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Abstract. This paper addresses the Optimal Power
Flow (OPF) problem in DC power microgrids via
a combinatorial optimization technique known as Black
Hole Optimization (BHO). Such optimization method
allows to solve OPF problems via algorithmic strategies
trough a master-slave formulation. In the master stage,
the total power generated by each Distributed Genera-
tor (DG) is determined by the BHO, while the slave
strategy is entrusted with solving the resulting conven-
tional power flow problem via a classical Gauss-Seidel
(GS) numerical method. For comparison purposes, this
work uses nonlinear optimization methods available in
General Algebraic Modeling System (GAMS) as well
as continuous metaheuristic optimization techniques.
Two test feeders with 21 and 69 nodes were considered
for validating the proposed hybrid BHO-GS optimiza-
tion method, which enables to demonstrate its appli-
cability, robustness and efficiency compared to conven-
tional approaches. The results of all the simulations
were obtained via MATLAB 2017a.
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1. Introduction

Under the microgrids paradigm, Direct Current net-
works become a possible reliable and economic alter-
native for providing electrical services to millions of

end-users around the world [1]. The main advantage
of using DC networks lies in the possibility of inte-
grating multiple distributed energy resources, such as
energy storage systems [2] (batteries, supercapacitors
or fuel-cells) and renewable generation [3] (solar, wind
technologies, among others) with DC-DC converters
or AC-DC inverters, thus reducing the back-to-back
topologies required to integrate them into conventional
AC power grids [4]. Those reductions must be reflected
in the total cost of the distributed energy resources, as
well as lower power losses and high electrical efficiency
DC networks in comparison with their AC counter-
parts [5]. Another important driver of the populariza-
tion of DC networks is that they are easier to analyze
and operate because key concepts of AC grids, such
as frequency and reactive power, disappear under this
paradigm [5].

Power flow and Optimal Power Flow (OPF) prob-
lems have drawn strong attention in the field of DC
networks because they represent essential tools to plan,
operate, and control DC grids [5], [6] and [7]. Afore-
mentioned problems are interesting for the research
community because they are nonlinear and non-convex,
and solving them requires to propose new and efficient
methodologies [8]. Regarding the power flow prob-
lem for DC grids, [5] proposes a conventional Gauss-
Seidel iterative method via successive approximation
and demonstrates the Gauss-Seidel convergence via Ba-
nach space theorems. Besides, [7] demonstrates the
convergence of the Newton-Raphson method through
Kantorovitch’s theorem for DC grids operating under
a master-slave control mode. The authors of [9] present
a linear approximation via Taylor’s series expansion to
solve the power flow problem in low-voltage DC mi-
crogrids with high performance and acceptable results
in comparison to Gauss-Seidel and Newton-Raphson
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methods. In the case of OPF, the objective function
of the mathematical models employed in the special-
ized literature is power loss minimization; in addition,
conventional power flow, voltage regulation, and dis-
tributed generation capabilities are their constraints.
Therefore, in order to analyse and solve this problem,
[6] presents a second-order cone programming formu-
lation, while [10] proposes a convex model for OPF
problems in DC grids with higher penetration of re-
newable energy resources and energy storage systems,
which is solved with the CVX solver. The main dis-
advantage of the aforementioned convex optimization
methods is the quadratic increment in the number of
variables required to solve the OPF problem, which
can cause computational inefficiencies. On the other
hand, [11] presents an approximated OPF model with-
out increasing the number of optimization variables via
Taylor’s series approximation; notwithstanding, that
solution generates approximated results that differ in
about 2 % from exact models. In terms of combina-
torial methods for DC OPF problems, a continuous
genetic algorithm was recently proposed in [1] as a hy-
brid methodology in conjunction with a Gauss-Seidel
numerical method. Such approach was only validated
on a small 10-node test feeder, which does not allow to
confirm its applicability to large test feeders.

