring Net Equilibrium

A more careful examination of the Eq. (2) reveals
that the computation requires existence of a metric on
the transformation space T, but we have not defined
it. Derivation of the optimal transformation silently
presumes usual Euclidean metric on E3, and at the
point, where this expectation would fail, the compu-
tation naturally splits into two independent parts for
the translational and the rotational components of the
transformation (see the zeros in the left matrix in the
equation Eq. (5)) and the correct results are obtained
separately. This dirty trick means that we have used
distance between transformations in the computation,
but we are not able to actually evaluate it. Such dis-
crepancy definitely needs clarification.

Of course, the problem lies in the fact that linear and
angular quantities would be carelessly summed up dur-
ing Euclidean metric evaluation, which is physically in-
admissible. Fortunately, inspiration from a completely
unrelated physical problem offers an elegant solution.
The optimal transformation was found using the to-
tal least squares method, which essentially minimizes
the sum of the squared distances from the transforma-
tion (point in T) to the transformation lines Eq. (1).
Similar situation arises in case of a net of springs con-
nected together, for which we want to find an equilib-
rium with the smallest sum of potential energies

∑
Ei.

Since the potential energy of a spring is proportional to
a square of its displacement from the quiescent state,
multiplied by a stiffness coefficient according to a for-
mula El = 1

2kll
2, the computation results in minimiza-

tion of squared distances as well, making both tasks
mathematically isomorphic.

Potential energy for torsion springs is defined in
a similar way (Ea = 1

2kaα
2), and potential energies

of both kinds of springs can be obviously summed up.
Introduction of linear and angular coefficients kl and kα
allows physically sound summation of the translational
and rotational portions of the total squared distance
between two transformations. It is also important to
point out that introduction of the coefficients does not
affect position of the optimal transformation because
linear scaling of a function does not move its minima.

Mitsuta’s averaging could be also incorporated into
the metric of T and derivation of the method could
be rebuilt on those foundations, but we do not thing
it is necessary. Considerations above fully legitimise
formulas for the optimal transformation and will be
further used in the following section.

3.3. The Method in Context of
General Similarity

The computation above provides an optimal transfor-
mation for any given set of line segment pairs (ex-
cept situation, when discriminant D from Eq. (8) is
zero), but there is no measure describing, how compro-
mise the solution actually is. In principle, this means
exposure of the internal criterion function, but with
proper scaling using the linear and angular coefficients
described previously. Sum of the squared distances be-
tween transformation lines and the optimal transfor-
mation ~T , derived from Eq. (2), is:∑

l2i (~T ) =
∑

wi((Tα − Pαi)2 + (Tx − Pxi)2v2yi
+(Ty − Pyi)2v2xi − 2(Tx − Pxi)(Ty − Pyi)vxivyi),

(16)

where Tx, Ty and Tα are parameters of the optimal
transformation as derived above, and the rest of the
variables comes from the definition Eq. (1). Total con-
tribution of rotational part of the distance between
transformations can be expressed as:

Aα = kα

(∑
wiP

2
αi − Tα

∑
wiPαi

)
, (17)

where kα is a coefficient for the rotational movement,
and

∑
wiP

2
αi is a new sum, which needs to be precom-

puted. Methodology for averaging circular quantities
in [25] and pseudocode in Alg. 1 cover this matter as
well.

In case we work with Tα computation described in
Sec. 3.1. we use the sum of squared errors given by
Eq. (13) and compute Aα as a product:

Aα = kαEα. (18)

Total contribution of the translational part of the
distance is somewhat more complicated to derive, but
can be simplified down to the form:

At = kt

(∑
wi(Pxivyi − Pyivxi)2 − T 2

x

∑
wiv

2
yi +

+2TxTy
∑

wivxivyi − T 2
y

∑
wiv

2
xi

)
. (19)

where kt is a coefficient for the translational portion of
the distance. Similar to the equation Eq. (17), there is
only one additional sum to be precomputed. Ambigu-
ity A of the solution is then expressed by a simple sum
of the angular and linear components:

