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Abstract. In this paper, an analysis of the use of wave-
length and time division multiplexing techniques for
quasi-distributed measurement in uniform fiber Bragg
gratings is presented. To date, publications have con-
centrated on the determination of the maximum num-
ber of fiber Bragg gratings on one optical fiber using
wavelength and time division multiplexing. In this pa-
per, these techniques will be extended to determine the
spectral width of wavelength division multiplexing in
terms of the spectral width of the light emitting diode,
the spectral width of the Bragg gratings, the measure-
ment ranges of the individual sensors, and the guard
band between two adjacent Bragg gratings. For time di-
vision multiplexing, a description of the time and power
conditions are given. In particular the reflected power,
first order crosstalk and chromatic dispersion have been
considered. Finally, these relationships were applied to
verify a design in a simulation using OptiSystem soft-
ware.
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1. Introduction

FBGs (Fiber Bragg Gratings) are mostly used for
quasi-distributed measurement of deformation and
temperature. The most common types of multiplex-
ing are TDM (Time Division Multiplexing) and WDM
(Wavelength Division Multiplexing). To determine the
required capacity of these multiplexing techniques, cer-
tain relationships must be known. For WDM, the im-
portant parameters are the spectral width of the LED
(Light Emitting Diode) and the spectral width of indi-
vidual FBGs. The final capacity is given by the ratio
of the spectral widths of the LED and one individual
FBG. In the case of TDM, knowledge of the time inter-
val between returning impulses from the FBG sensor
array is required. The limiting parameter here is the
width of the input impulse. This width must be shorter
than the time taken for the roundtrip of the light be-
tween adjacent FBGs. The capacity of TDM is also
influenced by the chromatic dispersion, reflectivity of
individual FBGs, crosstalk between channels, Rayleigh
scattering, and other attenuation processes in an opti-
cal fiber.

Measurement of a large array of FBGs is necessary
to realize parameters such as the measuring range, the
shape of the LED spectrum, and in the case of WDM
the shape of the FBG spectra.
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2. Quasi-Distributed
Measurement with FBG

2.1. FBG Sensor

A fiber Bragg grating is formed by a periodic change
of refractive index in the optical fiber (see Fig. 1). De-
pendent on the grating period, the light of a specific
wavelength called the Bragg wavelength λB is reflected,
and the other wavelengths are transmitted. The Bragg
wavelength is given by:

λB = 2neffΛ, (1)

where neff is the effective refractive index of the opti-
cal fiber and Λ is the periodic change of the refractive
index.

λ

n2

n1
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Fig. 1: Structure of fiber Bragg grating.

The Bragg wavelength depends on a spatial period
of the refractive index variation. Deformation or tem-
perature acting on the FBG results in a change in the
period of the refractive index. The normalized FBG
strain response at constant temperature is:

1

λB

∆λB
∆ε

= 0.78 · 10−6µstrain−1. (2)

Normalized temperature sensitivity at constant strain
is:

1

λB

∆λB
∆T

= 6.678 · 10−6 ◦C−1, (3)

where ∆λB is the Bragg wavelength shift, ∆T is tem-
perature change and ∆ε is strain change [1].

2.2. WDM and General Capacity

For the multipoint measurement with an FBG, it is
necessary to distinguish the resultant signal contribu-
tions of individual FBGs. The simplest method is to
use WDM as shown in Fig. 2. Light from the LED
passes through the circulator to the FBG array, and the
reflected light is detected in the OSA (Optical Spec-
tral Analyser), where each FBG is tuned to a differ-
ent Bragg wavelength. In the OSA, each peak rep-
resents one FBG, and the respective frequency shifts
are related to the applied deformation or temperature

change. The general relation for the capacity of WDM
is given by:

N =
FWHMLED

FWHMFBG
, (4)

where FWHMLED is the spectral width at half maxi-
mum LED power output, and FWHMFBG is the spec-
tral width at half maximum FBG reflected power [2].

This relationship defines the maximum number of
FBGs that can be placed on one optical fiber. However,
this is problematic for the measurement of deformation
or temperature.

