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Abstract. This paper formulates a stepping theory for-
malism with two kinds of negation dealing with one of
the areas of Active Logic, a new kind of logic aimed
at performing practical tasks in real time knowledge-
based AI systems. In addition to the standard logi-
cal negation, the proposed formalism uses the so-called
subjective negation interpreted as inability to arrive at
some conclusion through reasoning by a current time.
The semantics of the proposed formalism is defined as
an argumentation structure.
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1. Introduction

Active Logic is a conceptual system, the principles
of which are met by metareasoning formalisms with
a high degree of tolerance for contradictions that can
link results of reasoning with specific points in time.
This makes Active Logic especially suited for use in real
time knowledge-based AI systems that can be used in
management and process control solutions, that need
to operate under strict time constraints. One area of
Active Logic deals with the so-called stepping theory
systems that combine the principles of Active Logic
with those of logic programming. In this work we pro-
pose a system of stepping theories that, in addition to
the standard negation (strong negation), employs the
so-called subjective negation, which is interpreted as
inability/failure to work out a logic formula by the cur-
rent point in time. This approach makes control pro-

cess under strict time constraints more effective com-
pared to other stepping theory formalisms. The se-
mantic of stepping theory formalism with two kinds
of negation is defined as an argumentation structure.
Time, as is the case in some of the other stepping logic
systems, is interpreted as an external entity that does
not depend on the internal structure of the set of rules
applied by the stepping theory.

2. Metareasoning and Active
Logic

2.1. Task Solving in Hard Real Time
and Need for Metareasoning

One of the most difficult problems that has to be tack-
led by knowledge based AI systems operating under the
conditions of the so-called ’hard time’ is how to manage
the reasoning process of a cognitive agent (hereinafter,
the agent) that is solving task by means of reason-
ing on the basis of its knowledge and its observations
of the environment. Operating under these conditions
means that there is a certain critical time point or dead-
line by which the agent has to solve its current task
[1]. If the task has not been accomplished by dead-
line, the consequences can be catastrophic and thus
not meeting the deadline for the agent is unacceptable,
and thereafter the agent’s actions become completely
meaningless. One example of a situation where task
solving has to be done under hard real time conditions
is choosing what kind of resuscitation to perform on
a patient whose heart and breathing have just stopped.
You cannot wait too long to decide what to do: in
five minutes irreversible changes will start happening
in the patient’s body beyond saving. Naturally, agents
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operating under such conditions must have different
priorities than agents functioning under soft real time
conditions, where there is no deadline at all or even if
the deadline is not met, the agent’s performance qual-
ity will deteriorate in proportion to the amount of time
delayed. Obviously, the cognitive process of an agent
acting under hard real time conditions must be closely
monitored by the agent at all times. The main function
of such close monitoring is to identify unforeseen diffi-
culties (anomalies) that prevent the agent from achiev-
ing its target. This means that such an agent needs to
be aware not just of its environment and the task it
has to perform but also of its own cognitive processes,
in other words, this agent has to be able to engage not
only in reasoning but in metareasoning or reasoning
about reasoning. It’s clear that metareasoning capa-
bilities are a must for intelligent agents operating un-
der hard real time conditions, because it’s only agents
that are capable of analyzing their own cognitive pro-
cesses that can adequately tackle the threats posed by
anomalies.

2.2. Logical Omniscience Problem

Wherever there is reasoning, including metareasoning,
there must be logic, but not all logic systems, including
epistemic logic systems that specialize in formalizing
the knowledge and beliefs the agent uses for reasoning,
fit the bill if reasoning tasks must be completed un-
der hard time constraints. The vast majority of logic
systems developed to formalize the knowledge and be-
liefs of agents and that use the modal approach are
implicitly based on the assumption that the reasoning
performed by the agent happens instantaneously and
the results and conclusions are made available imme-
diately or on demand. There are situations in which
such an assumption is perfectly justified. For example,
an agent can only use very simple reasoning while oper-
ating under conditions that don’t impose critical time
constraints. However, in situations where the agent is
operating under strict time constraints, the assump-
tion that reasoning happens instantaneously becomes
one assumption too far. It leads to the so-called logical
omniscience problem, which is very well known in epis-
temic logic. Consequently, agents that are subject to
this problem are known as omniscient or ideal agents [2]
and [3]. It goes without saying that an ideal agent does
not need to care about how much time it’s got left be-
cause it completes all reasoning tasks instantaneously.
However, if we can’t assume omniscience for our agent,
then a way must be found to deal with the logical om-
niscience problem. Solutions to this problem have been
proposed both within the modal approach (for exam-
ple, see [4]) and outside of it [5]. As was shown in [6]
the solutions found within the classical modal approach
all share one principal drawback. None of them can be

