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Abstract. This paper describes the phenomenon of re-
liability of power plants. It gives an explanation of the
terms connected with this topic as their proper under-
standing is important for understanding the relations
and equations which model the possible real situations.
The reliability phenomenon is analysed using both the
exponential distribution and the Weibull distribution.
The results of our analysis are specific equations giv-
ing information about the characteristics of the power
plants, the mean time of operations and the probabil-
ity of failure-free operation. Equations solved for the
Weibull distribution respect the failures as well as the
actual operating hours. Thanks to our results, we are
able to create a model of dynamic reliability for pre-
diction of future states. It can be useful for improving
the current situation of the unit as well as for creating
the optimal plan of maintenance and thus have an im-
pact on the overall economics of the operation of these
power plants.
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1. Introduction

The phenomenon of reliability is a very important as-
pect of technical research at present and will certainly
remain so in the future. We are able to achieve per-
manent sustainability thanks to the determination of
the reliability of the whole system. This reliability has
also a significant impact on electric power engineer-
ing, because all the components in power engineering
systems have certain parameters of reliability, such as
probability of failure-free operation and the mean time

of operation. If these parameters are determined cor-
rectly, we can obtain relatively exact models and also
achieve optimization of the key components of these
systems. This paper describes the most important pa-
rameters of reliability in power plants. These parame-
ters are derived for two types of distribution – the ex-
ponential and the Weibull. Parameters for the Weibull
distribution are more realistic because this distribu-
tion respects the dynamics of the cycle. The exponen-
tial distribution does not respect these dynamic fea-
tures and is used only for verification of the hypothesis.
Equations obtained for the reliability parameters can
be used as optimizing tools. The optimization process
reduces the maintaining costs as well as the additional
costs connected with blackouts of the redundant key
components. This procedure is also very important for
maximizing the efficiency of the whole electric power
engineering system.

2. Overview of Current State
of Reliability

The reliability may be explained as ability of a unit to
successfully operate in required time of operation. An-
other explanation of the reliability can be this state-
ment: Reliability is equal to probability that a unit
will be operating without failures in certain time of
operation [1].

Reliability function p (t) describes probability, that
the unit works without failures in the time (t) which is
longer than the time of operation (T ). In the time of
operation (T ) there is certain reliability guaranteed by
the producer:

p(t) = P {T < t} . (1)

Failure probability function q (t) describes proba-
bility, that the unit has one or more failures in the
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Fig. 1: Reliability function p (t) and distribution function F (t)
of a power unit λ = 3 [1].

time (t):
q(t) = 1− p(t). (2)

Distribution function of time without failure:

F (t) = P {T < t} = q(t). (3)

Density function of time without failures:

f(t) =
dF (t)

d(t)
. (4)

If we can consider intensity of failures as a constant,
the exponential distribution can be used:

p(t) = e−λt, (5)

and
f(t) = λe−λt. (6)

On the basis of density function it is possible to de-
termine the expression for the mean time of operation
[1]:

ms =

∫ ∞
0

t · f(t)dt. (7)

3. Materials and Methods

3.1. Reliability Characteristics of
a Power Plant Units

This part describes equations derived for determining
the important reliability parameters of a given power
plant. The probability of failure-free operation is fur-
ther referred to as the first parameter and the mean
time of operation as the second parameter of the relia-
bility characteristics of the unit. These characteristics
are solved below using the exponential distribution for
the unrepairable unit and the Weibull distribution for
the repairable unit. The Weibull distribution can de-
scribe the realistic operation better than the exponen-
tial distribution because it includes failures of all the
components during the operation as well as the realistic
situations which may occur.

τ = 0 τ = T τ = +T t

τ

t

Fig. 2: Situation of the realistic unit shown on time axis [3].