According to the review of the state-of-the-art above,
only one combinatorial optimization method has been
applied to solve OPF problems in DC power grids, as
proposed in [1]. In that sense, this paper identifies a re-
search gap in the field and proposes a Black Hole Op-
timization (BHO) approach [12], in conjunction with
a classical Gauss-Seidel (GS) power flow method, to an-
alyze and solve this problem by implementing a master-
slave optimization strategy. The main advantage of
the method proposed in this work, in comparison with
convex approaches, lies in the fact that the number
of variables of the power flow problem remains con-
stant and no eigenvalue decomposition is required to
recover power flow variables. Additionally, the pro-
posed BHO-GS optimization method does not require
specialized software, and it can be implemented in any
programming language since its solution methodology
is entirely algorithmic.

The remainder of this paper is organized as follows.
Section 2. presents the conventional OPF problem
for DC power grids with a focus on the possibility of
including distributed generation in the grid via con-
trolled percentages of penetration. Section 3. intro-
duces the main characteristics of the BHO method as
well as its evolution process and its application to the
master problem. Section 4. shows the conventional
GS formulation for solving power flow problems in DC
power grids and its application to the slave problem.
Section 5. details the complete BHO-GS method ap-
plied in this document to solve OPF problems in DC

power grids as well as its pseudo-code. Section 6.
describes the test system, the numerical results, and
the General Algebraic Modeling System (GAMS) in
conjunction with a large-scale nonlinear solver SCIP,
a Continuous Genetic Algorithm (GA), Particle Swarm
Optimization (PSO), and an Elephant Swarm Water
Search Algorithm (ESWSA) as comparative methods.
Finally, Sec. 7. draws the main conclusions and pos-
sible future research derived from this work, followed
by the acknowledgments and references.

2. Optimal Power Flow
Modeling

The optimal power flow problem in DC power grids cor-
responds to a nonlinear non-convex optimization prob-
lem [6], in which the power balance at all nodes in the
grid is defined by hyperbolic constraints [8]. The com-
plete formulation of this problem is presented below:

2.1. Objective Function

min ploss = vTGLv, (1)

where v ∈ Rn×1 corresponds to the vector that contains
all the voltage profiles of the network, GL ∈ Rn×n con-
tains all the conductive effects associated with all the
branches, and ploss is a scalar function that quantifies
total power losses in the DC grid. Notice that n corre-
sponds to the total number of nodes in the DC grid.

2.2. Set of Constraints

pg + pdg − pd = D(v) [GL +GN ] v, (2)

pmin
g ≤ pg ≤ pmax

g , (3)

pmin
dg ≤ pdg ≤ pmax

dg ; (4)

vmin ≤ v ≤ vmax, (5)

1T (pdg − αpd) ≤ 0, (6)

where pg ∈ Rn×1, pdg ∈ Rn×1, and pd ∈ Rn×1

correspond to power generation at slack nodes (ideal
voltage-controlled sources), distributed generators, and
power demanded in constant power load nodes, re-
spectively; pmin

g ∈ Rn×1 pmax
g ∈ Rn×1 represent min-

imum and maximum power capacities at slack nodes;
pmin
dg ∈ Rn×1 pmax

dg ∈ Rn×1 denote the lower and upper
limits of distributed generation nodes; vmin ∈ Rn×1

vmax ∈ Rn×1 are the minimum and maximum voltage
regulation limits on the grid; α is a scalar parameter
that represents the maximum power injection allowed
via distributed generation, i.e., 0 ≤ α ≤ 1; finally,
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1T ∈ R1×n and GL ∈ Rn×n contain all the conductive
effects associated with constant resistive loads.

The mathematical model detailed from Eq. (1) to
Eq. (6) is interpreted as follows: Expression Eq. (1)
corresponds to the objective function associated with
power losses reduction in the electrical network. Power
balance is presented in Eq. (2). Slack generation ca-
pabilities as well distributed generation capacities are
established in Eq. (3) and Eq. (4), respectively. Volt-
age regulation bounds are presented in Eq. (5), while
maximum distributed generation penetration is defined
by Eq. (6).

Note that, for practical purposes, a constraint asso-
ciated with power generation capacity at slack nodes
is not considered for OPF problems since said nodes
are considered ideal, i.e., they can maintain a constant
voltage profile regardless of the power requirements of
the grid.

