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Abstract. This paper deals with application of simple
synthetic inductor with series resistance (non-ideal gy-
rator). Those inductors are seldom used. However, if
we use this inductor in the arm of bridge, the circuit
is able to achieve high performance. In this way we
can get band stop filter with good performance. In the
paper we solve influence of real OPA properties. The-
oretical considerations are verified by means of sim-
ulations (MicroCap) and experiments. Based on theo-
retical considerations, simulations and experiments are
finally determined by criteria that must meet real oper-
ational amplifier to make the circuit performed well.
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1. Introduction

In essence, the properties of an inductor can be sim-
ulated by a simple circuit with an amplifier called
a synthetic inductor or gyrator. This basic circuit is
presented in Fig. 1. The amplifier can be realized with
vacuum tubes, transistors and integrated amplifying
structures. This circuit is widely used for designing
a band-stop and band pass filters. Although some au-
thors (e.g. [2] and [3]) states: "The drawback of the
circuit is that the quality factor is poor".

Nevertheless, this circuit (with an operational ampli-
fier) is used to design the band-stop filter since 1971 [4],
as shown in Fig. 2. The series resistance presented in
Fig. 2, which is generally undesirable, is t functionally
utilized in his circuit. This circuit has been described

in literature [5], [6], [7] and [8] several times. However,
it is necessary to describe the influence of the real syn-
thetic inductor on the properties of the band-stop filter
in detail (see Fig. 2).
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Fig. 1: Prescott gyrator.
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Fig. 2: Stop-band filter with synthetic inductor.
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2. Prescott Inductor

Figure 1 shows the Prescott inductor (non-ideal gyra-
tor). To find out the input impedance, current ÎA and
voltage ÛX must be calculated by using superposition
theorem. So we can come up with expressions:

ÛX =
ĜpCR+ 1

pCR+ 2
, (1)

where p = jω,

ÎA =
ÛA − ÛX

R
= ÛA

pCR(1− Ĝ) + 1

2R+ pCR2
, (2)

and input impedance

ẐIN =
ÛA

ÎA
=

2R+ pCR2

1 + pCR(1− Ĝ)
. (3)

If Ĝ = 1, the expression for input impedance is de-
scribed as:

ẐIN = 2R+ pCR2. (4)

Expression from Eq. (4) has been mentioned com-
monly in literature. The input impedance appears as
a resistor RS and inductor L connected in series.
Where series resistor is defined as

RS = 2R, (5)

and inductor
L = CR2. (6)

If amplifier (follower) is realized with an operational
amplifier, it follows that

Ĝ =
Â

1 + Â
, (7)

where Â is the gain of the operational amplifier without
feedback. Assuming that operational amplifier is well
compensated and its gain is sufficiently described by
the frequency of the first order model (e.g. [9] and
[10]), we obtain:

Â =
A0ω1

p+ ω1
=

ωT

p+ ω1
, (8)

where ω1 is the dominant (first) pole of transmis-
sion, ωT is the extrapolated transition frequency
(ωT = A0ω1), and A0 is the gain (DC) for ω < ω1.

Further, we assume that that ω > ω1 and
normal operating mode of an operational ampli-
fier while the normal values for ω1 range from
2π · 5 rad·s−1 to 2π · 50 rad·s−1. Then, the approx-
imate relationship is valid when:

Â ≈ ωT

p
, (9)

and

1− Ĝ = 1− Â

1 + Â
=

1

1 +
ωT

p

. (10)

When ∣∣∣∣ωT

p

∣∣∣∣ > 10, (11)

then
1− Ĝ ≈ p

ωT
, (12)

and by applying this formula to the Eq. (3), we get the
following expression for input impedance

ẐIN ≈
2R+ pCR2

1 + p2
CR

ωT

. (13)

Real series RSR resistance under these conditions is
now frequency dependent and determined by the rela-
tion

RSR =
2R

1− ω2
CR

ωT

, (14)

as well as real inductor

LR =
CR2

1− ω2
CR

ωT

. (15)
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Fig. 3: Equivalent circuit of the circuit in Fig. 2.

