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Abstract. The main aims of this paper are to study
the influence of the Gestation Age (GA) on the qual-
ity of recorded abdominal ECG (aECG) signals and to
evaluate the performance of the LMS and RLS adap-
tive signal processing algorithms in the extraction of
the fetal ECG (fECG) signal component from such sig-
nals. This influence is quantified as a function of the
Signal-to-Noise Ratio (SNR). Our research shows that
these adaptive algorithms with optimized settings can
successfully be applied to extract fECG signals from
the maternal aECG signals as early as the 30th week
of GA, hence addressing a limitation (37 weeks or la-
bor) in commercially available monitoring systems. We
demonstrate that before this gestational age, the SNR of
the maternal aECG signal is too low for these adaptive
algorithms to work effectively and produce satisfactory
results.

Keywords

ECG extraction, fetal ElectroCardioGram
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1. Introduction

In today’s clinical practice, Electronic Fetal Monitor-
ing (EFM) is commonly used during labor and delivery.
EFM is an important tool to detect fetal hypoxia, a
condition in which the fetus is deprived of an adequate
supply of oxygen. With the occurrence of this condi-
tion, it becomes necessary to perform an emergency
cesarean section. According to the International Fed-
eration of Gynecology and Obstetrics (FIGO) Guide-
lines, the main parameter for fetal hypoxia detection is
the value of the fetal Heart Rate (fHR) [1].

The most widely used technology for fHR monitoring
is the noninvasive Doppler Ultrasound Method because
it is both simple and economical. Nevertheless, as this
method employs ultrasound to detect the fetal heart
rate, it is significantly influenced by fetal and mater-
nal movement artifacts and consequently is susceptible
to reliability and accuracy issues. Moreover, as this
method only produces an average heart rate value, it
cannot be used to monitor Beat-To-Beat (BTB) heart
rate variability or perform fECG signal morphology
analysis. Therefore, its utilization in long-term mon-
itoring is questionable. Other issues include the fact
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that the fHR may be interpreted as the mHR (also
called "Signal Ambiguity" [2]). This ambiguity could
result in the false negative or false positive diagnosis
of fetal hypoxia and pose a danger to the unborn child
or misguide the clinical staff to initiate an unnecessary
cesarean section due to the absence of reassuring fetal
heart rate tracings.

Currently, fetal ElectroCardioGraphy (fECG) seems
to be the most promising method to provide the nec-
essary data for the robust detection of fetal hypoxia
[3]. Although this methodology was proposed several
decades ago [4] and [5], it has not been fully utilized
as yet due to the limitations and challenges associated
with the reliable extraction of the fetal ECG compo-
nent from the maternal abdominal ECG signals [6].
The other promising methods for hypoxia detection
are fetal PhonoCardioGgraphy (fPCG) and fetal Mag-
netoCardioGraphy (fMCG). While fECG is based on
the recording of the electrical activity of the heart,
the fPCG signal manifests the fetal heart’s mechanical
(acoustical) activities and the fMCG registers magnetic
fields of the fetal heart produced as a consequence of
its electrical activity [7], [8], [9] and [10]. As the physi-
cal principles used in these monitoring techniques differ
from the one used in the ultrasonic method, the quality
of the measured signal (biopotential on the maternal
abdomen) is not affected by the amount of adipose tis-
sue (body fat) present. In addition, fetal electrocardio-
graphy is the only technique that offers realistic long-
term ambulatory fHR monitoring capability. Unfor-
tunately, the disadvantage of this noninvasive method
is that it only provides information about the fetal
Heart Rate (fHR) and not its signal morphology (as
opposed to its invasive alternative). This limitation is
mainly due to the fact that the desired (fECG) signal
is relatively weak (small in amplitude) when compared
with stronger signals generated by the surrounding in-
fluences in the maternal abdomen.