A shift of the Bragg wavelength will cause overlap-
ping of two adjacent FBG spectra making it impossible
to distinguish the contribution of individual FBGs.

LED

circulator FBG1 FBGNFBG2

OSA

Fig. 2: Scheme of WDM with LED, FBGs and OSA.

2.3. Measurement Range,
Measurement Channel and
Guard Band

For the most efficient use of the LED spectral width, it
is important to define the measurement range for each
FBG in the array. For the correct measurement of
strain and temperature, it is required that every FBG
operates within its measurement range to avoid mea-
surement error caused by the overlapping of adjacent
spectra. The measurement range is defined by the min-
imum and maximum values of temperature or strain to
be measured. The measurement channel is shown in
Fig. 3 and is dependent on the individual FBG mea-
surement ranges.

Where the measurement channels are close together,
an overlap of adjacent spectra can occur. The limiting
case is where ith Bragg wavelength is at a maximum
value in the measurement range, and (i + 1)th Bragg
wavelength is at a minimum value in the measurement
range. Therefore, it is necessary to introduce a guard
band (GB) between adjacent measurement channels.

The size of guard band should be large enough
for sufficient resolution between two adjacent spectral
peaks. On the other hand, the guard band should be
small as possible because of the limited width of the
LED spectrum. In the case of a Gaussian spectral
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Fig. 3: Measurement channel and guard band.

characteristic as shown in Fig. 4(a), the optimum size
of the guard band is such that the two spectral peaks
are distinguished by a decrease in power to half of the
maximum power (Fig. 4(b)).

(a) Shapes of FBG spectra.

(b) Ideal guard between two adjacent FBGs.

Fig. 4: An analysis of the size of guard band for two adjacent
FBGs with a Gaussian shape.

The size of the guard band GB for a Gaussian FBG
spectrum is given by:

GB = 1.44 · FWHMFBG. (5)

2.4. Calculation of WDM Capacity

The strain or temperature sensitivity given by Eq. (2)
and Eq. (3) is dependent on the Bragg wavelength.
Therefore the width of the measurement channel is not
only given by the measurement range, but it is also
dependent on the Bragg wavelength of each individual
measurement channel.

Determination of the WDM capacity for the mea-
surement of strain is explained in the following text. In

practice, it is possible to calibrate each FBG measure-
ment channel for the measurement of strain or temper-
ature for any measurement range. First it is necessary
to calculate the Bragg wavelength of the first measure-
ment channel such that the Bragg wavelength corre-
sponding to the minimum strain to be measured will
be equal to the lower wavelength at the LED FWHM
power output, that is:

λB(1)min = λLEDmin. (6)

The Bragg wavelength of the first measurement chan-
nel is:

λB(1) =
λB(1)min

1 −Nε

∣∣∣∆ε−(1)∣∣∣ , (7)

where λB(1)min is the minimum wavelength of the first
measurement channel, Nε is the normalized deforma-
tion coefficient and

∣∣∣∆ε−(1)∣∣∣ is the minimum strain act-
ing on the FBG in absolute value.

The maximum wavelength of the first measurement
channel is given by:

λB(1)max = λB(1) +Nε · λB(1) · ∆ε+(1), (8)

where ∆ε+(1) is the maximum strain acting on the FBG.

The spectral width of the first measurement channel
is given by:

∆ch(1) = λB(1)max − λB(1)min. (9)

It is possible to calculate the spectral width of sub-
sequent channels as follows:

λB(i)min = λB(i−1)max +GB, (10)

λB(i) =
λB(i)min

1 −Nε

∣∣∣∆ε−(i)∣∣∣ , (11)

λB(i)max = λB(i) +Nε·λB(i) · ∆ε+(i), (12)

∆ch(i) = λB(i)max − λB(i)min, (13)

where i is the index of the FBG and takes values i ≥ 2.

The number of FBGs on one optical fiber is given by
the number of measurement channels that lie within
the LED spectrum.

