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Abstract. Detections of material regions on
CT-scans of solids are commonly treated manually by
an expert. Although such manual detections have many
advantages, some amount of human error is also incor-
porated. Moreover, expert opinions may vary signifi-
cantly. We present an application of the k-means++
clustering as an alternative option to manual way of
material area detections. k-means++ clustering is de-
rived from k-means (the method of vector quantiza-
tion, originally from signal processing), popular for
cluster analysis in data mining and image process-
ing communities. The algorithm's main advantages
are its simple implementation and fast convergence to
a local optimum of an objective function. We bench-
mark the suggested approach on transverse CT-scans
of a fibre-reinforced concrete solid. Moreover, we in-
troduce a technique for processing air distribution, such
that the appropriate pixels detected as the pixels of air
are converted into pixels representing concrete. The
technique is based on the connected component algo-
rithm. Benchmark and results of proposed method con-
clude the paper.
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1. Introduction

Image processing techniques form an essential part
of modern simulation methods especially in pre-
processing, post-processing and visualizations. In this

paper, we present an application of the commonly
known k -means++ algorithm [1] as a solver for finding
k maximal homogenous parts of transverse CT-scans
of a solid. We call these parts material regions, which
correspond to specific material areas in a CT-scan im-
age. We suggest the technique as a semi-automatized
alternative to the manual thresholding approach [2],
which is used mainly in material science communities.
Then, we focus on a problem formulation, which can be
solved by k -means type algorithms, commonly known
as Lloyd algorithms [3] and [4]. For practical purposes,
we propose to use the k -means++ variant of this al-
gorithm. Standard k -means and k -means++ are pre-
sented. Benchmark of proposed method concludes the
paper.

2. Fundamental Notations and
Definitions

Let Ω ⊂ R2 be the image function area. It is suitable
to define the image function f(x, y) as the mapping
f : Ω→ 〈0, 255〉 in case of a CT-scan image.

Definition 1 (Region of Interest). The Region Of In-
terest ΩROI ⊂ Ω is a part of an image function area
which is selected by the segmentator/classifier (a pro-
gram or human user). Region ΩROI is typically a part
of image foreground and Ω\ΩROI is interpreted as the
background of the image.

The Region of Interest is often denoted by the
acronym ROI. For the purposes of this text, the ROI
definition is sufficient; see [5, pp. 340] for further infor-
mation. For extracting the ROI from an image func-
tion area Ω, a binary mask is used in image processing
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field. In general, a binary mask corresponds to a char-
acteristic function of a set.

Definition 2 (Binary mask). Let Ω be the image func-
tion area, ΩROI be ROI, and f be the image function.
An image binary mask fmask : Ω → {0, 1} determines
points p1, p2, . . . , pn ∈ Ω which belong to ΩROI and it
is defined as the characteristic function of ΩROI :

fmask(pj) :=

{
1 if a point pj ∈ ΩROI ,

0 if a point pj /∈ ΩROI ,
(1)

where j ∈ {1, . . . , n}.

3. Formulation of the Problem
of Reinforced Concrete
CT-Scan Image Scene
Partitioning

Our goal is to find a suitable partitioning of
the CT-scan image scene area Ω into ROIs
Ω1
ROI ,Ω

2
ROI , . . . ,Ω

k
ROI , such that Ω = Ω1

ROI ∪Ω2
ROI ∪

· · · ∪ ΩkROI . We consider that the regions are mu-
tually disjoint, i.e. (∀g, h ∈ {1, 2, . . . , k}) (g 6= h) :
ΩgROI ∩ ΩhROI = ∅. Unless otherwise stated, assume
i ∈ {1, 2, . . . , k}.

Further, properties of pixels are maximally similar
within each determined region and maximally dissim-
ilar among the regions. More formally, the length of
the interval I containing values of the function f|Ωi

ROI

is minimized, whereas values of f|Ω\Ωi
ROI

are as far as
possible from the centroid ci of the interval I. Other
region requirements are not treated such as region com-
pactness, or the total length of the regions boundary.
The problem formulated above implies that partition-
ing of the image scene area is not locally specified; it
treats k region homogenizations of pixel value distri-
butions and formulates them as a clustering problem
which can be solved by standard clustering algorithms.
We propose Lloyd based algorithms, commonly known
as algorithms of k-means type, to solve this problem.

4. The k-means Algorithm

Partitioning of input data into k subsets commonly
called clusters, relabelled as regions in this text, is NP -
hard problem in general. Let us stepwise denote input
points, refered to as pixel values of gray-scale CT-scans,
p1, p2, . . . , pn, belonging to input set P , and desired k
regions S1, S2, . . . , Sk, beloging to region set S. Often,

the k -means is denoted as hard -clustering type algo-
rithm, i.e.