Optimization methods are required to solve the OPF
problem in DC power grids. Consequently, this pa-
per explores the possibility of solving such problem
via a master-slave strategy that decomposes the OPF
problem into two sub-problems. The master sub-
problem determines the power generation of all the DG
nodes via a BHO approach, while the slave counterpart
resolves the resulting conventional power flow problem
via a conventional Gauss-Seidel method. Those pro-
cesses will be explained in detail in the following sec-
tions.

3. Master Problem: BHO
Approach

Black hole optimization is a nature-inspired optimiza-
tion technique based on the dynamical interaction be-
tween stars and black holes at the center of galaxies
in the universe, as depicted in Fig. 1 [13]. In general
terms, this technique allows to solve nonlinear large-
scale optimization problems via heuristic exploration
of the solution spaces [14].

Fig. 1: Typical behavior of a black hole and stars in the center
of the Milky Way. Taken from [13].

The BHO method is briefly introduced below by
highlighting the main steps in its computational im-
plementation.

3.1. Stars Are Born

The BHO approach is a population-based optimization
algorithm derived from conventional particle swarm op-
timization [15]; in that sense, the initial population cor-
responds to the first set of stars randomly distributed
over the solution space, i.e., as a cumulus of stars in the
universe [16]. During the generation of this set of stars,
the number of stars (possible solutions) ni is the num-
ber of rows, while number of DGs ndg is the number of
columns, as formulated in:

Pt = pmin
dg o(ni, ndg) + (pmax

dg − pmin
dg )r(ni, ndg), (7)

where Pt represents the star population matrix,
o(ni, ndg) is a rectangular matrix filled with ones, and
r(ni, ndg) corresponds to a rectangular matrix filled
with random numbers from zero to one with normal
distribution properties. Note that Pt corresponds to
the current population and each individual (star) in-
side it represents the total power generation at all
nodes that contain DGs. Furthermore, the best solu-
tion (lower fitness function for minimization problems)
inside the initial population Pt is selected as a black
hole location.

3.2. Movement of Stars

The dynamic behavior of stars in the proximity of
a black hole is highly influenced by the intense gravita-
tional force of the latter (see Fig. 1). In that sense, the
movement of any star may have a particular behavior
as a function of its location with respect to the posi-
tion of the black hole [14]. Such behavior is emulated
by the mathematical relationship

P i
t+1 = pit + (pBH

t − pit)r(1, ndg); i = 1, 2, ..., ni, (8)

where pBH
t represents the black hole in population t,

and P i
t+1 denotes the ith individual after its movement.

Remarkably, after this process the location of the black
hole remains unaltered.

3.3. Black Hole Updating

After generating the descending population of stars
Pt+1, the location of the black hole must be changed
if the ith individual among the descending population
exhibits a lower fitness function value than the current
black hole, i.e., pBH

t = pit+1; otherwise, the location of
the black hole remains constant, i.e., pBH

t+1 = pBH
t .
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3.4. Star Replacement

The survival of a star in the nearby neighborhood of
a black hole depends on its current position with re-
spect to black hole’s location. In theoretical physics,
any object that crosses the event horizon around
a black hole is destined to absolute destruction. Never-
theless, this catastrophic scenario generates stellar ma-
terial that enables the formation of new stars–a mar-
velous event in the universe. To emulate the possibility
that an arbitrary star in the descending population is
absorbed by the black hole, the event horizon radius is
defined as:

REH =
f(PBH

t+1 )
ni∑
i=1

f(P i
t+1)

, (9)

where f(PBH
t+1 ) represents the best fitness function

value of all individuals contained in the current popu-
lation (black hole objective function value), while the
denominator of Eq. (9) corresponds to the sum of the
fitness function of all individuals in the same iteration.

To determine if any star crosses the event horizon,
the euclidean distance of such star with respect to the
black hole’s location is defined as:

DBH−i =
∣∣∣∣PBH

t+1 − P i
t+1

∣∣∣∣ . (10)

If REH < DBH−i, a new star is randomly generated
to replace the one absorbed by the black hole; other-
wise, the star continues in the current population. No-
tice that the birth of new stars increases the possibility
of expanding the exploration of the algorithm over the
solution space, which would be considered global ex-
ploration [16].