3.2. Characteristics of Time of
Failure-Free Operations Using
the Exponential Distribution

Firstly, it is necessary to obtain solutions for the un-
repairable unit by using the exponential distribution,
because this situation is much easier to explain than
the situation for the repairable unit. Therefore, it is
very important to explain first the situation of the un-
repairable unit. For this situation, it is crucial to de-
termine the intensity of repair (µ) and mean-time to
repair (r) as follows:

µ = 0→ r =∞. (8)

This statement is given by unrepairability of the
unit. During operation of the unrepairable unit the in-
tensity of failures (λ) is given as a constant value when
using the exponential distribution. It means that the
probability of failure-free operation does not depend on
the time of operation (T ) of the unit [3].

Explanation (Fig. 2):

• Interval from 0 to τ = 0 represents repair.

• Interval from τ = 0 to τ = T represents real-time
operation.

• Interval from τ = T to τ = T + t represents pre-
diction of the future state.

Verification can be performed by equation given for
conditional probability:

PB(A) =
P(B∩A)

P(B)
. (9)

This equation determines the probability of phe-
nomenon A in the case of success of phenomenon B,
[4].

Explanation (Fig. 2):

• Phenomenon A represents the unit in which failure
occurs in the interval between T and T + t.

• Phenomenon B represents the unit in which failure
does not occur in the interval between 0 and T .

• Intersection of these phenomena A∩B represents
both these phenomena simultaneously.
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The probability of failure-free operation between
time 0 and T is determined as follows:

P(B) = P1(t) = e−λ·T , (10)

and the probability of intersection of phenomena A∩B
is determined as follows:

P(B∩A) =

∫ T+t

T

ftdt =

∫ T+t

T

λ ∗ e−λtdt. (11)

Using the equation for conditional probability the
following equation is obtained:

PB(A) =
e−λ·T − e−λ·T ∗ e−λ·T

e−λ·T
= 1− e−λ·T . (12)

Independence of conditional probability PB(A) on
the time of operation of unit T is a feature of the ex-
ponential distribution [2].

3.3. Characteristics of Time of
Failure-Free Operations Using
Weibull Distribution

Secondly, we need to find solutions for the unit of the
power plant considered repairable. This state is de-
scribed using the Weibull distribution below. Again,
it is necessary to determine the value of PB(A) for the
Weibull distribution. The definition of PB(A) is the
same for both distributions. However, contrary to the
exponential distribution, this state depends on the time
of operation T of the unit [3].

Again, it is necessary to determine the probability
of failure-free operation between time 0 and T for the
Weibull distribution:

P(B) = P0(t) = 1−
T∫
0

f(t)dt = · · ·

= 1−
T∫
0

k · tme−(
k

m+1∗t
m+1).

(13)

As before, we can obtain the equation for PB(A) by
using the equation for conditional probability:

PB(A) =

T+t∫
T

f(t)dt

1−
T∫
0

f(t)dt

. (14)

Equation (14) is solved by the method of progressive
integration in the following steps [3].

3.4. Solution of Conditional
Probability

In the Weibull distribution there are two possible ex-
pressions of

∫
f(t)dt:

f(t) = k · tme−(
k

m+1 t
m+1), (15)

f(t) =
b

d
∗
(
t

d

)b−1
e−(

t
d )

b

. (16)

This paper focuses on both expressions of the equa-
tion. Equation (15) is solved first and Eq. (16) is solved
next [3].

1) Calculation for Eq. (15)

The first step is addition of the following integral to
Eg. (8): ∫

f(t)dt =

∫
k · tme−(

k
m+1 t

m+1)dt. (17)

The second step is substitution for tm+1:

tm+1 = z, (m+ 1)tmdt = dz, tmdt =
dz

m+ 1
. (18)

The third step is insertion of the substitution into
Eq. (10):

∫
f(t)dt =

∫ k

m+ 1
e−(

k
m+1 z)dz =

= −e−(
k

m+1 t
m+1).