The invasive fECG signal recording involves per-
forming direct measurements from the unborn fetus’
head by well-trained medical specialists during later
stages of labor and delivery (using a scalp electrode
inserted transvaginally). Even though accurate and
more informative, this method is unpleasant for the
pregnant woman and creates an increased risk of ma-
ternal/fetal infection. In contrast, the noninvasively
recorded aECG signal provides an indirect and less ac-
curate measurement of its fECG signal component, as
the aECG signal is formed by the superimposition of
different biopotentials on the fECG signal during its
propagation from the fetus’ heart to the maternal ab-
dominal electrodes. The major (strongest) component
of the aECG signal, the maternal ECG (mECG) sig-
nal, produced by the maternal heart, overlaps with the
fECG signal not only in time but also in the frequency
domain. Its biosource (maternal heart) is large com-

pared to the fetal heart and consequently the signal
of the former has a much higher amplitude than the
desired fECG signal, which is hardly noticeable in the
abdominal recordings. Therefore, its filtering (extrac-
tion) requires advanced signal processing techniques.
Due to the overlap of these signals in both time and
frequency domains, the extraction of fECG from aECG
signals is a very difficult filtering task and it has been
shown that classical linear FIR filters could not work
effectively in this application. Consequently, we de-
cided to use adaptive techniques for this purpose.

In clinical practice, there are situations in which
the fetal heart rate tracings may be misleading [1].
Even though adaptive signal processing algorithms
have been used in some commercially available de-
vices [11], they are mainly designed for women who
are at term (at the end of 37th gestation weeks or in la-
bor). Recognizing this commercial limitation, we aim
to show in the following section that adaptive signal
processing algorithms, once properly designed and im-
plemented, offer the potential to be effectively used to
extract fECG signals at an earlier gestational age.

In addition to signal processing challenges, one of
the major obstacles in fetal ECG signal processing is
the insufficiency of available standardized and objec-
tive data during different stages of pregnancy to be
used to evaluate the efficacy of these advanced algo-
rithms. For research in conventional ECG signal pro-
cessing, researchers have access to the so-called "gold-
standard databases" [12] which include a large amount
of recorded ECG data that follow established standards
such as: the number of channels, electrode placement,
sampling frequency, annotations, and so on. Never-
theless, there is no such database for fECG signals.
There are some publically available data (for exam-
ple [13]), but, compared to the standardized databases
mentioned above, they are insufficient. These scattered
and non-standardized data, acquired during different
stages of pregnancy, are for different electrode place-
ments and fetal positions. Furthermore, pathological
(hypoxic) records are, understandably, almost totally
nonexistent because when fetal hypoxia is detected
during labor, the pregnancy must immediately be ter-
minated by performing the cesarean section, which of-
fers no opportunity for data collection.

To address the abovementioned obstacles, as other
researchers [14] and [15] in this field have done, we rec-
ognized that an essential part of our research should be
comprised of creating a synthetic data generator allow-
ing us to generate (simulate) not only physiological but
also pathological maternal and fetal ECG signals with
different types of technical and biological noise added
to the recorded aECG signals [16] and [17]. In addition
to the generation of realistic synthetic data for signal
processing experiments, the novel generator would fa-
cilitate the evaluation of the quality and efficacy of our
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Fig. 1: The fetal development process.

algorithms in fECG signal filtering by providing refer-
ence ECG signals. It is important to emphasize that
using real signals for this purpose requires recording
the reference fetal signals, which only become possible
during labor and delivery, by using a Fetal Scalp Elec-
trode (FSE). Therefore, it is evident that the objective
evaluation of fECG signal extraction and the subse-
quent optimization of the adaptive filters are critically
dependent on the availability of accurate reference sig-
nals. In summary, by using our novel signal generator,
it becomes possible to test, evaluate, and optimize the
performance of adaptive signal processing algorithms
during any stage of pregnancy because the generator
provides maximal flexibility in not only allowing us to
set the gestation age but also in adjusting all the gen-
erated signal properties.

2. Fetal Development

The length of pregnancy is expressed in terms of the
Gestation Age (GA), which is “the number of weeks
that a baby has been in the uterus.” Its origin is cal-
culated by using the date of the last normal menstrual
period experienced by the mother. At first, the fe-
tal heart has a very simple tubular structure. During
the early gestational weeks, a significant development
of the fetal heart leads to an increase in its size and
physiological performance. At the end of the seventh
week of pregnancy, the fetal heart transforms into a
four-chambered organ [18]. It is well established that
gestation age influences the strength of the fECG signal
in a significant way. Figure 1 illustrates the influence
of gestation age on fetal heart rate and the fetal heart’s
growth associated with an increase in the fECG signal
amplitude. Twenty-one days after conception, the fetal
heart starts beating. At this stage, the fetal heart rate
is about 75–80 beats per minute (BPM). Afterwards,
the fetal heart rate increases linearly up to about the
8th weeks of GA when it reaches its peak, varying be-
tween 165 to 185 BPM. Within weeks, the fHR expo-

nentially decreases to a range between 150 to 25 BPM
and then it stabilizes [18].