3.5. Stopping Criterion

To halt the exploration of the BHO over the solution
space, one of the following stopping conditions must be
satisfied:

• The maximum preset number of iterations has
been reached.

• After k consecutive iterations the black hole’s lo-
cation has not been updated.

4. Slave Problem:
Gauss-Seidel Method

Gauss-Seidel is a widely-known iterative method for
solving power flow problems adopting the successive
approximation theory [5]. Such method allows to

solve nonlinear nonaffine constraints associated with
the power balance at all the nodes in the DC network
as given in Eq. (2). For this purpose, said equation
can be decomposed into two subsets. The first subset
of equations is associated with slack nodes (voltage-
controlled nodes), and the second subset corresponds
to the constant power loads including distributed gen-
eration nodes. This decomposition is expressed as:

pig = vi

n∑
j=1

gijvj ; i ∈ S, (11)

pkgd − pkd = vk

n∑
j=1

gijvj ; k ∈ D. (12)

Note that Eq. (11) corresponds to a set of linear
equations, since vi ∈ S denotes the voltage profiles at
slack nodes, which are perfectly known. Nevertheless,
an iterative process is required to solve Eq. (12). In
that sense, a conventional Gauss-Seidel method is pre-
sented below ∀k ∈ D.

gkkv
m+1
k =

pkgd − pkd
vmk

−
n∑

j=1,j<k

gijv
m+1
j −

n∑
j=1,j>k

gijv
m
j ,

(13)

where m represents the iteration index. Note that the
Gauss-Seidel method always converges for power flow
studies, since |gkk| ≥ |gkj |∀k, j ∈ D, which implies
that the conductance matrix is diagonally dominant
[5]. Moreover, the Gauss-Seidel method reaches nu-
merical convergence if the following stopping criterion
is fulfilled. ∣∣∣∣vm+1

k − vmk
∣∣∣∣ ≤ ε, ∀k ∈ D, (14)

where ε corresponds to the maximum convergence er-
ror.

5. Solution Strategy: OPF
Solution Via BHO-GS

When metaheuristic techniques are used for solving
constrained optimization problems, the fitness function
value is typically composed of the original objective
function value as well as constrains added via penal-
ties. The fitness function value proposed in this paper
to guide the master optimization problem is written as:

min z =


ploss + β11T max{0, v − vmax}
+β21T min{0, v − vmin}
+β31T max{0, pdg − pmax

dg }
+β41T min{0, pdg − pmin

dg }
+β5 max{0,1T (pdg − αpd)}

 , (15)

where β1 to β5 correspond to penalization factors,
which are typically grater than zero. In this paper,
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each penalization factor equals 1000 in order to force
the BHO to fulfill all the conditions imposed over the
OPF problem as formulated from Eq. (1) to Eq. (6).

When all the constrains are fulfilled, all the penal-
ization factors must be annulled by max{·} and min{·}
functions, which turns the fitness function value into an
objective function, since in that case z = ploss.

Algorithm 1 shows the application of the master-
slave solution method proposed in this study to solve
OPF problems in DC power grids via a hybrid BHO-
GS approach.

Algorithm 1 Proposed pseudo-code for the hybrid
BHO-GS approach.
1: Data: Initialization parameters.
2: for t = 1 : tmax do
3: if t == 1 then
4: Generate initial population;
5: Solve slave problem (Gauss-Seidel method);
6: Evaluate fitness function;
7: Assign black hole location;
8: else
9: Generate descending population;

10: Solve slave problem (Gauss-Seidel method);
11: Evaluate fitness function;
12: Black hole updating;
13: Star replacement;
14: if Has any stopping criteria been met? then
15: Finish optimization process;
16: Optimal solution found;
17: Print results;
18: BREAK;
19: else
20: CONTINUE;
21: end if
22: end if
23: end for

6. Computational Analysis

6.1. Test Systems

Two different test feeders were used to evaluate and
validate the proposed master-slave BHO–GS for solv-
ing the OPF problem in DC networks. First, a 21-
node test feeder described in the specialized literature
is employed [9] and [11]; the second test feeder corre-
sponds to a DC adaptation of the Baran & Wu 69-node
test feeder implemented in [17] for optimal location and
sizing of distributed generators in AC distribution net-
works. The information of both test systems is detailed
below.