2.5. TDM and General Conditions

Quasi-distributed measurement with FBGs based on
TDM uses Bragg gratings with equal Bragg wave-
lengths and very low reflectivity. A short duration
impulse from the LED is launched via the circulator
to the sensor array. At each FBG boundary, the pulse
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Fig. 5: The basic scheme of TDM using FBG sensors.

is partly reflected back to the processing unit (Fig. 5).
The spectral characteristics of these reflected pulses in-
clude the information about the measured value [3], [4].

TDM requires the fulfillment of the two following
conditions. Firstly the reflectivity of individual FBGs
must be small enough for transmission of the optical
pulse to the end of the sensor array and back to the
processing unit. Secondly the width of input pulse Ti
must be shorter than the time ∆T such that:

Ti < ∆T = 2L
n

c
, (14)

where ∆T is the time taken for the light to traverse
twice the distance between adjacent FBGs, L is dis-
tance between two adjacent FBGs, n is refractive in-
dex of the fiber core and c is the velocity of light in a
vacuum.

The minimum period between input pulses is given
by:

T = N · ∆T, (15)

where N is the number of Bragg gratings in the array.

Low reflectivity is essential in large sensor arrays to
ensure sufficient back reflected power. Time division
multiplex was experimentally used with FBG reflec-
tivity ranging from −37 dB to −50 dB and successful
measurement with 1000 FBGs was achieved [5].

2.6. The Effect of the Chromatic
Dispersion

Sources like LEDs contain many wavelengths increas-
ing the risk of chromatic dispersion. Furthermore,
FBG arrays require relatively long optical fibers. At
long fiber lengths, the effect of chromatic dispersion is
more evident. The chromatic dispersion causes spread-
ing of the optical pulses and an overlap of the reflected
pulses occurs. The chromatic dispersion of the reflected
pulse from the ith FBG at the receiver is given by the
relation:

Di = 2 · L · i ·Dch(λ) · FWHMLED, (16)

where i is the index of the FBG, Dch(λ) is the coef-
ficient of chromatic dispersion and FWHMLED is the
LED spectral width.

Consider an input pulse of duration 50 ns, ∆T =
100 ns and a source with a central wavelength of
1550 nm and linewidth of 40 nm. In this case, the
chromatic dispersion for 3 470 FBGs is larger than the
period of the output pulses resulting in an overlap of
adjacent pulses.

2.7. The Effect of Reflectance

The reflectance is considerably influenced by the inten-
sity of the reflected pulses [5]. The reflected power Pi
from the ith FBG is given by relation:

Pi(λ) = Pin(λ) ·R(λ)i · (1 −R(λ))2(i−1), (17)

where Pin(λ) is the power of the input pulse, R(λ) is
the reflectivity of FBG, 1−R(λ) is the transmission of
FBG and i is the index of the FBG. The reflected power
as a function of the number of FBGs in the array at
various values of reflectivity is illustrated in the Fig. 6.
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Fig. 6: The reflected power as a function of the number of FBGs
in the array at various values of reflectivity R.

2.8. The Effect of Crosstalk

The guided light is partly reflected from each FBG both
in the forward and backward directions. This results
in multiple reflections between Bragg gratings.

Contributions from pulses reflected from various
FBGs can arrive simultaneously at the processing unit.
Fig. 7 illustrates the principle of first order crosstalk.
The crosstalk pulse I212 and I3 arrive at the processing
unit simultaneously [3].

If the FBGs are identical and have a very low reflec-
tivity then the first order crosstalk can be expressed by
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Ci(λ) =
(i− 1)(i− 2)

2
·R3(λ) · (1 −R(λ))2i−4 · I0(λ), i ≥ 3. (18)

FBG 1 FBG 2 FBG 3 FBG 4

I2

I212

I3

Fig. 7: The principle of first order crosstalk.

the simplified relation in Eq. (18), where Ci(λ) is the
error power that arrives at the processing unit simulta-
neously with the reflected power from the ith FBG [6].
In Fig. 8 the values of the first order crosstalk for var-
ious values of FBG reflectivity is shown. The reflected
power from ith FBG must be considerably higher than
the first order crosstalk. This is a crucial condition in
TDM sensor array design.
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Fig. 8: The first order crosstalk at various values of reflectivity.