3. Methodology

In this paper, we focus on the application of two pop-
ular adaptive filtering methods and their optimiza-
tion in addressing the fECG signal processing problem.
Even though these algorithms have an established track
record in effective fECG signal processing, their disad-
vantage is that they require additional electrodes to be
placed on the maternal thorax or shoulder to provide
the reference maternal ECG signal. This reference sig-
nal can also be estimated from linearly independent
abdominal leads to eliminate the need for extra elec-
trodes. However, for more precise results, it is recom-
mended to use the reference maternal signal recorded
directly [19]. This approach also helps to minimize
the risk of signal ambiguity, which is the phenomenon
whereby the fetal monitoring system mistakenly de-
tects the mHR instead of the fHR [1].

The adaptive filter coefficients are adjusted auto-
matically on the basis of an optimization algorithm.
Adaptive methods can be linear or nonlinear. Lin-
ear adaptive filters used for fECG extraction include
those using the Least Mean Squares (LMS) [20], [21],
[22], [23] and [24] and Recursive Least Squares (RLS)
[25] Algorithms, as well as the Comb Filter [26], Adap-
tive Voltera Filter [27], and Adaptive Linear Networks
(ADALINE) [28]. Nonlinear techniques are those based
on Artificial Intelligence (AI) and include Fuzzy Infer-
ence Systems [29], Genetic Algorithms, and Bayesian
Adaptive Filtering Frameworks [30].

The adaptive methods mentioned above differ from
one another. However, they all have one thing in com-
mon: the need for setting their control parameters,
which is a challenging task. The optimal value of these
settings is based on many factors such as the fetal posi-
tion, electrode placement, stage of the pregnancy, and
so on. Moreover, these setting are unique for each pa-
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tient and they change during the pregnancy. Therefore,
it is important to pay special attention to this aspect
of adaptive filtering to achieve good results [30].

The continuous processing of both the abdominal
(mECG and fECG) and thoracic (considered to ma-
ternal) ECG signals is a promising method for fHR
monitoring as it is technically feasible and offers the
potential benefit for accurate diagnosis of fetal hypoxia.
A crucial part of this signal processing effort is the need
for an adaptive system that allows for the extraction
of the fECG signal component from a variety of un-
desired signals (including mECG). Such filtered fECG
signal can then be used for diagnostic purposes (ST
segment, T/QRS, and other morphological analyses).
In this paper, we designed and tested an adaptive sys-
tem using the LMS and RLS Algorithms for fHR de-
tection. These methods are described in the following
subsections. However, we intend to use and compare
the utility of the other methods mentioned above in
our future research.

3.1. The LMS Algorithm

Each iteration of the LMS Algorithm requires three
different steps in the given order. First, the output of
the FIR filter y(n) is calculated, according to Eq. (1):

y(n) = ~wT (n)~x(n) =

N∑
i=0

wi(n)x(n− i). (1)

Let us add that the symbol (.)T represents the trans-
position of the vector. FIR filters are defined by the
property of individual coefficients wi of the vector filter
coefficient vector ~w. Vector ~w together with the filter
order N = M − 1 determine the performance of the
designed FIR filter (for M 3 Z+ ∈ N).

Subsequently, the value of the estimated error signal
e(n) is given by Eq. (2):

e(n) = d(n)− y(n). (2)

And finally, the values of the filter coefficient vec-
tor ~w(n) of the particular FIR filter are updated with
respect to the next iteration according to Eq. (3).

~w(n+ 1) = ~w(n) + 2µe(n)~x(n),

~w(n+ 1) = ~w(n) + kµe(n)~x(n),

~w(n+ 1)− ~w(n) = 2µ[d(n)− y(n)]~x(n),

= δ~h(n) ∀n ∈ Z+,

~h(n+ 1) = ~h(n) + δ~h(n) ∀n ∈ Z+.

(3)

The implementation of the LMS Algorithm in R can
be summarized as follows:

Algorithm 1
1: BEGIN
2: ~w(n = 0) = ~0
3: FOR (n = 1, 2, ..., N)
4: y(n) = ~wT (n)~x(n)
5: e(n) = d(n)− y(n)
6: ~w(n+ 1) = ~w(n) + kµe(n)~x(n)

The step size (µ) plays a significant role in controlling
the performance of the LMS algorithm. This param-
eter has a major impact on the speed and stability of
convergence of the adaptive algorithm. Reaching the
optimal value of µ (typically a small positive constant)
is necessary for correct function of the LMS Algorithm,
whereby:

• If the selected value µ is too small, the time re-
quired to find the optimal solution is too long.