1) 21-node Test Feeder

This test system comprises 21 nodes and 20 lines with
multiple constant power loads, which is an adaptation
of the system originally presented in [7] and [9]. In
addition, said system includes two ideal voltage gener-
ators at nodes 1 and 21. The electrical configuration
of the test system is illustrated in Fig. 2, and informa-
tion about its power consumption and branches can be
consulted in [11].

1
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Fig. 2: Electrical configuration of the 21-node test system.

The voltage and power bases in this test system are
1 kV and 100 kW, respectively. Note that the generator
located at node 1 is operated with a voltage of 1.0 p.u,
while the generator located at node 21 is dispatched
with 1.05 p.u of voltage. Moreover, the power losses
without DGs reached 0.211 p.u.

2) 69-node Test Feeder

This test system constitutes an adaptation of the AC
69-node test system employed for power losses reduc-
tion via distributed generation integration [17]. To
transform this system into a DC network, we used
12.66 kV and 100 kW as voltage and power bases; in
addition, the reactance component in all the branches
as well as reactive power consumption in all the nodes
were neglected. Figure 3 presents the 69-node test
feeder configuration; branch parameters and load in-
formation can be consulted in [17]. For simulation pur-
poses, 12.66 kV and 100 kVA were used as voltage and
power bases for this test system.
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Fig. 3: Electrical configuration for the 69-node test system.

This study analyzes the possibility of installing from
one to three generators considering penetration per-
centages from 20 % to 60 % of the total power con-
sumption. Note that, via heuristic search methods,
nodes 9, 12 and 16 were selected for GD location in
the 21-node test feeder; and nodes 26, 61 and 66, in
the 69-node test feeder.

6.2. Numerical Results

The computational analysis was carried out in a desk-
top computer with an INTEL(R) Core(TM) i5− 3550
processor (3.50 GHz) and 8 GB of RAM, running a 64-
bit Windows 7 Professional operating system. We used
the programming environment MATLAB 2017a and
the GAMS optimization toolbox [18].

1) 21-node Test Feeder

Table 1 presents the total generation at each DG con-
sidering different percentages of power penetration, to-
tal power generation, and objective function values in
the DC grid.

Note that, in each simulation case, the maximum
power injection allowed into the DC grid reaches
1.1080 p.u, 2.2160 p.u and 3.3240 p.u for DG pene-
tration scenarios of 20 %, 40 % and 60 %, respectively.
In that sense, from the fifth column in Tab. 1 it can
be seen that the proposed BHO-GS method as well as
the GAMS optimizer use more than 99 % of the max-
imum generation allowed to reduce total power losses
in the DC network. In terms of objective function min-
imization, note that the method proposed in this work
presents an estimation error lower than 0.30 % (com-
pared to the SCIP solver) for each simulation case.
Therefore, such hybrid BHO-GS method offers ade-
quate numerical convergence compared to large-scale
nonlinear packages.

It is important to highlight that the power delivered
by each distributed generator exhibits small variations
(compared to the GAMS optimizer) in the solutions
obtained by means of the proposed approach. These
differences can be attributed to the nonlinear contin-
uous nature of the OPF problem, which implies that

multiple DG power combinations with identical objec-
tive functions could exist.

Finally, Fig. 4 shows the reduction of power losses
in the DC network achieved by the proposed and com-
parative methods.
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Fig. 4: Power losses behavior with different levels of DG pene-
tration.

The proposed BHO-GS method and the comparative
method via GAMS implementation exhibit a similar
performance in terms of power losses reduction, which
clearly validates the proposed approach in terms of nu-
merical convergence.