3. Band Stop Filter with
Synthetic Inductor

Fig. 3 shows equivalent circuit of the circuit in Fig. 2.
If we make Ra = 2R, we can determine an expression
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relating Ûin and Ûout (so that we can find the gain) by
the following expression:

Û0

ÛIN
=
p2LRCS + pCS(RSR − 2R) + 1

p2LRCS + pCS(RSR+ 2R) + 1
. (16)

If the operational amplifier op-amp2 is ideal
(ωT → ∞), then RSR = 2R and LR = CR2. At reso-
nance (ideal state):

1

jω0CS
+ jω0L = 0. (17)

Therefore

ω2
0 =

1

LCS
=

1

CSCR2
. (18)

A quality factor Q is determined as follows

Q =
ω0L

4R
= 0.25

√
C

CS
. (19)

For frequency ω0 is input of operational amplifier
OP-AMP1 connected to a “balanced bridge R1 − R1;
2R− 2R" and ideally Û(ω0)→ 0.

By modifying Eq. (18) and Eq. (19) we obtain the
relationships suitable for design of the ideal circuit:

CS =
1

4Rω0Q
. (20)

C =
4Q

Rω0
. (21)

Simply, we select R and then use the above relation-
ships. The bandwidth B is determined by elemental
expression

B =
ω0

Q
=

4

RC
. (22)

When varying ω0 by means of CS , B remains con-
stant, whereas Q varies.

A more complex situation occurs when op-amp
OP-AMP2 is non-ideal (and ω0 > ω1), then

1

jωrCs
+ jωrLR = 0. (23)

By solving this equation, we get

ω2
r = ω2

0

1

1 +
1

ωTRCS

. (24)

Resulting expression for series resistor RSR at fre-
quency ωr using Eq. (24) is determined as:

RSR =
2R

1− ω2
r

ωTCR

− 2R

1− 1

1 +RCSωT

.
(25)

This means that the operational amplifier OP-AMP1
(for Ra = 2R) at frequency ωr is not balanced and
transmission is different from zero. From Eq. (16), it
is evident that

Tmin =
Û0

ÛIN

∣∣∣∣∣
ωr

=
RSR − 2R

RSR + 2R
6= 0. (26)

Substituting for RSR from Eq. (25) into Eq. (26) we
get after modifications (for Ra = 2R - see Fig. 3):

Tmin =
Û0

ÛIN

∣∣∣∣∣
ωr

=
1

1 + 2ωTRCS
. (27)

4. Maximum Input Voltage

The results of the experiments showed that the ampli-
tude of the input voltage is limited by the output of
OP-AMP2. If the voltage ÛSI is limited, we cannot
use a linear model, which has always been used.

Using the assumption that the operational amplifier
is ideal, we get:

ÛSI = ÛA = ÛIN
2R+ pCR2

2R+
1

pCS
+ 2R+ pcR2

⇒

⇒ ÛSI

ÛIN
=

p2CSCR
2

p2CSCR2 + p4RCS + 1
+

+
p2CSR

p2CsCR2 + p4RCS + 1
.

(28)

By analysing Eq. (28) it was found that the maxi-
mum allowable amplitude for the input signal is

UIN max
∼=

min(|UCC−|, UCC+ − 2V)√
0.25 +Q2

, (29)

where UCC−, UCC+ define the value of the supply volt-
age, Q is the quality factor (Eq. (19)) [6].

5. Real Quality Factor of Band
Stop Filter

The above considerations are concerning the exact res-
onant frequency ωr. However, by substituting LR and
RSR in Eq. (16) for transfer function we obtain re-
lationship from which it is not possible to determine
the bandwidth B (change of 3 dB), see [11]. Simula-
tion results from [11] are briefly summarized in Tab. 1.
The results in Tab. 1 shows how the ratio Qr/Q is de-
pendent on an expression ωT /(Qω0), see below. From
data in Tab. 1 it is evident that for the real values of
ωT /(Q ·ω0), the changes of Qr are already insignificant
The ideal state corresponds to ωT /(Q · ω0)→∞.
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Tab. 1: Change Qr/Q dependent on ωT /(Qω0).