• If the selected value µ is too large, the adaptive
filter is unstable and it will cause the deviation of
the output.

3.2. The RLS Algorithm

Implementation of the RLS Algorithm in R can be sum-
marized as follows:

Algorithm 2
1: BEGIN
2: ~w(n = 0) = ~0
3: P(n = 0) = δ−1 · I δ ∈ R
4: FOR (n = 1, 2, ..., N)

5: ~k(n) =
λ−1P (n− 1)~x(n)

1 + λ−1~xT (n)P(n− 1)~x(n)

6: ξ(n) = d(n)− ~wT (n− 1)~x(n)

7: ~w(n) = ~w(n− 1) + ξ(n)~k(n)
8: t = ACKR

time−mean(RA)
9: P(n) = λ−1P(n− 1)− λ−1~k(n)~xT (n)P(n− 1)

P(n) is the inverse correlation matrix of the input
signal, ~k(n) is the gain vector, Λ(n) is a diagonal ma-
trix consisting of the weighting factors λn−1 (i.e. 1, λ,
λ2. . . ). So-called ’adaptation’ or ’forgetting’ factor λ
is in the range 0 > λ > 1 [23]. The parameter influ-
ences the process of ’forgetting’, i.e. gives more weight
to the recent samples of the error estimates compared
with the old ones. If λ = 1, then the estimation is
without forgetting, i.e. equal to ordinary method of
least squares discussed in the previous section [24]. The
weighting factor λn−i influences the weights, where the
input values are considered zero for i < 1, and the last
n samples are the most significant ones.
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For the implementation, the value of forgetting fac-
tor is usually set in the range of 0.98 > λ > 1. Small
value of λ causes that the filter puts more emphasis on
the recent samples of the observed data and tends to
forget the past [24]. For i = n, i.e. λn−n = λ0 = 1,
the mathematical expression of the RLS algorithm is
reduced on the expression of the LMS algorithm.

3.3. The Evaluation of fECG Signal
Filtering Quality

The evaluation of the recovered fECG signals can be
both subjective and objective. The subjective evalua-
tion involves the visual assessment of the signal quality
by an expert, whereas the objective evaluation uses sig-
nal parameters whose values quantify the performance
of the applied signal processing method.

Since subjective assessment is quite time consuming
and is dependent on the researcher’s previous experi-
ence, we focused on the use of objective measures to
evaluate the performance of our signal processing algo-
rithms. The Signal-to-Noise Ratio (SNR) is one of the
most commonly used parameters for the quantitative
assessment of filtering performance. It is the ratio of
the power in the useful signal compared to that in the
noise. The overall signal filtering SNR is calculated by
subtracting the input SNR (SNRin) from the output
SNR (SNRout). For our purposes (fECG signal extrac-
tion) here, the input and output SNRs are defined as
follows:

SNRin = 10 log10

N−1∑
i=1

[xorg(i)]
2

N−1∑
i=1

[xnoise(i)− xorg(i)]2
, (4)

where xorg denotes the original (ideal) signal and xnoise
the undesired signal (mECG).

SNRout = 10 log10

N−1∑
i=1

[xorg(i)]
2

N−1∑
i=1

[xrec(i)− xorg(i)]2
, (5)

where xorg stands for the original signal (ideal fECG)
and xrec symbolizes the signal recovered by the algo-
rithm.

3.4. Dataset

Our main purpose here is not to develop a new model
but to focus on a modified version of the already ex-
isting models to enable us to address the design, opti-
mization, and testing of our applied adaptive filtering
methods for extracting fECG signals. Figure 2 shows

a model representing the volume conductor, the posi-
tion of the maternal and fetal hearts, and the electrode
placements. This model is based on the generator de-
signed by Sameni and Behar (see [14] and [15]). Our
main purpose here is not to develop a new model but to
focus on a modified version of the already existing mod-
els to enable us to address the design, optimization,
and testing of our applied adaptive filtering methods
for extracting fECG signals. Figure 2 shows the ex-
act location of both the maternal and fetal hearts as
well as the corresponding electrodes in cylindrical co-
ordinates. The model includes 168 electrodes which
are distributed around the maternal volume conductor
in two transversal planes which represent the thoracic
(TH001-TH096) and abdominal (AE97- AE168) areas.
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Fig. 2: A model of the human body with electrode placement.