(∀pj ∈ P ) (∃!Si ∈ S : pj ∈ Si) . (2)

In general, it is an image partitioning technique
which decomposes an image area into reasonable non-
compact parts; by definition, determination of ROI is
not a local specified problem. However, the k-means
is an optimizer, hence, the solution returned by the
solver, is a relax of the optimal solution. Thus, let
c1, c2, . . . , ck be centeroids of the aprropriate image re-
gions S1, S2, . . . , Sk. The regions are built so that they
minimize a sum of squares within each region, i.e. the
k-means solves the minimazition problem

argmin
S

k∑
i=1

∑
p̄∈Si

‖p̄− ci‖22, (3)

where ‖·‖2 denotes the Euclidean norm. In general, we
can divide k-means algorithm procedure into two sig-
nificant steps, i.e. an initialization step and an update
step, as follows:

• Initialization step: The algorithm determines
the nearest centroid from the set of centroids
{c1, c2, . . . , ck}, which we denote by C, of the
appropriate regions S1, S2, . . . , Sk for each input
point pj ∈ P as follows: it compares stepwise Eu-
clidean distance between the point and each cen-
troid ci ∈ C, and the point is assigned to region
Si ∈ S, in which the Euclidean distance between
the point and appropriate centroid is minimal.
The initial state is typically a random assignment
of points p1, p2, . . . , pn to regions S1, S2, . . . , Sk or
a random selection of centroids from the input
point set P and then an assignment of input points
by the approach mentioned above. Mersenne
twister [6] is typically used as the pseudo-random
integer generator.

• Update step: The algorithm computes new coor-
dinates of region centroids as an arithmetic mean
of the points within an appropriate region.

These two steps are repeated until the maximum it-
eration count is exceeded or point region membership
changes are relatively small. By the following pseu-
docode, we simply describe the entire k-means proce-
dure. In the implementation of the k -means algorithm,
a point assignment to an appropriate region is imple-
mented so that the point memberships are only stored
in membership vector ~U . This approach is efficient for
a computer memory management, because there is no
point reassignment overload.
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Algorithm 1: k -means

Input : input set P = {p1, p2, . . . , pn}, desired
region count k, reasonable small ε ∈ R,
maximum iteration count M .

Output: regions S1, S2, . . . , Sk.

1. Set t = 0.

2. Choose randomly k starting centroids from P
and assign them to starting centroid set Ct.

3. Assign points to initial regions St1, St2, . . . Stk by
their Euclidean distance to the nearest centroid
ctj ∈ Ct and set the initial membership vector U t
as follows:
for pj ∈ P : U{it} = jt, where jt is index of the
point and it is the nearest centroid index.

4. Set iteration counter b = 0 and δ = 0.

5. Compute new region centroids as the arithmetic
mean of points within-region, i.e.

ct+1
i =

1

|Sti |
∑
pj∈St

i

pj . (4)

6. For each point pj ∈ P find the nearest centroid
ct+1
i ∈ Ct+1 by the Euclidean distance between
them. Further, assign points to appropriate
regions St+1

1 , St+1
2 , . . . , St+1

k and set membership
vector U t+1; if U{it+1} = U{it} do nothing,
otherwise δ = δ + 1.

7. If δ
|P | < ε or b > M stop, otherwise set δ = 0,

b = b+ 1 and continue to step 4.

5. The k-means++ Algorithm

The k-means algorithm quickly converges to a local op-
timum of the potential function φ, but there are many
practical examples for which it generates arbitrarily
bad clustered regions, i.e. φ

φopt
is unbounded even when

n := |P | and k are fixed. It becomes apparent that the
reasons of this fact are the random choices of starting
centroids and appropriate assignment of input points
to starting regions.

Therefore, in 2007, David Arthur and Sergei Vas-
silvitskii proposed an efficient technique for selecting
k-means starting centroids from an input point set
P , and they called this technique k-means++ [1].
Its general principle is a uniformly random choice of
starting centroids from input point set at probability
distribution, which is computed as the squared Eu-

clidean distance to the centroid that has already been
chosen, as follows:

Algorithm 2: k-means++

Input : input set P = {p1, p2, . . . , pn}, desired
region count k, reasonable small ε ∈ R,
maximum iteration count M .

Output: regions S1, S2, . . . , Sk.

1. Choose uniformly randomly a centroid c01 from
the input point set and assign c01 to the set of
centroids C.

2. For each pj ∈ P , compute the best label distance
D(x) as the minimal Euclidean distance between
point and the centroids that have already been
chosen.

3. Choose next starting centroid c0i randomly at
probability distribution D(x)

2 .

4. Repeat 2 and 3 until the k starting centroids
have not been chosen, then continue with the
standard k -means algorithm.

By this augmentation of the k-means, the k-
means++ algorithm becomes O (log k)-competitive,
where k is the desired region count. Moreover, it can
be proved that E [φ] ≤ 8 (ln k + 2)φopt [1], i.e. the
solution returned by the solver is at most 8 (ln k + 2)
worse by factor than the optimal solution.

6. Non-Local Material
Detections in CT-Scan
Value Distributions

Industrial CT-scans are typically 8-bit grayscale im-
ages; it implies that appropriate intensities of de-
sired materials are coded into at most 256 values, i.e.
0, 1, . . . , 255. From Institute of Geonics of the CAS,
we have obtained a 1491 large CT -scan dataset of the
Fiber-Reinforced Concrete (FRC), the 591st image is
shown in Fig. 1. All the presented binary masks are
associated with this CT-scan.

