
INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 13 | NUMBER: 5 | 2015 | DECEMBER

Synthesizing TCP Data Traffic from Industrial
Networks for Simulations

Tomas HEGR, Leos BOHAC

Department of Telecommunication Engineering, Faculty of Electrical Engineering,
Czech Technical University in Prague, Technicka 2, 166 27 Prague, Czech Republic

tomas.hegr@fel.cvut.cz, bohac@fel.cvut.cz

DOI: 10.15598/aeee.v13i5.1501

Abstract. In this paper, authors deal with a problem
of an impaired TCP stream reconstruction from a real-
world captured data. The goal is to obtain an original
application data. The data are synthesized to be used
as an input for a traffic generator. Authors describe a
way to solve specific problems at transport and appli-
cation layers during the reconstruction of an impaired
TCP stream. The traffic reconstruction is oriented to
IEC 60870-5-104 protocol on top of TCP. The eval-
uation of proposed algorithms shows that it is possible
to estimate original time dependencies between received
and dispatched messages with high accuracy.

Keywords

IEC 60870-5-104, simulation, smart grids,
TCP, traffic generator.

1. Introduction

Simulations have been one of the most favored ways of
verifying new architectures and protocols in data net-
works for many years. Although many simulation tools
and environments are used on daily basis, some funda-
mental problems preserve. When a simulation model is
designed, it is important to consider what is the eligible
input data for the simulated scenario. In the context of
communication systems, the simulation input is gener-
ally produced by a traffic generation model. Although
the generation model is often seen as a single entity, it
is not atomic and can be decomposed to the simula-
tion component providing the traffic generation and a
description of the generated traffic.

Traditionally, the traffic generation model is stochas-
tic, but there exist simulations where a deterministic
model is preferable. When the deterministic simula-

tion approach is applied onto a limited problem area, it
can deliver precise results valuable for a network trou-
bleshooting or forensic analysis. On the other hand,
in case the number of simulated traffic flows is exces-
sive, the deterministic traffic generator can become an
obstacle due to its scalability.

Illustrative applications suitable for deterministic
traffic models are implemented in some areas of the
Smart Grid concept. Smart-Grid applications out of
the primary mission-critical control prefer reliability
to latency and use TCP (Transport Control Proto-
col), which provides a connection-oriented, reliable, in-
sequence, byte-stream service [6]. A common example
is a SCADA (Supervisory Control And Data Acquisi-
tion) regularly probing a Remote Terminal Unit (RTU)
for operational data. The SCADA establishes a session
irregularly, and duration of each session is varying in
time. As each ISO/OSI lower layer, including TCP,
is usually simulated according to the defined model,
the only traffic description needed is at the application
layer. However, this is very often the most problem-
atic part, to match real traffic patterns. While requests
generated by traditional user applications is common
to simulate, closed industrial applications are specific
and can be limited only to a single anonymous traffic
capture, because of its confidential nature.

The simulation model of lower ISO/OSI layers in-
cluding TCP is already implemented in most simula-
tors, but the traffic generation at the application layer
is limited. It turns out that the creation of a traf-
fic model based on a real-world captured data is chal-
lenging, especially, if it comes to uncommon protocols.
Moreover, the captured traffic in the area of indus-
trial networks is often heavily burdened by transmis-
sion errors, and it has to be purged of retransmissions,
out-of-order packets, etc.

The main goal of our traffic analysis is to describe the
deterministic traffic model of a particular TCP stream,

c© 2015 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 536

INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 13 | NUMBER: 5 | 2015 | DECEMBER

and thus, synthesize the traffic for any simulation sce-
nario. This model can be imagined as a traffic descrip-
tion set containing instructions about segment lengths,
precise dispatch times and logical dependencies. Con-
sidering the place of a capturing point in the network,
the estimation of parameters mentioned above is a hard
task. In this paper, we address several problems re-
lated to the process of synthesizing traffic description
from data captured in a real-world industrial network.
We focus particularly on IEC 60870-5-104 protocol [4],
which is still one of the most deployed protocols in
power-engineering for a remote control operations.

The paper is structured as follows:

• In Section 2. , we present related research works
and standards.

• Section 3. details challenging problems.

• Section 4. closes up captured stream specifics.

• Section 5. describes our approach to selected
problems.

• In Section 6. , achieved results are presented and
we conclude our paper by summary in Section 7.

2. Related Work

Since the problem of the traffic analysis is complex
and pervades several layers, it requires knowledge of
different protocols and techniques. Beside the applica-
tion layer protocol IEC 60870-5-104 standardized in [4],
the fundamental is the TCP specification published in
RFC 793 [13]. Most of the work on captured data re-
lies on proper data preprocessing. In the context of the
deterministic generator, it means to approximate the
time when the packet is to be dispatched and to reorder
or drop retransmitted and out-of-order packets.

Determining when the packet was originally dis-
patched, if the captured data are collected by an un-
known middle-box, is a task often tackled by authors
in the related area of the passive TCP Round-Trip
Time (RTT) measurement. In recent publications, re-
searchers frequently grounds their estimations in the
Timestamp extension introduced in RFC 1323 [14].
For example, authors of the following publications im-
plemented methods based on the Timestamp exten-
sion [12], [9]. Even though timestamps are very use-
ful when determining the dispatch time, the required
extension is often not incorporated in the TCP imple-
mentation at simple RTUs. Moreover, the published
techniques traditionally neglect part of the latency and
consider the RTT as time it takes to the client’s outgo-
ing TCP packet to be answered by the server right on

the middle-box. This is only true if we can assume that
one part of the network split by the middle-box evinces
a significantly lower latency than the other part. This
approach was attempted by authors in [8].