ωT

Q · ω0

QR

Q
(-) (-)
10 1.42
20 1.22
50 1.10
100 1.07

6. Verification of Theoretical
Considerations

To verify theoretically derived relationship, a number
of simulations and measurements under various con-
ditions has been carried out. It turned out that it
is necessary to modify the obtained relations into an
appropriate (normalized) form. For this reason, the
product of ωTRCs was modified as follows:

ωTRCS = ωTR
√
CS

√
CS =

= ωTR
√
CS

√
CS ·

√
C√
C

= ωTR
√
CCS ·

√
CC√
C
,

(30)

thus
ωTRCS =

ωT

ω0
· 1√

C

CS

=

=

∣∣∣∣∣∣∣∣Q =

√
C

CS

4

∣∣∣∣∣∣∣∣ =
ωT

4Qω0
.

(31)

Then (
ωr

ω0

)2

=
1

1 +
1

ωTRCS

=

=
1

1 + 4
Qω0

ωT

=
1

1 + 4
Qf0
fT

,

(32)

RSR

2R
=

1

1− 1

ωTRCS + 1

=

=
1

1−
4
Qω0

ωT

1 + 4
Qω0

ωT

=
1

1−
4
Qf0
fT

1 + 4
Qf0
fT

, (33)

Û0

ÛIN

∣∣∣∣∣
ωr

= Tmin =
1

1 + 2ωTRCS
=

=
1

1 + 0.5
ωT

Qω0

.
(34)

It is apparent that the ratio ωT /(Qω0) is important.
For ωT /(Q · ω0) → ∞, we obtain the ideal value 1 or
zero.

Simulations were performed in a Microcap software.
For the simulations, we used resistors R1 = 10 kΩ,
R = 5 kΩ, the capacity Cs ranged from 80 pF to
80 nF, the capacity C ranged from 128 nF to 1280 nF;
the transition frequency fT of operational amplifiers
ranged from 50 kHz to 10 MHz (see Fig. 2). The fre-
quency of the op amp second pole has always been
shifted, thus was higher than the frequency fT . It
turned out that the properties of the operational am-
plifier op-amp1 practically do not affect (ωr/ω0) and
Tmin, if (ωT /ω0) > 10. This obviously affects the over-
all transfer function since the decrease of transmission
op-amp1 by 3 dB, under these conditions, is at a fre-
quency ωT /2. Equation (16) can be adjusted into

Û0

ÛIN
=
p2LRCS + pCS(RSR − 2R) + 1

p2LRCS + pCS(RSR + 2R) + 1
·

ωT

2
p+ ωT

2

. (35)

Table 2 summarizes the results obtained experimen-
tally in comparison with the ideal values calculated
using Eq. (32) and Eq. (34). Values ωT /(Qω0) were
obtained by different combinations of ωT , Q, and ω0.
It was confirmed that the result of the product is de-
cisive in comparison with the individual expressions in
the normalized form.

Tab. 2: Results of simulation (Ra = 2R) and calculations for
the circuit of Fig. 2 according to the ratio ωT /(Q ·ω0).

ωT

Q · ω0

Simulation Eq. (32) Eq. (34)
fr

f0
Tmin

fr

f0
Tmin

(−) (-) (dB) (-) (dB)
10.05 0.8459 −15 0.8458 −15.6
25.13 0.9287 −22 0.9288 −22.6
50.26 0.9623 −28 0.9624 −28.3
100.5 0.9806 −34 0.9807 −34.2
251.3 0.9920 −42 0.9920 −42.0
502.7 0.9961 −48 0.9960 −48.0
1005 0.9981 −55 0.9980 −54.0
3351 0.9995 −63 0.9994 −64.5
10531 0.99978 −73 0.9998 −74.3

Although Eq. (33) is explicitly verified by the rela-
tionship Eq. (34), we have verified simulations for sev-
eral values of RSR/(2R) and these results are shown
in Tab. 3. Simulations were carried out under similar
conditions as in previous case (see Tab. 3). The differ-
ence lies in the fact that the second pole of the response

Tab. 3: Results of simulation (Ra = 2R) and calculations for
the circuit of Fig. 2 according to the ratio ωT /(Q ·ω0).

fT
fr

Q · f0
Simulation Eq. (32) Eq. (33)
fr

f0

RSR

2R

fr

f0

RSR

2R
(MHz) (-) (-) (-) (-) (-)
0.6 181 0.98895 1.0262 0.98913 1.0221
1.0 302 0.99333 1.0171 0.99344 1.0133
2.0 604 0.99666 1.0105 0.99671 1.0066
10.0 3016 0.99932 1.0049 0.99934 1.0013
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Fig. 4: Quantitative representation of the transmission of the operational amplifier at a fixed position of the second pole f2.