(19)

2) Calculation for Eq. (16)

Same procedure:∫
f(t)dt =

∫
b

a
∗
(
t

d

)b−1
e−(

t
d )

b

dt. (20)

Substitution for t
d :

t

d
= x→ dt

d
= dx (21)

And next substitution for xb:

xb = y → bxb−1dx = dy (22)

Equation 19 can be expressed as:∫
e−ydy = −e−y = −e−x

b

= −e−(
t
d )

b

. (23)
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3) Determination of Probability of
Failure-Free Operation PB(A) for Eq. (15)
and Eq. (16)

If we insert Eq. (15) into Eq. (14), we get the following
result of PB(A:

PB(A) =

[
−e−(

k
m+1

tm+1)
]T+1

T

1−
[
−e−(

k
m+1

tm+1)
]T
0

=

= e
−( k

m+1
Tm+1)−e−(

k
m+1

(T+t)m+1)

1−
[
1−e−(

k
m+1

Tm+1)
] =

= e
−( k

m+1
Tm+1)−e−(

k
m+1

(T+t)m+1)

e
−( k

m+1
Tm+1)

.

(24)

After next simplifications we obtain the following re-
sult of PB(A:

PB(A) = 1− e[
k

m+1T
m+1− k

m+1 (T+t)m+1]. (25)

The next step is insertion of Eq. (16) into into
Eq. (14) which looks as follows:

PB(A) =

[
e−(

t
d )

b]T+t

T

1−
[
e−(

t
d )

b]T
0

= 1− e
[
(T

d )
b−(T+t

d )
b
]
. (26)

To verify our results, we consider the value of pa-
rameter m from Eq. (15), m = 0. This situation is
typical of the exponential distribution. The resulting
expression is obtained independently of parameter T :

PB(A) = 1− e[−k(T+t−T )] = 1− e−kt. (27)

We perform similar verification also for Eq. (26),
b = 1:

PB(A) = 1− e−(
T+t−T

d ) = 1− e−(
t
d ). (28)

Correctness of those results Eq. (15) and Eq. (16) can
also be verified by insertion of the parameter T = 0.

We obtain the resultant expression for the probabil-
ity of failure of the unit until time t; however, we have
to know that the unit was in operation until time T ,
which is for Eq. (15) as follows:

PB(A) = P1(t) = 1− e[
k

m+1T
m+1− k

m+1 (T+t)m+1]. (29)

If we determine the probability of failure of the unit
by insertion of Eq. (16), we obtain the following equa-
tion:

PB(A) = P1(t) = 1− e
[
(T

d )
b−(T+t

d )
b
]
. (30)

3.5. Derivation of the Mean Time of
Operation without the Time of
Operation

Calculation of the mean time of operation ms for the
exponential distribution of time of failure-free opera-
tions is as follows [2]:

ms =

∫ ∞
0

t · f(t)dt =
∫ ∞
0

t · λ−λ·tdt = 1

λ
. (31)

For the Weibull distribution of time of failure-free
operations it is as follows:

ms =

∫ ∞
0

t · k · tme−(
k

m+1 t
m+1)dt. (32)

Calculation of the mean time of operation requires
more difficult operations for the Weibull distribution
as described below. Firstly, substitution is necessary
for ktm+1:

tm+1 = x→ t = m+1
√
x,

(m+ 1)tmdt = dx→ tmdt =
dx

(m+ 1)
.

(33)

Secondly, the boundaries have to be recapitulated:

t→ 0,∞,
x→ 0,∞. (34)

The third step is the calculation for Eq. (15):

ms = k
∞∫
0

tm+1e−(
k

m+1 t
m+1)dt =

= k
∞∫
0

m+1
√
x · e−(

k·x
m+1 ) dx

(m+1) =

=
k

(m+ 1)

∞∫
0

m+1
√
x · e−(

k·x
m+1 )dx.

(35)

Similar calculation is performed for Eq. (16):

x = tb → t = b
√
x,

b · tb−1dt = dx,

t→ 0,∞,
x→ 0,∞.

(36)

ms = k
∞∫
0

t

(
b

d

)(
t

d

)b−1
e−(

t
d )

b

dt =

=
1

db

∞∫
0

b
√
x · e−(

x
d )dx.