used to arrive at the following conclusion: there is a risk
that agent i won’t be able to derive formula F within
time constraint t. It has to be noted that the results of
this kind are extremely important in situations when
there are hard constraints on the amount of time that
agent i has at its disposal. Outside the modal approach
this drawback is successfully dealt with in logical sys-
tems that are described as the so-called ’Active Logics’
[7] or systems similar to them [8], in which the agent’s
reasoning is interpreted not as a sequence of formulas
(statements) regarded as a whole and existing outside
of time, but rather, as a process happening in time.
Below, we talk about logic systems that fall within the
concept of Active Logic.

2.3. Fundamentals of Active Logics

Active logic conceptually combines a number of for-
malisms or reasoning that is said to be ’situated in
time’. Logic systems that meet this criterion can be
based on the combination of the following three basic
principles, depending on their complexity.

1) Keeping Track of Time

In active logic the reasoning process is situated in time
and implies sequential performance of deductive cycles,
which we’re going to refer to as inference steps. Time’s
kept track of using the special unary predicate now(.).
The following inference rule applies to this predicate:

t : now(t)

t+ 1 : now(t+ 1)
. (1)

It should be noted that the formula now(t) does not
get inherited at the point in time (inference step) t+1,
as is sometimes the case with ’ordinary’ formulae.

2) Self-Awareness

This principle implies that the agent is aware of what
it knows at this point in time as well as of what they
don’t know at this point in time. In the most general
form this principle is implemented using the following
inference rules:

t : ϕ

t+ 1 : K(t, ϕ)
, (2)

t : ϕ, sub(φ, ϕ), [φ]

t+ 1 : ¬K(t, φ)
, (3)

where φ is any formula the agent does not know at
time t, but which can be inferred from formula ϕ that
the agent already knows about, in other words, it’s
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a sub-formula whose existence the agent is aware of ,
sub(., .) is a binary meta-predicate that expresses the
relation ’to be a sub-formula of, [φ] is a notation that
means that formula φ is absent from the agent’s current
knowledge base at time t. K(., .) is a binary meta-
predicate (and not a modal operator!), which expresses
the fact that the agent knows some formula at some
time point.

Equation (2) and Eq. (3) are used in order to com-
pare and contrast the knowledge the agent possesses at
this point in time with the expectations that the agent
had with regards to the inference process it is perform-
ing. If these expectations contradict reality, this means
the agent may be faced with an anomaly and thus needs
to take measures to deal with its consequences.

3) Identification and Elimination of Direct
Contradictions

In situations the available time is limited, contradic-
tions are quite natural and it’s of vital importance that
when faced with contradictory information, instead of
crashing or throwing an error, the agent keep going and
use this contradictory information to adjust its infer-
ence process. Some active logic systems deal with the
problem of contradictory information through a mech-
anism that allows them to identify and eliminate the
so-called direct contradictions, i.e. pares of formulae
in which one negates the other. Identification and sub-
sequent processing of direct contradictions in the most
general form can be achieved using the following infer-
ence rule:

t : ϕ,¬φ
next t : contra(t, ϕ,¬ϕ)

, (4)

where contra(., ., .) is a special ternary meta-predicate
that returns true if at time t the current knowledge of
the agent contains formulae φ and ¬φ (from here on out
for any literal such as q we will use the symbol ¬q to
refer to its complement). It should be noted that until
very recently there was no satisfactory definition of the
declarative semantic of Active Logic systems that use
identification and elimination of direct contradictions
[9] and [15].