Tab. 4: Results of the simulations [11] and calculations according to equations Eq. (32) and Eq. (34); quality factor Qr - determined
by means of simulation.

OZ fr
fr

Q · f0
Simulation [11] Eq. (32) Eq. (34)
fr

f0
Qr Tmin

fr

f0
Tmin

(MHz) (-) (-) (-) (dB) (-) (dB)
µA741 ≈ 1 6.2877 0.7600 2.77 −12 0.7818 −12.35
LF351 ≈ 4 25.1508 0.9209 1.91 −22 0.9289 −22.65
LF400 ≈ 18 113.18 0.9805 1.65 −35 0.9828 −35.20

curve of the operational amplifier op-amp2 was fixed to
2 MHz.

It is obvious that the position of the second opera-
tional amplifier pole (op-amp2, f2) substantially affects
primarily the value of RSR, especially when transmis-
sion on f2 "emerges over 0 dB (here for fT > 1 MHz) as
shown in Fig. 4. The ratio fr/f0 remained practically
unchanged.

In [11], the simulations were carried out for three
different real operational amplifiers, see Fig. 5.

Ideally, the desired frequency f0 = 100.658 kHz and
Q = 1.58. The results of the simulations and calcula-
tions are summarized in Tab. 4.

The simulations show that the derived relationships
describe the behaviour of the circuit at the retention
frequency precisely.

Derived relations were verified by measurements.
The circuit of the band stop filter was realized accord-
ing to Fig. 2. This circuit was consisted of the follow-
ing components: resistor values R1 = 15 kΩ (twice),
Ra = 2·15 kΩ, R = 15 kΩ (twice) - resistors with an ac-
curacy of one percent, the capacitance value C = 1 µF,
operational amplifiers op-amp1 and op-amp2 - both
µA741, power supply ± 12 V. The amplitude of the in-
put voltage is 1.41 V. Assume fT = 1 MHz. The results
of measurement and calculation for different values of
CS are summarized in Tab. 5 and Tab. 6.
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Fig. 5: Simulation of properties band-stop filter according to
Fig. 2, three different operational amplifiers.

For the given fT /(Qf0), the measured values
(fr/f0) are determined only accuracy of passive ele-
ments". The same statement applies to the minimum
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transmission Tmin. If the resistance tolerance is 1 %,
the actual resistance value Ra can be, for example, up
to 30 kΩ + 300 Ω and thus the actual value of the
resistor RS = 2R may be up to 30 kΩ − 300 Ω.

By substituting these values into Eq. (26) [RS →
30 kΩ −300 Ω; 2R→ 30 kΩ +300 Ω] we obtain:

Tmin =
30 · 103 − 300− 30 · 103 − 300

30 · 103 − 300 + 30 · 103 + 300
=

=
−600

60 · 103
= −10−2.

(36)

This corresponds to transmission (at fr) −40 dB.
The value of Tmin is determined by accuracy of resistors
not by properties of the operational amplifier op-amp2.
The non-optimal op-amp (described fT /Qf0) then in-
creases the value of Tmin, but the trend remains, i.e.
the lower the ratio fT /(Qf0), the higher the Tmin.

Tab. 5: Calculated values for the circuit of Fig. 2 under the
conditions described in the text.

CS

Calculation
Eq. (18) Eq. (19) – Eq. (32) Eq. (34)

f0 Q
fr

Q · f0
fr

f0
Tmin

(nF) (Hz) (-) (-) (-) (dB)
1.0 335.5 7.91 376.98 0.9938 −45.6
2.2 226.2 5.33 829.35 0.9976 −52.4
3.3 184.7 4.35 1244.1 0.9984 −55.9
5.4 144.4 3.40 2037.0 0.9990 −60.2
82 37.05 0.87 30916 → 1 −83.8

Tab. 6: Measured values for the circuit of Fig. 2 for the condi-
tions described in the text. Note 1 - The big difference
measured and calculated values of quality factor.