To cover all possible directions around both the ma-
ternal and fetal hearts, we chose specific electrode po-
sitions for our experiments. The selected abdominal
and thoracic positions are highlighted in green and red
(Fig. 2), respectively. These electrode selections allow
us to optimize our filter settings (as they are position
dependent) and enable us to capture all of the possible
maternal and fetal VectorGardioGrams (VCGs). Addi-
tionally, our experimental electrode placement was cho-
sen to be similar to those used in commercially avail-
able devices that perform fHR monitoring [28]. The
electrodes used in our experiments are color-coded and
their colors represent their functionality (blue for refer-
ence electrode, red for electrodes recording the mECG
signal from the thoracic area, green for electrodes
recording from the abdominal areas - both mECG and
fECG signals).

Figure 3 shows an example of the abdominal ECG
signal recorded by electrode AE048. The fetal and ma-
ternal components are marked in the figure. For signal
clarity, only 5 seconds of the signal are shown. It is
clear that the fECG signal is hardly noticeable in the
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abdominal recordings and as such, its extraction would
not be possible without effective filtering.
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Fig. 3: Abdominal ECG signal containing maternal and fetal
components recorded by electrode AE048.

The influence of the Gestation Age (GA) on fetal
growth was modeled mainly by increasing the fECG
signal amplitude and its frequency, which affected the
output SNR value. The higher the SNR value, the
better the quality of the fECG signal. In other words,
by increasing the GA, the SNR improves. This is in
agreement with the theoretical assumption that as the
fetal heart grows, the fECG signal amplitude increases.
Figure 4 shows this trend for all of the electrode place-
ments used. These information is also summarized in
the Tab. 1.
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Fig. 4: SNRin values for different abdominal electrodes and
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4. Results

We tested the data simulating the GA in the interval
from 20 to 40 weeks. These signals were objectively
evaluated (by the value of SNR) before and also af-
ter applying the adaptive systems based on LMS and
RLS algorithms. For each adaptive system, the opti-
mal settings of the algorithms were determined-optimal

filter length Nopt for both systems, step size µopt for
LMS-based system, and forgetting factor λopt for RLS-
based system. These results are also summarized in
the Tab. 1.

From this Tab. 1, we observe that both of the tested
adaptive algorithms (LMS and RLS) were able to sup-
press the maternal component (achieve acceptable re-
sults at a lower input SNR value) when the filter setting
was optimized. However, we note that the performance
of these filters is insufficient until a GA of 30th weeks is
reached. Figure 5 shows that the LMS Algorithm out-
performs the RLS Algorithm. Based upon this finding,
we prefer using this algorithm for fECG signal extrac-
tion during the early stages of pregnancy. In contrast,
the RLS Algorithm shows better results for higher val-
ues of input SNR, for example when a GA > 40 weeks is
reached. As such, this algorithm offers a more suitable
choice for mHR monitoring during labor.
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Fig. 5: The performance of the RLS and LMS Algorithms as a
function of GA (weeks).

5. Discussion

Figure 6 and Fig. 7 show examples of the ideal (refer-
ence) and filtered fECG signals (for a GA of 40 weeks)
when using adaptive filters implementing the LMS and
RLS Algorithms, respectively. The maternal residue
examples are identified by using ellipses (A and B) in
both figures. Some residues are small (ellipses denoted
as A in Fig. 6 and Fig. 7) - their amplitudes are low and
thus could only impact further morphological fECG
signal analysis (ST analysis). Nevertheless, we observe
residues with amplitudes as large as the fetal compo-
nents (ellipses denoted as B in Fig. 6 and Fig. 7). Such
residues could negatively impact the quality of the fHR
detection. An overestimation of the fHR leads to false
positives in the diagnosis of fetal hypoxia, which in
turn compels the clinician to perform an unnecessary
caesarian section.
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Tab. 1: Input and output SNR values and their relationship with the gestation age.