(37)

For verification of the resulting expressions, expres-
sion for the exponential distribution can be obtained
by determination of parameters m = 0 and b = 1. For
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Eq. (25) we obtain, by insertion of parameter m = 0,
this expression:

ms = k

∫ ∞
0

xe−xdx =

∫ ∞
0

k · t · e−k·tdt = 1

k
, (38)

and the same result must be obtained if we use Eq. (26)
with constant parameter b = 1:

ms = k

∫ ∞
0

x · e− x
d dx =

∫ ∞
0

t

d
e−

t
d dt = d. (39)

After verification we know that our equations con-
nected with the two types of expressions of the Weibull
distribution for the mean time of operation are both
correct. In the next step it is necessary to perform nu-
merical calculation of these integrals, because the given
integrals are unsolvable by standard exact methods [3].

3.6. Derivation for the Unit which
was in Operation for T Hours

For exponential distribution, independence on time T
was shown by Eq. (12). The probability of failure of
the unit in time t working during time T is given by
Eq. (25) for the Weibull distribution and for the second
expression by Eq. (30). Density of failure f(t) is given
by differentiating these equations [3].

3.7. Calculation of the Mean Time
of Operation of the Unit which
was in Operation for T Hours

The first important parameter for the calculation is the
probability of failure. The probability of failure in time
t is given by Eq. (29) and Eq. (30). The next step is
determining the density of failure of these equations,
which is given by their differentiating [3]. The density
of failure for Eq. (29) is given by the following expres-
sion:

f(t) = −k(T + t)me[
k

m+1T
m+1− k

m+1 (T+t)m+1] (40)

and the mean time of operation for Eq. (29) is deter-
mined by the following expression:

ms =
∞∫
0

t · f(t)dt =

=
∞∫
0

−k · t(T + t)me[
k

m+1T
m+1− k

m+1 (T+t)m+1].

(41)

Firstly, substitution for k(T + t)m+1 is necessary:

k(T + t)m+1 = z → t = m+1
√

z
k − T

k(m+ 1)(T − t)mdt = dz → k(T + t)mdt = dz
m+1 .

(42)

Secondly, boundaries have to be recalculated:

t→ 0,∞
z → k(T )m+1,∞.

(43)

The third step is insertion of substitution into
Eq. (20):

ms =

=
1

(m+ 1)m+1
√
k

∞∫
kTm+1

m+1
√
ze

[
k·Tm+1−z

m+1

]
dz−

− T

(m+ 1)

∞∫
k·Tm+1

e

[
k·Tm+1−z

m+1

]
dz.

(44)

We also need to create substitution for
−kTm+1 + z

m+ 1
:

−k · Tm+1 + z

m+ 1
= x→ z = k · Tm+1x,

dz

m+ 1
= dx→ dz = (m+ 1)dx.

(45)

Recalculation of boundaries:

z → k(T )m+1,∞ x→ 0,∞. (46)

Insertion of substitution into Eq. (29):

ms =
1

(m+ 1) m+1
√
k
·

·
∞∫
0

m+1
√
kTm+1 + (m+ 1)x · e−x(m+

+1)dx− T

(m+ 1)

∞∫
0

e−x(m+ 1)dx =

=
1

m+1
√
k

∞∫
0

e−xdx− T.

(47)

To verify this Eq. (47), m = 0 is inserted into it.
Again we transform the equation for the Weibull dis-
tribution into the equation for the exponential distri-
bution:

ms =
∞∫
0

(k · T + x)

k
e−xdx− T =

=
1

k

∞∫
0

x · e−xdx+
1

k

∞∫
0

k · T · e−xdx− T =

=
1

k

∞∫
0

x · e−xdx =
1

k
.