A = Aα +At. (20)

Ambiguity evaluation provides a control mechanism
expressing ambivalence of the data sets. If the fitting is
perfect, the lines of optimal transformations intersect
at one point, and the ambiguity is zero. Noised mea-
surements from practical experiments exhibit some am-
biguity, but it stays limited. If the limit is exceeded,
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a strong suspicion of badly set correspondences is in
place. Equation (17), Eq. (19) and Eq. (20) work for
any transformation in place of ~T . For example, if an
ambiguity before registration is needed, Tx, Ty and Tα
would be zero.

The notion of similarity appears regularly in litera-
ture, but there is no widely accepted definition. The
only common property corresponds to an intuitive ex-
pectation that the more similar the objects are, the
higher is the number representing it. Reciprocal of
the ambiguity as defined above seems to be a good
candidate for similarity evaluation of the sets of line
segments.

3.4. Reliability Evaluation of the
Optimal Transformation

Every computation that may fail needs some way to
detect hazardous results and report mistakes, if it is
meant to be used in practice. Our registration method
for line segment sets fails, when all line segments are
collinear, which is correct behaviour and can be eas-
ily detected because in such case the determinant D
from Eq. (8) is zero. In real-world situations, exact
collinearity rarely appears, but nearly collinear lines
can cause wrong results as well, and this can happen
more frequently. Such situation produces perfectly sol-
uble equations, but the computation is extremely sen-
sitive to noise as depicted in Fig. 3. Continuous reli-
ability metric covering the situation from degenerate
input to perfect data from synthetic tests is therefore
mandatory.

x

≈

≈

y

0.00 1.00 2.00 3.00 4.00

1.00
1.01

0.99

−1.00
−0.99

−1.01
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D2

S2

≈

≈

≈

≈

Fig. 3: Nearly collinear line segments make the registration pro-
cess extremely sensitive to noise. Tiny deviation of the
line segments Di will cause translation by three units in
the x direction after registration. Reliability evaluation
is designed to detect such hazardous situations.

To evaluate the reliability, we have decided to ex-
amine direction vectors of the registered line segments
because if most of them point in the same direction,
the result will be less reliable, than in a case, when

x

y

~σ1
~σ2

ε

Fig. 4: Small circles represent direction vectors of the static line
segments and their opposite counterparts. Vectors ~σ1
and ~σ2 correspond to eigenvectors ofE with lengths

√
λ1

and
√
λ2 respectively. The angle ε defines reliability.

there are many orthogonal pairs. The main idea of
the computation is shown in Fig. 4. For each direc-
tion vector, its opposite counterpart is added as well,
which ensures, that a mean of their coordinates be-
comes zero and collinear line segments with opposite
direction vectors will appear the same for the reliability
evaluation purpose. For this purpose, the precomputed
sums change as follows:

N∑
i=1

wivxi ⇒ 0,
N∑
i=1

wiv
2
xi ⇒ 2

N∑
i=1

wiv
2
xi,

N∑
i=1

wivyi ⇒ 0,
N∑
i=1

wiv
2
yi ⇒ 2

N∑
i=1

wiv
2
yi,

N∑
i=1

wi ⇒ 2
N∑
i=1

wi,
N∑
i=1

wivxivyi ⇒ 2
N∑
i=1

wivxivyi.

(21)

Principal component analysis is used to inspect dis-
persion of the direction vectors. The vectors demarcate
points on a unit circle, and for those points, a correla-
tion matrix E can be found:

E =
1∑
wi


N∑
i=1

wiv
2
xi

N∑
i=1

wivxivyi

N∑
i=1

wivxivyi
N∑
i=1

wiv
2
yi

 . (22)

Eigenvalues are computed using the standard for-
mula Det(E − λI) = 0, which leads to a quadratic
equation:

λ2 − λ
(∑

wiv
2
xi +

∑
wiv

2
yi

)∑
wi

+

+

(∑
wiv

2
xi

∑
wiv

2
yi − (

∑
wivxivyi)