2) 69-node Test Feeder

For validating the proposed BHO-GS methodology in
this test feeder, we employed three different optimiza-
tion techniques usually implemented in the specialized
literature for solving continuous optimization prob-
lems: Particle Swarm Optimization (PSO) [17], an Ele-
phant Swarm Water Search Algorithm (ESWSA) [20],
and a continuous genetic algorithm [1]. To compare
all the metaheuristic techniques fairly, we considered
a population size of 30 individuals, a maximum num-
ber of iterations of 200, and a stopping criterion of 50
(continuous iterations without improving the objective
function) to parameterize those techniques. In this test
feeder, we assumed that the location of the distributed
generators corresponded to nodes 26, 61, and 66 as rec-
ommended in [17]. Likewise, the total power injection
allowed into the system is defined as 60 % of the total
power consumption, and each generator’s capacity is
considered free.

Table 2 presents the comparison of OPF solutions
obtained employing the aforementioned metaheuristic
techniques for the 69-node test feeder. Note that the
PSO algorithm has the best objective function, with
0.05556 p.u. of power losses, followed by the pro-
posed BHO algorithm, with 0.05571 of power losses
reduction. In that sense, the PSO algorithm reduced

c© 2019 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 29



POWER ENGINEERING AND ELECTRICAL ENGINEERING VOLUME: 17 | NUMBER: 1 | 2019 | MARCH

Tab. 1: Optimal power dispatch of DGs using the BHO–GS approach and GAMS optimization package [19].

Solutions provided by the BHO–GS method proposed in this work
Penetration [%] DG 9 [p.u] DG 12 [p.u] DG 16 [p.u] Total Gen [p.u] Losses [p.u]

20 % 0.1131 0.4582 0.5367 1.1080 0.1454
40 % 0.6536 0.6518 0.9064 2.2118 0.1067
60 % 1.0909 1.0597 1.1623 3.3129 0.0893

Solutions provided by the GAMS and the SCIP solver
20 % 0.1250 0.4070 0.5750 1.1070 0.1453
40 % 0.5980 0.7260 0.8920 2.2160 0.1064
60 % 1.0700 1.0440 1.2100 3.3240 0.0891

Tab. 2: Comparison of OPF solutions for the 69-node test feeder.

Method DG 26 [p.u.] DG 61 [p.u.] DG 66 [p.u.] Total Gen [p.u.] Losses [p.u.]
ESWSA 3.5404 15.8613 2.6371 22.0388 0.05589
PSO 3.7512 15.8840 2.7549 22.0931 0.05556
AG 3.8828 16.2639 2.4039 22.5507 0.05606
BHO 3.6340 15.6109 2.7484 22.0233 0.05571

96.3886 % of the power losses, and the BHO algorithm,
96.3789 %. This implies that both solutions are tech-
nically comparable in terms of objective function min-
imization. Additionally, regarding the performance of
the objective function, the GA presents the worst per-
formance followed by the ESWSA.

It is also important to stress that the proposed
BHO reached the lowest power injection into the grid,
22.0233 p.u., followed by the ESWSA with 22.0388 p.u.
Furthermore, the AG remains the worst technique in
relation to this indicator, followed by the PSO algo-
rithm.

Regarding power generation at each node, note that
node 61 concentrates the highest percentage of power
injection according to all the optimization algorithms.
Nevertheless, we can say the BHO algorithm outper-
forms its rivals because it injects 15.6109 p.u., while
the ESWSA is in the second position with 15.8613 p.u.

The results above indicate that the proposed BHO-
GS algorithm presents an adequate performance in
comparison to other continuous optimization tech-
niques for solving the optimal power flow problem in
DC networks.

7. Conclusions

This paper presents a combination of the black hole
optimization approach in conjunction with the conven-
tional Gauss-Seidel numerical method for solving the
OPF problem in DC power grids. The BHO method
is a soft variant of the widely-known particle swarm
optimization methods, which offer an adequate perfor-
mance for OPF problems, as confirmed by the numer-
ical results reported in this work.

The large-scale nonlinear optimization package SCIP
solver (available for GAMS) and continuous optimiza-

tion techniques (PSO, GA and ESWSA) were used as
comparative methods, which confirmed the excellent
numerical convergence of the proposed hybrid BHO-
GS method.

In future works, the BHO-GS method presented in
this paper could be used for solving the optimal loca-
tion and sizing of distributed generation in DC power
grids via binary metaheuristic techniques, such as ge-
netic algorithms or tabu search methods, among oth-
ers.
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