2.4. Temporal Sensitivity and Time
Granulation

As has already been stated above, the reasoning pro-
cess in Active Logic systems is normally presented as
a sequence of inference steps, each of which explicitly
creates the so-called belief set, a finite set of formulae
expressed in a language close to the language of first
order logics. Each inference step is given a number in-
terpreted as a point on a discrete linear timeline. In
accordance with the principle of keeping track of time,

this number is represented with the help of a special
literal of the form now(i), where i is the number of the
inference step. This number can then be referenced in
other formulae thereby allowing specific inference steps
to be associated with other events happening within
the system and in its environment. Add to that the
self-awareness principle and our agent can not only es-
tablish whether a new formula appears in its belief set
at a certain point of time but also whether a specific
formula is absent from its belief set at a given point
in time. Thus, the result of the inference process now
depends on how soon a certain formula gets inferred
or, to put it the other way, how long a certain formula
remains absent from the current belief set of the agent.
This property of active logic systems has come to be
known as temporal sensibility.

One common drawback of most Active Logic sys-
tems is that they interpret time as an entity that is,
in some sense, internal to these systems. And the flow
of time is defined through the structure of inference
rules used to infer new formulae from those that are
already in the belief set. It is implicitly assumed that
a unit of time is the duration of one inference step.
Each time an inference step is completed, the virtual
internal clock ticks once. At the same time, another
(also implicit) assumption is made, namely, that each
inference step has the same duration or that the vari-
ation in the amount of time taken by each inference
step is so negligible that it can be safely ignored. In
reality, though, the duration of each inference step is
affected by the changes happening in the composition
and structure of the knowledge acquired as a result of
the on-going inference process and observations about
the external environment. In addition, the duration
of inference steps can be affected by random factors
such as power surges, malfunctions of the other sys-
tems etc. In effect, the assumption that each inference
step has roughly the same duration is very similar to
logical omniscience and just like logical omniscience it
often clashes with reality.

The Ref. [10] proposes an approach in which time is
interpreted as an external entity that has no links to
the structure of the agent’s knowledge or the speed the
agent completes deductive cycles at. This modification
allows us to do away with the unrealistic assumption
about ’internal time’ and can be applied to any Ac-
tive Logic system. In Active Logic systems time is
regarded as an infinite ever increasing series of natu-
ral numbers form set N . We will be referring to it as
Gck (global clock). However, it should be taken into ac-
count, that the main purpose of this kind of logical sys-
tems is to model the behavior of agents under various
conditions (= runs). So for each run, its own slightly
different clock (Ck) will be used that best describes the
conditions of the run (the time granulation principle).
The clock used each time the model is run is a finite
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or infinite strictly increasing sequence whose members
are interpreted as points in time (on the global clock)
at which inference steps are completed, for example
Ck = 〈0, 3, 5, 7, 10, . . .〉. We’ll use the symbol C∗

k to
designate the set of all such points in time. Each tick
of the clock used in the model’s run, just like the tick
of the virtual internal clock that we talked about ear-
lier, corresponds to the completion of one specific in-
ference step. But the number of the inference steps
corresponds not to the point in time at which it com-
pletes but only to the number of that point in time on
the clock used for the model’s run. This means that
by changing the clock used for the model’s run we can
imitate different conditions that the agent operates un-
der, allowing us to better model such things as the in-
crease in the duration of inference steps the agent goes
through as the amount of the information available to
the agent increases. Furthermore, different agents can
be assigned different local clocks to model, for exam-
ple, differences in how ’smart’ each agent is (their per-
formance) or the fact that they engage with the en-
vironment at different points in time. Here, however,
we’ll only be considering the single agent case for sim-
plicity’s sake. We’re also going to need two functions:
clock(.) and rank(.). The first one maps set N unto set
C∗

k . The term clock(n) is interpreted as a point in time
that has the number n on the clock used in the model’s
run. The second function is the reverse of the first one,
meaning that for any t ∈ C∗

k rank(t) = clock−1(t), it
returns the number of the point in time t on clock Ck

used for the model’s run. Then, if the previous refer-
ence step completes at time t, the next inference step
will complete at point in time clock (rank(t)+1). Here
on out we will be following the conventions of [11] to
designate the point in time after time t on clock Ck,
namely, we will be referring to it as next t.