CS
Measurement

f0 Qr
fr

f0
Tmin B Note

(nF) (Hz) (-) (-) (-) (Hz)
1.0 335.5 2.80 0.9597 −27.0 115 1
2.2 226.2 5.2 0.9460 −30.5 41
3.3 184.7 4.3 0.9637 −32.6 41
5.4 144.4 3.4 0.9557 −40.0 40
82 37.05 0.9 0.9459 −41.6 39

According to [5], when setting the minimum transi-
tion TMIN (at f0) it is possible to set the resistance
value Ra individually for each set frequency f0 (fr) so
that the transition Tmin is less than −40 dB. Practi-
cally useful circuit connection is achieved by changing
the resistance Ra by a serial combination of trimmer
and fixed resistance (see Fig. 2). Our experiments used
a combination of 27 kΩ and a 6.8 kΩ resistors. Again,
it was always possible to set a transition Tmin less than
−45 dB without changing the frequency. This setting
compensates the actual operational amplifier proper-
ties and the final tolerance of the resistors at the same
time (of course, this problem is not the case with sim-
ulations since the resistor values are set precisely).

We must pay attention to the required value of
Q = 7.91 (see Cs = 1 nF in Tab. 5). Detailed mea-
surements (for the conditions in Tab. 5) are shown
in Tab. 7 for the amplitude of the input signal
UIN A = 1.41 V (i.e. effective value 1 V). In addition
to the output voltage Û0, the voltage at the output op-
amp2 (ÛSI), which is defined by Eq. (28), is measured.
At the required value of Q = 7.91, a significant reso-
nance maximum is achieved, resulting in a limitation
of the voltage at the op-amp2 output (at ±12 V sup-
ply). The circuit is "non linear" for UIN = 1.41 V and
this leads to degradation of its properties.

If the power supply voltage is increased to 15 V, the∣∣∣ÛSI/ÛIN

∣∣∣ ratio at 310 Hz is equal to 7.167 (17.11 dB)
and at 321 Hz at 7.50 (17.50 dB) with the amplitude
USI A = 10.58 V. The quality factor Q was returned
to 7.8, the value Tmin is −28.6 dB (at 322 Hz), while
the influence of inaccurate (real) resistors is still ap-
plied here. We will achieve the same effect by lowering
the amplitude UIN A below 1.2 V. The maximal input
voltage is determined by substituting Q in Eq. (29):

UCC = ±12 V⇒ UINmax
∼=

∼=
12− 2√

0.25 + 7.9052
= 1.262 V.

(37)

UCC = ±15 V⇒ UINmax
∼=

∼=
15− 2√

0.25 + 7.9052
= 1.641 V.

(38)

For comparison, of a circuit with a lower quality
factor (Q = 3.40) was measured (see in Tab. 5 -
CS = 5.4 nF), again for ±12 V supply, Ra = 2R;
UIN A = 1.41 V. Now

UINmax
∼=

12− 2√
0.25 + 3.402

= 2.91 V. (39)

The circuit will still work in linear mode, see Tab. 8.

In both cases, harmonic distortion was observed for
frequencies higher than 40 kHz (amplitude of 1.41 V).
This is a slew rate distortion where the power frequency
fp is defined by the following relationship (see for in-
stance [10]):

fp =
SR

2πUA
, (40)

where SR is the slew rate (V·s−1), UA is the amplitude
of signal.

For operational amplifier µA741, a typical slew rate
SR = 0.5 V·µs−1 = 5 · 105 V·s−1 is given. Assuming
that UA = 1.41 V, the power frequency fp becomes

fp =
5 · 105

2π · 1.41
= 56.44 kHz. (41)

Therefore it can be assumed that the actual value
of the slew rate is lower. If the threshold frequency is
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Tab. 7: The measurement of band stop filter for amplitude UIN A = 1.41 V, USI A - the amplitude of the voltage at the op-amp2
output (at ±12 V supply); Ra = 2R; CS = 1 nF, Q = 7.91.

f

∣∣∣∣∣ Û0

ÛIN

∣∣∣∣∣
∣∣∣∣∣ ÛSI

ÛIN

∣∣∣∣∣
∣∣∣∣∣ ÛSI

ÛIN

∣∣∣∣∣ USI A Note
Hz (dB) (-) (dB) (V)
10 0 3.3 · 10−3 −49.6 4.46 · 10−3 -
80 −0.40 0.072 −22.9 0.102 -
200 −1.94 0.667 −3.52 0.94 -
270 −3.31 2.530 8.06 3.57 -
300 −5.46 5.667 15.1 7.99 -
310 −8.33 6.667 16.5 9.40 limitation
321 −25.8 6.667 16.5 9.40 limitation
322 −26.9 6.667 16.5 9.40 limitation
323 −25.9 6.667 16.5 9.40 limitation
324 −23.5 6.610 16.4 9.32 -
330 −13.3 6.500 16.26 9.17 -
380 −4.21 3.067 9.73 4.32 -
1000 0 1.133 1.08 1.60 -
4 · 104 −0.15 0.983 −0.15 1.31 distortion
105 −1.94 0.667 −3.38 0.94 distortion