Input SNRs
Outputs

LMS RLS
GA AE002 AE022 AE048 AE074 AE094 Nopt µopt SNRout Nopt µopt SNRout

(week) (dB) (dB) (dB) (dB) (dB) (-) (-) (dB) (-) (-) (dB)
20 −35.14 −32.40 −29.02 −38.34 −39.65 25 0.0094 −4.99 17 1 −6.25
21 −34.74 −31.96 −28.46 −38.05 −38.96 20 0.0119 −6.91 17 1 −6.87
22 −35.27 −32.50 −29.37 −38.62 −39.38 23 0.0080 −4.84 7 1 −6.54
23 −34.63 −31.71 −28.68 −38.16 −38.53 93 0.0092 −4.57 7 1 −6.97
24 −33.14 −30.28 −27.01 −36.55 −37.30 25 0.0097 −3.25 8 0.999 −6.11
25 −32.26 −29.53 −26.10 −35.53 −36.75 24 0.0097 −1.31 7 1 −5.95
26 −30.44 −27.73 −24.24 −33.70 −34.71 24 0.0099 −1.80 7 1 −3.51
27 −31.09 −28.40 −25.37 −34.56 −35.21 22 0.0010 −1.68 7 1 −3.34
28 −31.20 −28.43 −25.48 −34.60 −35.28 22 0.0089 −1.74 16 1 −2.66
29 −29.94 −27.12 −23.86 −33.39 −34.01 24 0.0436 0.29 8 1 −2.89
30 −28.95 −26.10 −22.98 −32.40 −33.20 23 0.0100 −0.02 7 1 −2.56
31 −28.13 −25.43 −22.45 −31.65 −32.37 23 0.0112 0.31 17 1 −1.55
32 −28.34 −25.59 −22.07 −31.58 −32.75 22 0.0086 0.26 8 1 −0.98
33 −27.58 −24.86 −21.53 −30.86 −31.91 24 0.0101 0.98 16 1 0.06
34 −26.72 −24.00 −20.86 −30.27 −30.74 22 0.0116 1.88 7 1 −0.97
35 −25.97 −23.23 −20.18 −29.45 −30.02 20 0.0102 1.98 6 1 −0.19
36 −25.86 −22.91 −19.82 −29.28 −30.02 5 0.0380 2.99 7 1 0.90
37 −24.84 −22.02 −18.78 −28.09 −29.14 20 0.0086 2.22 6 1 1.80
38 −23.50 −20.68 −17.61 −26.99 −27.48 17 0.0120 3.18 7 0.999 2.14
39 −22.03 −19.23 −16.34 −25.52 −26.18 18 0.0120 3.76 7 1 3.11
40 −21.02 −18.16 −15.04 −24.44 −25.24 5 0.0316 5.80 7 1 4.20
41 −19.89 −17.16 −14.23 −23.26 −24.13 20 0.0084 4.49 6 1 5.74
42 −18.64 −15.93 −12.99 −22.05 −23.12 18 0.0104 6.11 6 0.999 6.4

Fig. 6: The output of an adaptive filter using the LMS Algorithm.

Generally speaking, compared to the LMS, the RLS
Algorithm is better able to extract fECG signals with a
signal morphology comparable to that of the ideal (ref-
erence) fECG signal at higher GAs (as shown Fig. 7).
However, the LMS Algorithm is more suitable for fHR
detection at lower GAs. Additionally, the maternal
signal residues produced by the LMS Algorithm are
of lower amplitudes. Nevertheless, the ability of this
algorithm to suppress the maternal component more

than that achieved by the RLS Algorithm suppresses
the fECG signal as well (Fig. 6). This could influence
the fHR determination and reduce the value of the es-
timated fHR and thus lead to a possible false negative
diagnosis of fetal hypoxia. The results reported here
are based on experiments that were performed for the
most common fetal position (vertex presentation). In
our future research we plan to test the performance of
our adaptive filters for a variety of other fetal positions.
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Fig. 7: The output of an adaptive filter using the RLS Algorithm.

6. Conclusion

Our research showed that the performance of adaptive
filters (using the LMS and RLS Algorithms) to extract
fECG signals from aECG signals vary as a function of
the fetal gestation age. We demonstrated that with
proper settings, these algorithms were able to extract
the fHR information effectively as early as 30th week
of GA.

Based on our results, we conclude that the RLS Al-
gorithm is more effective in fECG signal extraction at
a high GA (for example during labor). In contrast, the
adaptive filter using the LMS Algorithm outperforms
the RLS Algorithms in earlier stages of pregnancy and
thus is more suitable for such cases. We believe that
optimized adaptive systems have the potential to be
used not only for fHR detection but also for fECG sig-
nal morphological analysis.

In our future research, we intend to test the influence
of different fetal positions (besides the most common
vertex presentation) on the performance of such adap-
tive systems. Moreover, we plan to verify our synthetic
results by using adequate real data acquired from clini-
cal practice. Since real data are not currently available,
we have initiated a collaborative arrangement with our
University Hospital to address this limitation.
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