3. Stepping Theories in Active
Logic

One field in Active Logics introduced in [12] deals
with various systems of the so-called stepping theories.
The relation between stepping theories and other Ac-
tive Logic systems is roughly the same as the relation
between logic programming and other non-monotonic
systems of traditional logic. We will expand on this
point below. A stepping theory is a set of rules that
sometimes includes a binary preference relation. The
sets of rules in step theories sometimes are considered
to comprise two subsets: the set of strict rules and
the set of plausible rules. Without sacrificing general-
ity, we’re now going to focus only on stepping theories
whose preference relation is empty and that only have
plausible rules defined as follows:

N : a1 ∧ a2... ∧ am ⇒ b, (5)

where N is a string of symbols designating the name
of the rule, b is a propositional literal, a1, . . . , am are
propositional literals or first order logic literals of the
kind later(j) or ¬later(j), where j is a natural number.

These rules reflect the principle of negative intro-
spection in the following interpretation: if function
a1 ∧ a2... ∧ am is true and at this inference step it’s
unknown if formula −b (which is a literal) is plausible
or not, then it can be assumed that formula b is true (it
should be reminded that −b means the complement of
b). Wherever it’s convenient, the antecedents of rules
are regarded as sets of literals. If such a set is empty,
then the rules are regarded as being equivalent to rules
with the same consequents, but whose antecedents only
have a single literal later(clock(rank(0)), i.e. the rule
’kicks in’ at the very first point in time on the clock
of this stepping theory. Thus, the system of stepping
theories can be regarded as a variation on Active Logic
that’s based solely on rules and that meets the prin-
ciple of logic programming, according to which sets of
literals are used as models of formulas rather than more
complex Kripke style structures.

Let’s define a stepping theory as a pair T = (R,Ck),
where R is a finite set of rules of the form Eq. (5), Ck is
the model run clock as defined above (hereinafter, the
stepping theory clock), which in step theories is always
a finite set of natural numbers. For any set theory of
the form T = (R,Ck) let R [q] refer to the set of all
rules whose consequent is q. The set of literals forming
the antecedent of rule r will be designated as A(r). Let
LitT be the set of all literals occurring in the rules of
stepping theory T . The belief set of stepping theory
T = (R,>) is a set of the form {now(t) ∪ LT t , where
t is a natural number or 0 representing a point in time
on the clock Ck of this stepping theory, LT t ⊂ LitT .
Let’s consider operator ϑT that transforms the belief
sets into other belief sets in such a way that if B is
a belief set such that now(t) ∈ B, then now(next t)
∈ ϑT (B). The sufficient conditions under which the
literals will belong to belief set ΘT (B) will be different
for different step theories, see, for example, [12] and
[13]. In the next section we will look at these conditions
as they apply to a system of stepping theories with two
kinds of negation in the context of their argumentation
semantics.

Now let B be the belief set of theory T , such that
literal now(t) ∈ B. Then B is a quasi-fixed point
of operator ϑT if and only if B now(t) = ϑT (B)
now(next t) for any t. The history in stepping the-
ory T is a finite sequence of belief sets B ·B(i) is the
ith member in the history, B(0) = now(0), for any
t B(rank(t) + 1) = ΘT (B(rank(t))). The last ele-
ment in the history is a belief set designated as Bfin,
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(final). It is the smallest quasi-fixed point of oper-
ator ϑT , such that if now(n) ∈ Bfin, then for any
j, if later(j) or ¬ later(j) ∈ A(r), where r is a rule
from set R, then n > j. An inference step in step-
ping theory T = (R,Ck) is any pair of the form (B(i),
B(i+1)), and the inference step number is the number
equal to (i+1). The consequent (t-consequent) of step-
ping theory T is a literal belonging to belief set Bfin

(B(rank(t)), t ∈ C∗
k).

Stepping theories T and T ’ are equivalent if any con-
sequent (t-consequent) of theory T is also a consequent
(t-consequent) of theory T ’.

4. Stepping Theories with Two
Kinds of Negation

4.1. Stepping Theories and
Self-Discovery Principle

The principles of time marking and controversy detec-
tion are fully actualized in presently known systems of
stepping theories [12], [13], [14] and [15] which does not
apply to actualization of the self-awareness principle.
As a consequence of this fact, the language of rules for
stepping theories fails to clearly express an assertion
that a certain formula (a literal, in this case) is un-
known by a certain point of time to the agent, whose
reasoning is modeled by means of this stepping the-
ory. However, as it was said above, such possibility
is quite sought for in regulating a cognitive process in
hard time-limit conditions.