2
)

(
∑
wi)2

= 0. (23)
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Since:∑
wiv

2
xi +

∑
wiv

2
yi =

∑
wi(v

2
xi + v2yi) =

∑
wi,

(24)
and(∑

wiv
2
xi

∑
wiv

2
yi − (

∑
wivxivyi)

2
)

(
∑
wi)2

= Det(E), (25)

the Eq. (23) can be simplified in the following manner:

λ2 − λ+Det(E) = 0. (26)

The relationship of the eigenvalues λ1 and λ2 is:

λ1,2 = 1
2 ±

√
1
4 −Det(E),

λ1,2 = 1
2 ±

√
1
4 − λ1λ2,

λ21,2 − λ1,2 + 1
4 = 1

4 − λ1λ2,
λ21 − λ1 = λ22 − λ2,
λ1 + λ2 = 1.

(27)

Usage of the formulas sin2 ε+cos2 ε = 1 and sin(2ε) =
2 sin ε cos ε leads to the criterion value:

R = sin(2ε) = 2
√
λ1λ2 = 2

√
Det(E). (28)

The definition of reliability directly shows its prop-
erties. Because the positive result of the square root is
taken, the value of R can change in the interval [0; 1],
where zero demarcates an unsolvable situation and one
means the perfect reliability. There is a smooth transi-
tion between these two states, so the unreliable results
caused by nearly collinear line segments can be easily
detected.

3.5. Implementation Considerations

Besides subtleties of averaging of angles, which were al-
ready discussed above, there are two more implementa-
tion details worth mentioning. The first is precompu-
tation of sums. Throughout the computation, there are
many sums, which take linear time to compute, propor-
tional to the total number of corresponding pairs N . In
many practical situations, we need to modify the sets
slightly and recompute the registration again. Keeping
the sums and adding or subtracting the values corre-
sponding to the pair, which is currently being added
or removed, can save a lot of processing time. The
same can be applied to a whole set of correspondences,
for which the sums are known. This way, the modi-
fication of the precomputed sums take constant time,
independent of N , greatly improving the efficiency of
algorithms using our method.

Second important note regards numerical stability.
When adding a lot of floating point numbers with cer-
tain precision and storing them in a variable of the
same byte length, inevitable loss of accuracy occures,
which may negatively affect the computation. Our im-
plementation in C++ uses float type for line segment
parameters and double precision for sums. This pre-
caution ensures enough precision for stable computa-
tion.

4. Experimental Verification

This section presents several localization experiments
with a priori known maps and artificially generated
data. This approach allows us to explore a large
amount of combinations of data parameters, environ-
ments, special cases and registration algorithm set-ups,
which would be hard or even impossible in practice. We
have chosen three simple scenarios with special char-
acteristics (see Fig. 5), which should illustrate all im-
portant aspects of the registration process. We start
with a virtual laser scanner positioned in several places
in the map, where simulated data are acquired. Num-
ber of points per scan and Gaussian noise can be set
individually for every measurement. Point-like data
are processed using the total least squares vectoriza-
tion algorithm [23], providing a set of line segments
to be registered with the map. Exactly given poses of
the scanner serve for the verification of quality of the
registration process. Virtual environment is also useful
because the correspondences between scan and map are
known for sure, which simplifies experimentation and
removes a potential source of human errors.

4.1. Influence of Line Segment
Accuracy on the Registration
Process

Since both vectorization of the points as well as regis-
tration of the line segments are performed in the least-
squares sense, we would expect that with growing num-
ber of input data and decreasing noise, the accuracy
will improve. For this reason, we have prepared a set
of experiments, whose results are summed up in Fig. 6.
The expectation is perfectly satisfied, and we observe
a great impact of both parameters. Both linear and an-
gular error decrease linearly with the growing number
of input points and quadratically with the diminishing
noise. We have also compared the outputs of Eq. (19)
and Eq. (17) plotted in green in Fig. 6 with the disper-
sion of estimated poses around the true pose (plotted
in gray). Estimated error is (up to scale) equivalent to
the ground truth, which justifies its usage in practice.
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(a) CutSquare. (b) Oblique. (c) Pillars.