(48)

For the second expression of the Weibull distribution
the mean time of operation is calculated as follows.
Firstly, we need to perform conversion for the specific
constants:

m+ 1 = b→ m+ 1

k
= db. (49)
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Secondly, we insert these converted constants into
Eq. (41):

ms = d

∫ ∞
0

b

√
T b

db
+ x · e−xdx− T. (50)

Finally, for verification we choose the constant b = 1
and transform it into the exponential distribution. Due
to this operation, we obtain the following expression:

ms = d
∞∫
0

(
x+

T

d

)
e−xdx− T =

= d
∞∫
0

(x)e−xdx+ T
∞∫
0

e−xdx− T = d.

(51)

The resulting Eq. (48) and Eq. (50) for the mean
time of operation are correctly determined.

4. Achieved Results

This part is focused on the main results and their expla-
nation. Firstly, the probability of failure-free operation
for the exponential distribution was determined by the
following equation [2]:

PB(A) = 1− e−λt. (52)

After that it was derived from the same expression
of probability also for the Weibull distribution. We
obtained these two expressions:

PB(A) = P1(t) = 1− e[
k

m+1T
m+1− k

m+1 (T+t)m+1], (53)

PB(A) = P1(t) = 1− e
[
(T

d
b)−(T+t

d )
b
]
. (54)

Secondly, it was necessary to determine the expres-
sion of the mean time of operation for the exponential
distribution. In this case the time of operation T was
not respected:

tm+1 = x

ms =
k

(m+ 1)

∞∫
0

m+1
√
xe−

kx
m+1 dx,

(55)

tb = x

ms =
1

db

∞∫
0

b
√
xe−

x
d dx.

(56)

Finally, calculation of the mean time of operation
was performed with respect to the time of operation.
Here two expressions representing the most realistic
mean time of operation were obtained.

For analytical solution, the substitutions and recal-
culation of boundaries must be performed twice:

k(T + t)m+1 = z,
−k · Tm+1 + z

m+ 1
= x, (57)

z → k(T )m+1,∞ x→ 0,∞, (58)

ms =
1

m+1
√
k

m+1

√
k · Tm+1

m+ 1
+ x · e−xdx− T. (59)

For the second expression, the solution looks like
this:

m+ 1 = b→ m+ 1

k
= db, (60)

ms = d

∫ ∞
0

b

√
T b

db
+ x · e−xdx− T. (61)

Integration of Eq. (35) and Eq. (38) is impossible
by exact methods. This is the reason for using an ap-
proximate numerical method, such as Simpson’s rule
or Quadrature rule.

4.1. Practical Application of the
Final Equations for a Real
System

We used real parameters of a feed pump from the Czech
nuclear power plant Dukovany. The nuclear power
plant Dukovany has four units. Each unit of Dukovany
contains the same components, i.e. a turbine with the
performance of 250 MWe, condenser, steam generator
and feed pump. In this case we have focused only on
feed pumps [5].

Parameters used in the following script have been
determined from a database of operation values in
the software Access by statistical methods. The
times of operation have been chosen on the basis
of the data of the feed pump used in the power
plant. Characteristics of wear b = 0.65 and com-
plex characteristics of lifetime d = 3150 were also
determined by these statistical methods. The script
for calculation characteristics of reliability by the
Quadrature rule is created and it is shown below:
T1=0;
T2=72;
T3=120;
T4=168;
T5=300;
T6=500;
T7=1000;
T8=2000;
T9=3500;
T10=5000;
T11=6000; %Required times
b=0.65; %Characteristics of wear
d=3150; %Characteristics of lifetime
try
sum_old = sum; %Saving previous value
of numerical integral
catch
sum_old = 0;
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end
sum = 0;
h=0.01; %Determination of the step
x_in = 0 : h : 2e1;
yout = zeros(size(x_in));
s_out = yout;
i = 1;
for i = 1 : length(x_in) %Calculation
of the numerical integral by the
Quadrature rule
x = x_in(i);
y = d*(((T1./d).