An approach aimed at overcoming this shortcoming
of presently existing formalisms of stepping theories,
connected with introduction of a new kind of negation
in the language of rules for stepping theories is given
below. This kind of negation is somewhat analogous to
negation as failure or is identical to negation by default
[2] which is known to logical programming and termed
as operator not.

4.2. Subjective Negation

We will call the new kind of negation subjective nega-
tion and denote it as operator nott. While the meaning
of not q expression is a failed effort to infer the q literal
by means of a given logical program, the nott q ex-
pression in the antecedent of the rule of stepping the-
ory means that the agent failed to infer the q literal
by the current point in time (= on a given inference
step). More formally, in case when q ∈ B(i), the r
rule nott q ∈ A(r) on step (B(i),B(i+ 1)) won’t work.
The kind of negation, which had been in existence in
the language of rules of stepping theories and had been

termed by means of unary logical connective, hereafter
will be called strong negation, i.e. the way this kind of
negation is called in logical programming. In this case
the same term is explained by the fact that this kind of
negation has the same value both in logical programs
and stepping theories and thus has the same denota-
tion. It is interesting to note that historically the term
negation as failure had occurred in logical program-
ming earlier (in the early 70s of the last century) than
the term strong negation, introduced by M. Gelfond
and V. Lifschitz [16], while the term strong negation
had occurred prior to the term subjective negation in
stepping theories. Nevertheless, we will call the step-
ping theories with two kinds of negation the extended
stepping theories, similarly to the extended logical pro-
grams (which contain two kinds of negation as well),
introduced by M. Gelfond and V. Lifschitz.

4.3. Extended Stepping Theories:
Syntax Changes

As opposed to stepping theories described above, the
syntax of the extended stepping theories has undergone
the following changes:

• The nott subjective negation operator has been
added to the alphabet of the rules of the extended
stepping theories.

• The rules of the extended stepping theory look as
follows:

N : a1 ∧ a2 . . .∧ am ∧nottc1 ∧nottc2 ∧nottcn ⇒ b,
(6)

where N is a line of symbols denoting the name of
the rule, b is a propositional literal, a1, . . . , am are
propositional literals, or the first order logic lan-
guage literals of ¬later(j) kind or ¬later(j) kind,
where j is a natural number, and c1, . . . , cn are
propositional literals.

Hereafter any propositional literal of kind ai which is
not preceded by nott subjective negation operator will
be called an objective literal. Any literal of nottcj kind
will be hereafter called a subjective literal.

Here it should be noted that any further reasoning
will remain valid even in the case when the first or-
der logic literals without functional symbols, i.e. with
the finite Herbrand universe, are used instead of the
propositional literals.

4.4. Argumentation Semantics for
Extended Stepping Theories

The argumentation theory [17] has proved to be quite
fertile in presenting of non-monotonic reasoning [2].
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It has been established that some well-known non-
monotonic formalisms correspond to various specific
instances of reasoning structure. It has been of much
success to derive in the terms of the theory of argumen-
tation quite elegant definitions for their consequence
relation. Argumentation semantics for formalisms of
active logic stepping theories was suggested in some
works [13] and [14]. A variant of such kind of argu-
mentation semantics with the consideration of specific
features of extended stepping theories will be given be-
low.

As basic elements, reasoning systems usually have
a certain logical language and definitions for argument,
conflict between arguments and argument status. The
latter three elements are frequently used to determine
the consequence relation. A reasoning system, consist-
ing of the mentioned elements, constructed with a con-
sideration of active logic stepping theories features, will
be presented below.

Definition 1.

Let T = (R,Ck) is an extended stepping theory. And
let an argument for T be called:

• any literal (of the first order logic) of l kind
later(t), or ¬later(t), where t > 0, for which there
exists rule r ∈ R, so that l ∈ A(r),

• sequence of rules Arg = [r1, . . . , rn], where
r1, . . . , rn ∈ R, so that for any 1 ≥ i ≥ n,
if p ∈ A(ri), where p is the objective proposi-
tional literal, then there might be such j < i that
rj ∈ R[p],

• any subjective literal of nott q kind.

For this T = (R,>,Ck) stepping theory a set of all
its arguments will be indicated ArgsT . If the first order
logic literal is later(t) (¬later(t)) kind, then we’ll call
such reason limiting (the function of the other reasons
after and before in time).