Fig. 5: The three testing environments for registration and localization experiments. Thick gray line segments demarcate the
obstacle edges and the black dashed path corresponds to the trajectory of the virtual robot with marked out poses, where
the surround scanning was performed.

For better visualization, in Fig. 7 we have plotted
the positional and rotational dispersion under varying
scanner parameters. The statistics are based on 100
virtual scans taken from every given point. The ellipses
correspond to dispersion of estimated positions, and
blue pies represent uncertainty in orientation. We can
visually confirm findings from Fig. 6 regarding point
density and noise level influence. Also, the central
points of the ellipses and axes of the pies are closer
to the true pose, which proves another frequently used
technique: If we have a poor sensor with low point den-
sity and high noise, taking several scans in one place
can help to increase the accuracy.

There is one more interesting phenomenon to be
observed in experiments in Fig. 7a, Fig. 7b, Fig. 7c,
Fig. 7d and Fig. 7e. The dispersion ellipses at a given
point are changing their size with changing conditions,
but their shape and tilt are nearly constant despite the
number of points or the noise level. This is given by the
structure of the surrounding environment and shows
the importance of reliability and ambiguity evaluation.
Even such a simple scenario as the CutSquare envi-
ronment has varying informational gain, when scanned
from different positions.

Even more volatile in this regard is the Pillars envi-
ronment, where the view is obstructed by narrow ob-
stacles. Significance of this behavior can be spotted in
Fig. 7f, where mediocre point number and noise am-
plitude result in highly differing accuracy of results in
various points of the trajectory. Also note, that some
dispersion ellipses lap over the map edges into the mass
of the obstacle. The registration method has no mech-
anism to detect such erroneous results, but additional
verification after the registration process is easy to ap-
pend.

4.2. Correspondence Weighting

The equations for optimal transformation derived in
the theoretical part of this paper are all designed to in-
corporate weight allowing prioritization of certain cor-
responding pairs over the others. This feature was not
utilized in the previous section, but its potential to
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(b) Angular error functions.

Fig. 6: Error functions (green for At from Eq. (19) and gray for
comparison with ground truth) of the registration pro-
cess. The plots belong to the CutSquare environment
scanned with varying point density and (horizontal axis)
and noise level (σ = 1, 3, 10 units in the bottom-up or-
der). Weighting was not used during the experiments,
all corresponding edges were assigned a weight of one.
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(a) P = 100, σ = 10. (b) P = 100, σ = 3. (c) P = 100, σ = 1.

(d) P = 300, σ = 10.

(e) P = 1000, σ = 10.
(f) P = 300, σ = 5.

Fig. 7: An influence of sampling density (number of points per scan P ) and measurement noise (with standard deviation σ) on
line segment accuracy and subsequent effect on the registration process. Green ellipses demarcate positional dispersion and
blue pies stand for range of orientations of the reconstructed poses. Dependence of quality of the registration on quality
of the input data is obvious. Grid size is 50× 50 units, the parameter σ is measured in these units as well. Weighting was
not used during the experiments, all corresponding edges were assigned a weight of one.

improve the accuracy of the registration results is sub-
stantial.

Shorter line segments tend to be less accurate, be-
cause in practical measurements, usually, less data is
available to define them. Giving higher weight to the
corresponding pairs, where both line segments are long
is therefore sensible. For our experiments, we have

used the length of the shorter line segment to define
the weight of each pair and significant accuracy gain
have appeared. Confronting Fig. 8 obtained through
weighted computation with Fig. 7f, where all pairs were
treated equally, shows clear improvement on the same
data. Common practice is to discard the lowest ac-
curacy line segments right after vectorization, but this
way either permits excessive error if the threshold is too
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low, or rejects useful information. Weighting provides
more fluent transition between high and low accuracy
pairs and leads to better results.