∧b)+x).∧(1./b)*exp(-x)-T1;
if y < 0 %Elimination of negative
values of the integral
break;
end
sum = sum + y * h;
yout(i) = y;
s_out(i) = sum;
end
subplot(2,1,1); %Figure of the function
before integration
plot(x_in,yout);
subplot(2,1,2);
plot(x_in,s_out); %Figure of the
function after integration
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Fig. 3: Graphic expression of calculation before and after inte-
gration for T1 by the Quadrature rule.

The numerical results in Tab. 1 for Eq. (57) were
calculated by the script in Matlab. The graphical ex-
pression of Tab. 1 is shown in Fig. 4 below.

In Tab. 1, an example of calculation ms = f((m,k,T ))
of a nuclear power plant unit is shown with realistic
parameters of reliability using the Weibull distribution.
The trend of the mean time of operation is given in
Fig. 4. This shows that the mean-time of operation
falls with the rising time of operation.
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Fig. 4: Graphic expression of interdependence between time of
operation and mean-time of operation.

5. Discussion

Dynamic reliability is a very promising field and offers
a lot of possibilities for future research. The solution
using the Weibull distribution has a significant impact
in the field of dynamic reliability because the Weibull
distribution is convenient to be used for repairable sys-
tems. It is the best tool of dynamic modelling of real
systems.

The general procedure described in the experimen-
tal section may be used in most types of power plant
units. All the necessary steps for calculation of the
key parameters of dynamic reliability are described in
that section. The final expressions are verified using
the exponential distribution.

The results interpreted in the previous section con-
cern the probability of failure-free operation and the
mean time of operation. These parameters are repre-
sentative and give a realistic view of the reliability of
our nuclear power unit. Thanks to our results, we are
able to create a model of dynamic reliability for predic-
tion of future states. Prediction of future states may
be used for optimal planning of maintenance and also
for supporting the sustainability of these units. This
section is concluded by Tab. 1, which presents the cal-
culated values of the mean time of operation depending
on the length of the time of operation, and Fig. 4 which
shows a graphic view of the values.

6. Conclusion

In this paper the methodology of reliability character-
istics, such as failure-free operation and the mean time
of operation, is described. The methodology contains
calculations and verifications of unit parameters. The
final results were obtained by calculation and verified
by the exponential distribution. This methodology is
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Tab. 1: Interdependence between mean time of operation (ms) and time of operation (T ).

T (h) 0 72 120 168 300 500 1000 2000 3500 5000 6000
ms (h) 4304 4113 3964 3821 3465 2999 2102 987 229 17 0.02

applicable to any system. However, this system must
be repairable and periodically checked. Of course, we
must know the key parameters of the system.

Obtained results of the mean-time of operation for
the Weibull distribution is shown in Fig. 2. The results
of the mean-time of operation for the Weibull distribu-
tion are shown in Fig. 2. The trend in Fig. 2 respects
the theoretical assumptions of the theory of reliabil-
ity. The rising time of operation causes the decreasing
hyperbolic trend of the mean time of operation.

These results can be useful for improving the current
situation of the unit and also for creating the optimal
plan of maintenance.
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Appendix A
Abbreviations

The following abbreviations are used in this
manuscript:

• P · · · Probability of something

• µ · · · Failure probability function

• q(t) · · · Intensity of repair

• r · · · Mean time to repair

• λ · · · Intensity of failure

• b · · · Characteristics of wear

• d · · · Characteristics of lifetime

• m · · · Mean time of failure-free operation

• k · · · Constant inclusive characteristics of d and b

• T · · · Real time of operation for the unit

• t · · · Required time for prediction of probability
of failure-free operation

• P(B) · · · Probability of phenomenon B

• P(B∩A) · · · Probability of intersection of phe-
nomenon A and phenomenon B simultaneously

• PB(A) · · · Conditional probability of phenomenon
A, if success of phenomenon B

• P1(t) · · · Probability of failure-free operation

• f(t) · · · Density of probability of failure-free oper-
ation

• m(s) · · · Mean time of operation
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