Argument of Arg = [r1, . . . , rn] kind is called
supporting argument. Propositional literal biff. is
called a conclusion of supporting argument Arg =
[r1, . . . , rn], when rn ∈ R[b].

Argument of nott q kind is called a subjective argu-
ment.

Any subsequence of [r1, . . . , rn] sequence, meeting
the definition 1 is called supporting subargument of
argument Arg = [r1, . . . , rn]. Limiting, or subjective
argument is a subargument of the argument Arg =
[r1, . . . , rn] if a corresponding first-order logic literal,
or a subjective literal is included in the antecedent of
any of the rules r1, . . . , rn.

Any supporting subargument of the argument Arg =
[r1, . . . , rn] is called its maximum subargument if a lit-
eral being a conclusion of the said subargument is in-
cluded in the antecedent of rn. rule. Limiting, or sub-
jective argument is the maximum subargument of ar-
gument Arg = [r1, . . . , rn] if a corresponding literal is
included in the antecedent of rn rule.

Example 1. Let the R1 set of T1 = (R1, Ck1) extended
stepping theory consist of the following elements:

N1 : ⇒ p,
N2 : p⇒ q,
N3 : q ⇒ r,
N4 : later(4) ∧ nott r ⇒ ¬task_is_solved,
N5 : ¬later(4) ∧ r ⇒ task_is_solved,
N6 : task_is_solved⇒ task_is_solved.

Supporting arguments of T1 theory are
Arg1 = [N1, N2, N3, N5, N6] and all of its sup-
porting subarguments, as well as Arg2 = [N4].
Arg3 = [N1, N2, N3, N5] supporting subargument
is the maximum supporting subargument of argu-
ment Arg1. Arg4 = ¬later(4) and Arg5 = later(4)
are limiting arguments of T1 theory (and corre-
sponding subarguments of arguments Arg1 and Arg2).
Arg6 = nott r is a subjective subargument of argument
Arg2.

Going over to definition of an argument status and
a conflict between arguments of extended stepping the-
ories, we should take into consideration that unlike
other systems of argumentation, where the interrela-
tions of various arguments are studied "in statics",
here, speaking informally, we have to discuss the de-
velopment of these interrelations through time (tem-
porally), i.e. in steps of inference under the extended
stepping theory. On a certain step of inference, a par-
ticular argument may not have been constructed, i.e.
fail to become active, while after putting into action
it may be in action until the time point (step of infer-
ence) of its withdrawal from action. The latter means
that the given argument (on the given step) is denied
(=disposed of) due to the consequences of a conflict
with other arguments. Thereby, the notion of "putting
an argument into action" plays the key role in deter-
mining the status of the arguments and a conflict be-
tween them. For the purpose of simplicity hereafter
we will refer to the step of inference, numbered i as to
simply step i.

Definition 2.

Putting arguments of extended stepping theories in ac-
tion is performed by the following rules:

• Any limiting argument of later(t) kind is put into
action on step i, so that clock(i−1) < t ≤ clock(i).
Any limiting argument of ¬later(t) kind is put into
action on step 1 (at the time "clock(0)").
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• If the supporting argument has no subarguments,
it is put into action on step 1 (at the time
“clock(0)”).

• Any supporting argument is put into action on
step i, if all of its subarguments are put into ac-
tion on the previous steps and there is maximum
subargument put into action on step (i − 1) (at
clock(i− 2)).

• Any subjective argument is put into action on step
1 (at clock(0)).

Definition 3.

Withdrawal of limiting arguments from action is per-
formed by the following rule: Any limiting argument of
¬later(t) kind is withdrawn from action on step i+ 1,
where i is such that clock(i− 1) ≤ t < clock(i).

All the other arguments, including limiting argu-
ments of later(t) kind, after their introduction into
subsequent steps of inference, they have the status ac-
tive.

The notion of arguments attacking each other which
is present in practically all argumentation systems, has
its specific features in active logics.

Definition 4.

Arg1 supporting argument attacks the other support-
ing arguments with conclusion of q, or subjective argu-
ment Arg2 = nott q on step it. and t.t., when:

• conclusion of Arg1 is literal "−q";

• Arg1 and all of its subarguments are active on step
i;

• none of the Arg1 subarguments is attacked on step
i by none of the other supporting arguments.