Fig. 8: The Pillars environment scanned with the same param-
eters (P = 300, σ = 5) as in Fig. 7f, but with weighting
proportional to the length of the shorter of the corre-
sponding edges. Improvement of the registration accu-
racy over Fig. 7f is significant.

Tab. 1: Ratios of the weighted over the non-weighted error met-
rics in various environments. Weighting is proportional
to the length of the shorter of the corresponding edges
and significantly increases accuracy of the registration
procedure. (Lower is better.)

Error
metric

Environment
CutSquare Oblique Pillars

At 0.68 0.46 0.27
Aα 0.65 0.43 0.25
Dt 0.58 0.25 0.07
Dα 0.66 0.27 0.07

To explore the impact of weighting under various
conditions, we have performed the same set of exper-
iments as in the previous section, but interestingly,
there was no statistically significant impact of point
density or noise level on the improvement caused by
weighting. In other words, the accuracy gain from
weighting is mostly given by the environment. The
three scenarios depicted in Fig. 5 exhibit growing vari-
ability in edge lengths, which nicely corresponds to re-
sults summarized in Tab. 1. The error reduction in the
simple CutSquare environment is roughly 30–40 %. In
the more structured Oblique scenario, the reduction is
higher than 50 %, and the Pillars environment with its
narrow beams exhibits even bigger improvement. The
energy-based and dispersion-based error metrics are in-
fluenced in different magnitude, but the behavior of the
error functions presented in the previous section is still
perfectly valid. Positive effect of sensibly set weights
is clear and can significantly improve registration re-
sults, especially in a complicated environment, where
we need it the most.

Tab. 2: Correlation of the linear and angular ambiguity with
distance from the true pose. The w index stands for
experiments, where weighting as described in Sec. 4.2.
was applied, while uniformly weighted experiments

have no special marking.

Correlation
coefficient

Environment
CutSquare Oblique Pillars

Corrt 0.90 0.91 0.77
Corrα 0.59 0.82 0.58
Corrtw 0.91 0.80 0.74
Corrαw 0.53 0.56 0.61

4.3. Ambiguity Correlation with
Distance from True Pose

Ambiguity is directly connected to the accuracy of the
registration process, although we cannot take it as an
exact measure related to some true value, which is
obviously unknown. Instead, the ambiguity reflects
how well the transformations aligning the correspond-
ing line segments coincide with each other. We have
examined correlation between the linear and angular
ambiguities and a square of linear and angular error
computed using the ground truth.

The results of the correlation measurement are sum-
marized in Tab. 2. No significant influence of point
cloud density or noise level was spotted. Similar to
the previous section, all remarkable differences were
given by the environment where the experiment was
performed. We see a strong correlation for the transla-
tional part of the transformation, while the ambiguity
of the rotational part is less dependent on the real mis-
alignment. Weighting slightly reduces the correlation,
however rough estimation of the registration accuracy
is still possible.

4.4. Insufficient Line Segments and
Reliability

So far, we have investigated only the accuracy in exper-
iments, where enough data for computation was always
available. The reliability evaluation was silently omit-
ted because in all cases, we could say that R in the
sense of Eq. (28) closes to one. As illustrated along
with the theoretical derivation using the nearly co-
linear line segments example (see Fig. 3), hazardous
cases can easily occur in practical situations. To dis-
play less straightforward problems with reliability, we
have employed the Pillars environment again.

Figure 9 shows an experiment, where the point den-
sity, noise level and edge rejection threshold are set to
generate data, for which the registration is nearly un-
solvable. The threshold of 80 units means that from
every examined pose it is possible to spot at least
two linearly independent edges of the map, but lower
point density and high noise result in problematic data.
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Fig. 9: The Pillars environment scanned with the parameters
P = 300, σ = 10 and with only 80 units or longer line
segments allowed in the registration process. Weighting
is enabled in the computation. The circles represent the
reliability - black border corresponds to R = 1, while the
filled area corresponds to the actual reliability values.
The blur stems from the fusion of results of 100 exper-
iments. A single measurement with lower reliability is
depicted in blue.