Tab. 8: The measurement of band stop filter for amplitude UIN A = 1.41 V, supply = ±12 V; Ra = 2R; CS = 5.4 nF, Q = 3.4.

f

∣∣∣∣∣ Û0

ÛIN

∣∣∣∣∣
∣∣∣∣∣ ÛSI

ÛIN

∣∣∣∣∣
∣∣∣∣∣ ÛSI

ÛIN

∣∣∣∣∣ USI A Note
(Hz) (dB) (-) (dB) (V)
10 0 0.012 −38.7 17 · 10−3 -
60 0 0.250 −12.0 0.353 -
80 −0.17 0.517 −5.74 0.729 -
100 −0.76 1.100 0.83 1.551 -
110 −1.80 1.533 3.71 2.161 -
120 −3.10 2.267 7.11 3.196 -
130 −8.33 3.067 9.73 4.324 -
137 −24.4 - - - -
138 −40.0 - - - -
140 −21.0 3.533 10.96 4.982 -
150 −6.32 3.333 10.46 4.700 -
160 −3.10 2.867 9.15 4.042 -
180 −0.92 2.129 6.56 3.002 -
200 −0.15 1.129 1.05 1.592 -
1000 −0.07 1.016 0.14 1.432 -
104 −0.07 1.016 0.14 1.432 -

4 · 104 −0.15 0.968 −0.28 1.365 distortion
105 −1.94 0.667 −3.38 0.940 distortion

fp = 40 kHz, then the slew rate is defined as:

SR = fp · 2πUA =

= 35.437 V · s−1 = 0.354 V · µs−1.
(42)

When verifying SR using a rectangular input signal,
this value is actually confirmed.

7. Summary

The degradation of the operational amplifier properties
(especially op-amp2) leads to change of a resonant fre-
quency and to relatively high value Tmin transmissions
at this frequency. However, the Tmin value can be easily
reduced in the practical circuit by setting the resistance
value Ra, see Fig. 6. Many simulations and practical

measurements have verified the Eq. (32), Eq. (33) and
Eq. (34) when the gain on the second pole of the op-
amp2 is less than 0 dB.

From the equation Eq. (32), the desired size of ra-
tio [fT /f0Q]k can be derived by means of elementary
adjustments to achieve fr = kf0 (ideally k = 1):

fT
f0Qk

=
4(

f0
fr

)2

− 1

= |fr = kf0| =
4k2

1− k2
.

(43)

for

k = 0.99⇒
(
fT
f0Q

)
k=0.99

= 197. (44)

k = 0.95⇒
(
fT
f0Q

)
k=0.95

= 41. (45)
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INPUT

R1

R1

OPA1

R

R

+

-

+

-

A

OUTPUT

Ra ≈(0.9/1.1)· 2R

OPA2

Fig. 6: Modifying Ra for setting minimum value Tmin.

From Eq. (34), the desired [fT /f0Q] for Tmin can be
determined (at Ra = 2R):(

fT
f0Q

)
=

(
1

Tmin − 1

)
· 2, (46)

Tmin = 0.1(−20 dB)⇒
(
fT
f0Q

)
Tmin=0.1

= 18, (47)

Tmin = 0.5(−26 dB)⇒
(
fT
f0Q

)
Tmin=0.05

= 38, (48)

Tmin = 0.01(−40 dB)⇒
(
fT
f0Q

)
Tmin=0.01

= 198. (49)

It is obvious that for practical use it is advisable to
provide fT /f0Q greater than 200.

8. Conclusion

Although circuits of this type (such as the one showed
in Fig. 2) have already been investigated, the article
brings new results that allow to design a band stop
filter according to real properties. From Sec. 7. it is
clear that the circuit will be suitable for relatively low
f0 values, for example in medical applications
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