With an exception of a metaliteral of now(i) kind,
any belief set of the extended stepping theory consists
of objective literals which are supporting arguments.
The definition given below establishes necessary and
sufficient condition of attributing of the objective lit-
eral to a belief set in the extended stepping theory.

Definition 5.

Let B(i) be a belief set of a certain extended stepping
theory. Objective literal q ∈ B(i) if:

• there is a given Arg1 extended stepping theory
supporting argument whose conclusion is literal q;

• Arg1 and all of its subarguments are active on step
i and Arg1 is put into action not later than on step
i− 1;

• None of Arg1 subarguments is attacked on step i
by no other supporting arguments.

It should be noted that the supporting argument ob-
tains an ability to attack other arguments one step ear-
lier than it obtains an ability to support an objective
literal which is its conclusion. Thus, any contradic-
tion in belief sets is eliminated. Some examples of the
extended stepping theories will be discussed below.

4.5. Examples of Extended Stepping
Theories

Let us continue review of the extended stepping the-
ory T1 = (R1, Ck1). Example 1 (cont-d). Let
Ck1 = [0, 1, 2, 3, 4, 5, 6]. In this case the history of the
extended stepping theory looks as follows: B(0) =
now(0), B(1) = now(1), p, B(2) = now(2), p, q,
B(3) = now(3), p, q, r, B(4) = Bfin = now(4), p, q, r,
task_is_solved.

Note that the supporting argument Arg2 = [N4] is
put into action at the time point 5 on clock Ck1, but
an objective literal ¬task_is_solved has not appeared
in the belief set B(6), as his subjective subargument
nott r is under attack of supporting argument Arg7
(one of subarguments of supporting argument Arg1)
at the time 2 on Ck1 when the supporting Arg7 is put
into action. Hence, only arguments of meta-predicate
now(.) (now(4) ∈ B(4). now(5) ∈ B(5), now(6) ∈
B(6))/ constitute the difference of the belief sets B(5)
and B(6) from the belief sets B(4) = Bfin.

Regarding information aspect, this example can be
interpreted as follows: the task has been successfully
solved, because an objective literal r was inferred in
due time.

Below we show extended stepping theory T2 =
(R2, Ck2), where R2 = R1, Ck2 = [0, 1, 2, 5, 6, 7, 8].
History of this stepping theory is as follows:
B(0) = now(0), B(1) = now(1), p, B(2) =
now(2), p, q, B(3) = now(5), p, q, r, B(4) = Bfin =
now(6), p, q, r,¬task_is_solved.

In this history, though the supporting argument
Arg1 is put into action at time point 5 on Ck2, this
argument "could not" support the objective literal
task_is_solved, which is its conclusive inference, due
to the fact that its limited subargument ¬later(4) has
ceased to be active at time 5 on Ck2 clock. As a result,
supporting argument Arg2 = [N4] that was put into
action at time 5 on Ck2, supported an objective literal
¬task_is_solved, starting from time 6 on Ck2. Essen-
tially, this example corresponds to the situation when
one of the steps of inference (note that actually it is
a deductive cycle) turned out to proceed unexpectedly
longer than the expected time. Note that it is impos-
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sible to identify such a situation in the Active Logics
systems, which lack time granulation, and is difficult
to identify it in stepping theories, which do not include
subjective negation.

5. Conclusion

The formalism of Active Logics extended stepping the-
ories presented in this article allows for possible use of
two types of negation. In addition to strong negation
that has been used in other formalisms of stepping the-
ories, the subjective negation was introduced, which is
directly related to actualization of the self-awareness
principle, allowing the agent to recognize and express
explicitly not only what he knows but also what he
does not know at the given moment of time. This fact
improves expressive power and, specifically, temporal
sensitivity of extended stepping theories, compared to
formalisms of step logics that have existed until the
present day.

Due to some ’space’ constraints this article does not
cover matters relating to paraconsistency of argumen-
tation semantics of extended stepping theories, but
there is no doubt that the prorosition about paracon-
sistency of the said semantics can be proved mutadis
mutandis similar to the method applied in [15] for ar-
gumentation semantics of stepping theories (only with
strong negation).
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