Weighting also penalizes short line segments further re-
ducing the reliability coefficient (but making it better
corresponding to the given situation). Note that the
positions, where low reliability was identified have al-
ways highly obstructed field of view, although their
close neighbors are perfectly fine. At first, some of
these examples might seem counter-intuitive, but this
is exactly why the reliability needs to be evaluated
- even in a common environment, scans from wrong
places can cause misleading results.

4.5. Wahba’s Rotation Estimation

Let us start the experimentation with Mitsuta’s and
Wahba’s averaging with a simple thought experiment.
Having angles [0◦, 0◦, 90◦], an intuitive mean is 30◦,
which is also what we get using the Mitsuta’s algorithm
Alg. 1. The operation suits the orientation estimation
very well because only the rotation is in question and
corresponds to the linearity of angle measurement in
a [−180◦, 180◦] window. Wahba’s averaging Eq. (15)
gives approximately 26.56◦, which is noticeably differ-
ent and describes a situation, when we move two steps
in [0◦ direction and one in 90◦] direction. The result-
ing angle than corresponds to the orientation, which
will bring us straight to the end of such trajectory.
Both methods have meaningful applications, but Mit-
suta’s averaging cannot be generalized to 3D, so even
in 2D case, when consistency with 3D is required, the
Wahba’s method has to be used.

Since both methods provide different results, an
analysis of the influence of the input data on this dif-
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Fig. 10: The plot shows standard deviation of mean estimates
from the true value. Mitsuta’s method (Alg. 1, green)
exhibits linear dependence of the deviation on the noise
in the data, while the Wahba’s method [Eq. (15), black]
is more permissive to large errors in data, which leads
to lower deviation on highly noised data.

ference is in place. We have prepared data sets, where
one of the corresponding line segments was always ro-
tated by a random angle (generated with uniform dis-
tribution in an interval centered at zero). For each
averaging procedure, we have recorded the mean value
and repeated the computation with different random
variables. After a large number of repetitions, the dis-
tribution of the means turned out to correspond to
the normal distribution centered at zero with certain
standard deviation σ. These deviations for both meth-
ods and various levels of maximal noise are plotted in
Fig. 10. The diagram proves our theoretical expecta-
tions because the Mitsuta’s algorithm produces a de-
viation linearly dependent on noise, which is a con-
sequence of direct computation with angular values.
The Wahba’s method is more permissive to large de-
viations, so the σ is lower for highly noised data. The
sinusoidal shape of the characteristics directly stems
from the original Wahba’s problem statement Eq. (10)
- the distance between vector tips correspond to the
half of the angle they define. In practice, such large
noise levels, where the difference is significant, are un-
common, so the overall outcome of this experiment is
positive: For practical averaging of small angles, both
methods are equivalent.

5. Conclusion

This paper deals with the registration of two sets of line
segments with known correspondences. It is computa-
tionally efficient because its time complexity is only
proportional to the number of corresponding pairs be-
ing involved. We also present two ways of orienta-
tion computation, one linear on angular data and sec-
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ond compatible with state of the art 3D pose estima-
tion methods. The criterion for optimal registration is
transparent and can be used to define a metric of sim-
ilarity of given data sets. The method also provides
a mechanism for evaluation of reliability of the results,
which allows identifying degenerate data sets, which
cannot be registered with certainty. All properties of
the registration process were systematically tested to
prove and illustrate the theoretical results.

A significant drawback is the initial necessity of data
association. We are well aware of this issue and our re-
search effort is now focused on a procedure using the
described registration method to examine possible cor-
respondences and isolate a set of those, which exhibit
similarity after the registration. Because of computa-
tional efficiency and the direct measure of similarity,
this approach seems to be a perspective way to deal
with the data association problem.
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