In the FRC dataset, a Fiber-Reinforced Concrete
consists of 3 most significant material types, i.e. air,
fiber, and concrete. The material detection problem
is not locally specified by definition, therefore it is ap-
propriate to use any of the Lloyd type clustering al-
gorithms to solve the material detection problem. As
noted in the previous section, the k-means++ algo-
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Fig. 1: 591th CT-scan from RFC dataset.

(a) Air region binary mask.

(b) Concrete region binary mask.

(c) Ferro-fiber region binary mask.

Fig. 2: k-means++: achieved RFC material detection solu-
tions.

rithm is bounded. Therefore, we propose to use it in-
stead of the unbounded standard k-means algorithm.

Hence, we normalize the pixel values by the standard
image processing approach, i.e. remap linearly from
{0, 1, . . . , 255}to 〈0, 1〉, and set k-means++ parame-
ters k = 3 (i.e. number of material to be determined),
ε = 10−4 (tolerance), and M = 10000 (maximum iter-
ations). For the 591th dataset CT-scan, the achieved
solution binary masks are depicted in the following fig-
ures, i.e. the air region Fig. 2(a), the concrete region
Fig. 2(b), region of ferro-fibers Fig. 2(c).

In practical applications, the outside-air region (the
hatched part in Fig. 3) is not suitable for additional
processing, e.g. construction of mesh material parts
from determined binary masks. Therefore, we propose
to detect image connected components [7] and remove
a connected component from an outside-air region.

Fig. 3: Hatched outside-air region.

(a) Part of an air region binary
mask.

(b) Part of a reducted air region
binary mask.

Fig. 4: Reduction of a small air bubble distributions.
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Moreover, small parts of an air region, i.e. small air
bubbles in concrete, are typically not appropriate for
additional computations, e.g. plasticity [8] and [9] or
plasticity with damage [10] computations on the FRC.
Hence, we propose to remove air bubbles with a size
below a certain threshold from the air region and con-
sider them as parts of the concrete region. In Fig. 4,
the threshold is set to 15 pixels.

For implementation, we recommend to use C++
OpenCV framework [11]. It is an open-source im-
age processing framework frequently used in image-
processing communities. Moreover, the algorithms
above, i.e. k-means, k-means++ and image con-
nected components algorithm, are implemented in the
OpenCV framework, see [12].

We benchmark the presented approach on FRC
dataset containing 1491 CT-scans. As already men-
tioned, such k binary masks determine as homogenous
as possible k parts of geocomposite material parts. Fur-
thermore, the binary masks can be used for another
processing, e.g. building of hull and volume meshes by
the Marching cubes algorithm [13].

7. Future Work

In case of industrial simulations such as plasticity com-
putation on a heterogeneous solid, it is suitable to con-
vert the real-world solid into a finite element model
enabling highly accurate simulations. Image partition-
ing/segmentation plays an important role in detection
of material regions of the CT-scan image scene and
set up their binary masks. Furthermore, the deter-
mined binary masks are used for building hull-mesh by
the marching cube algorithm as we present in the text
above. For a tetrahedral volume mesh geometry gen-
eration from hull-mesh boundary representation, the
NETGEN library [14] is typically used.

The plasticity computations will be proceeding in
PERMON [15] (Parallel, Efficient, Robust, Modular,
Object-oriented, Numerical) software toolbox devel-
oped at IT4Innovations National Supercomputing Cen-
ter, Ostrava, Czech Republic. PERMON is a set of
solvers combining quadratic programming and domain
decomposition methods. It makes use of and extends
the PETSc [16] framework for numerical computations.
Among the main applications are contact problems of
mechanics. They can be decomposed by means of
TFETI (Total Finite Element Tearing and Intercon-
necting) [17] non-overlapping domain decomposition
method implemented in the PermonFLLOP package.
The resulting quadratic programming problems can be
solved by the PermonQP package efficiently.

8. Conclusions

In this paper, we introduce an advanced tool for
detections of material regions on CT-scans of fiber-
reinforced concrete. The essential part is based on
the k -means++ clustering for detecting binary masks
of desired material areas on the CT-scan image scene.
We benchmark the presented approach on FRC dataset
containing 1491 CT-scans. Three significant material
regions are detected, i.e. air, concrete, fibers. More-
over, we introduce a technique based on an image con-
nected component algorithm for reduction of the air
bubble distribution. Based on the achieved results, we
propose the automatized presented technique as a suit-
able alternative to the manual thresholding approach,
which is a standard way to solve such problem in ma-
terial engineering communities. Additionally, the most
significant benefits of an automatized technique like
ours, which is being presented in this paper, is its
possibility to be integrated into a pipeline, in which
an industrial process is simulated. The optimization
and tuning of the pipeline runned on high performance
computers are subjects of our further research.
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