Figure 9 illustrates a comparison of the reflected
power and the first order crosstalk. At an FBG reflec-
tivity of −20 dB, the first order crosstalk is higher than
the reflected power from FBGs with index i ≥ 141.
On the other hand, at an FBG reflectivity of −40 dB
the reflected power from the 1000th FBG is about
−40.8 dBm while first order crosstalk is about 23 dB
lower.

2.9. The Effect of Detector
Limitations

In addition to the limitations discussed above, the re-
flected power from the FBG is also affected by Rayleigh
scattering and by attenuation in the optical fibers [5].
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Fig. 9: A comparison of reflected power (Pi) and first order
crosstalk (Ci) at various values of reflectivity.

However, these effects are very small and may be ne-
glected. The detection limits of photodetectors are im-
portant too. The amount of reflected power from the
last FBG must be higher than the detection limit of
the photodetector, and also the reflected power from
the first FBG must be within the dynamic range of the
photodetector.

3. Simulation

Quasi-distributed sensors using WDM and TDM were
designed and simulated in the OptiSystem software
based on the mathematical relationships described
above.

3.1. WDM Sensor Simulation

A broad spectrum LED at a wavelength of 1550 nm
and linewidth 42 nm was used. The same measure-
ment range of deformation from −500 to 1000 µstrain
was used for all FBGs. The spectral width of the FBGs
was set to 0.2 nm and the guard band between adja-
cent channels were determined by using equation 1.5 at
0.288 nm. By using equations Eq. (6) to Eq. (13), the
Bragg wavelengths of individual measurement channels
were determined. In Fig. 10 the spectra of 20 FBGs
that all lie within the LED linewidth are shown. The
spectra of two adjacent FBGs in the limiting case de-
scribed above are shown in Fig. 11. As can be seen,
the spectra of the two FBGs are easily distinguishable.
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Fig. 10: Spectra of 20 FBGs.
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Fig. 11: Spectra of two adjacent strain measurement channels
in the limiting case.

3.2. TDM Sensor Simulation

In the TDM simulation, the same broad spectrum LED
was used as with WDM. The LED was modulated such
that the output pulses were of 10 ns duration. This
duration must be shorter than the time taken for the
light to travel from one FBG to the second and back
again. At a pulse duration of 10 ns, the value of ∆T
was chosen to be 20 ns. Using Eq. (14), the distance
between adjacent FBGs was determined to be around
2 m. For a sensor array of 20 FBGs on one optical fiber,
using Eq. (15), the period of the input pulses must be
at least 400 ns. FBGs with a reflectivity of 40 dB were
selected. Pulses coming from the FBG sensor array are
shown in Fig. 12.
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Fig. 12: Power response from a 20 FBG sensor array.

4. Conclusion

In this paper, WDM and TDMmultiplexing techniques
for quasi-distributed measurement using Bragg grat-
ings was described. In addition, the mathematical re-
lationships required to optimize the number of sensors
were stated. For WDM, the relationships required to
calculate the necessary Bragg wavelengths for a given
strain or temperature measurement range were devel-
oped. Limitations in the use of TDM were discussed,
including constraints on the pulse width, the effect of
chromatic dispersion, the FBG reflectance, and the
first order crosstalk. In consideration of these limi-
tations, simulations using the OptiSystem software for
both multiplexing techniques were undertaken.

WDM is limited by the measurement range, the
spacing between adjacent channels, and the linewidth
of the source and FBGs. An increase in WDM capacity
is possible by using a source with a greater linewidth,
by using FBGs with a narrower linewidth or improved
spectral characteristics. For TDM, it is possible to in-
crease sensor capacity by increasing the input pulse pe-
riod or by decreasing the duration of the input pulse.
Increasing the input pulse period reduces the measure-
ment rate. Chromatic dispersion limits the minimum
pulse width that may be used. The dominant effect is
power limitation. The received power level decreases
with increasing FBG index, i. To measure small power
levels, the equipment with a sufficiently large dynamic
range is required.
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