Focusing on the data preprocessing problem, i.e.
packet retransmission, out-of-order packets and other
transmission disturbances, it is necessary to under-
stand packet’s meaning in the context of the TCP flow.
Authors suggest to track the connection state using a
finite transition-state model as it is proposed in [8],
[7], but such solution is complex. Another approach
published in [1] provides a more straightforward solu-
tion. It is based on a basic packet ordering according
to sequence numbers and consequent identification of
a hole in the communication. Although the proposed
algorithm is simple it gives fast and accurate results in
most cases.

The simple algorithm was incorporated in a traffic
generator called Swing [11]. This traffic generator ob-
serves captured traffic and tries to play it back in a
way that the resulting packet trace realistically match
the characteristics of the original trace. The similar
approach was implemented in RENETO traffic gener-
ator [2] which is aimed to the simulation environment
OMNeT++ [10]. Although the latter generator is not
the only traffic generator for the OMNeT++ environ-
ment, which is the subject of our interest, it is as the
only one dedicated to the reproduction of the real cap-
tured traffic. However, the generator is focused on the
statistical description of the captured traffic which does
not correspond to our goal.

3. Problem Definition

Synthesizing the traffic description from data captured
in an unknown network is a complex task often without
any way of verification. To fulfill requirements of the
deterministic traffic model, it was necessary to recon-
struct a time and logical dependencies of messages at
the application layer. The TCP stream reconstruction
was limited by the following input conditions:

• The data was captured at an arbitrary point be-
tween client and severs.

• The captured traffic contains IEC 60870-5-104, i.e.
it is built on top of TCP/IP.

• The network topology is unknown.

• The captured traffic may be impaired.

As the capturing interface could be placed anywhere
between TCP client and server, it was not possible
to utilize any knowledge of the network topology dur-
ing the TCP stream reconstruction. The method had

c© 2015 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 537

INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 13 | NUMBER: 5 | 2015 | DECEMBER

to be based only on characteristics of the TCP and
IEC 60870-5-104 protocol. We have identified three
main tasks to accomplish the traffic reconstruction:

• Clean the capture of retransmitted packets and
rearrange out-of-order packets.

• Identify logical dependencies between application
messages and if necessary to reorder these mes-
sages.

• Estimate time when the particular application
message was sent and received in context of its
logical dependency.

The traffic generator model requires four parame-
ters to generate a particular, namely sender, message
length, originating message causing generation of the
message (logical dependency) and relative time differ-
ence to its originator after which the message is to
be dispatched (time dependency). However, only the
length of messages and sender are known directly. Two
remaining parameters have to be estimated as a result
of the analysis in Section 4.

3.1. Split Communication Domain

Even though traffic can be captured in distributed
manner on interfaces of communicating or intercon-
necting devices, most frequently the capture is recorded
only on a single interface of an interconnecting network
device. This setup is common for network monitoring
stations, often integrated into regular routers, bridges,
etc. Capturing on the interconnecting device, from now
on referred to as Monitor, always leads to a split com-
munication domain. As is showed in Fig. 1, the split
results in two network segments, which are convention-
ally called upstream and downstream depending on the
placement of the TCP client and server in the network.
In our case, the SCADA server resides in the upstream
segment and RTU is in the downstream path.

SCADA RTUMonitor

Downstream

Bi-directional

TCP stream

Upstream

Fig. 1: The communication domain is split by the Monitor to
two segments with dissimilar transmission conditions af-
fecting the RTT estimation.

Having information only from the Monitor, it is not
possible exactly determine the end-to-end delay be-
tween both communicating devices. Moreover, due to
the nature of upstream and downstream paths, where

the bandwidth can be dissimilar, the traditional pas-
sive RTT estimation is not enough to satisfy analysis
requirements. The RTT can vary significantly during
the time of the connection depending on local transmis-
sion conditions. As was mentioned before, TCP exten-
sion is also not possible to use since many RTU still
implement simple old TCP algorithms. As the proper
knowledge of a delay between RTU and SCADA is nec-
essary for further investigation of TCP retransmissions
and dispatch times, we have decided to implement dy-
namic RTT-to-ACK estimation throughout the whole
capture. The RTT-to-ACK is a time interval between
the TCP segment and its corresponding acknowledg-
ment are captured at the Monitor. The algorithm is
described in the analysis part in Subsection 5.2.

3.2. TCP Retransmissions

One of the main challenges in the TCP stream recon-
struction problem is to deal with TCP retransmissions.
When the TCP retransmission occurs, it disrupts the
ordering or timing of data at the application layer. At
first, to deal with retransmissions, it is necessary to
identify them together with side effects accompany-
ing retransmission from the Monitor perspective, e.g.
duplicated acknowledgments (DUP-ACK) and missing
segments. Primarily, following tasks have to be solved
at transport layer in both directions before it the anal-
ysis of captured data for application dependencies:

• Selection of retransmitted packets to drop and to
keep for the further analysis.

• Reordering of retransmitted out-of-order packets.

• Selection of pairs of retransmitted packet and its
duplicated acknowledgment to drop.

4. Stream-Specific Constrains

We have investigated several available traffic captures
containing dozens of TCP streams of IEC 60870-5-104.
Since the TCP implementation at RTUs is often only
basic TCP Reno, the analysis is in some parts imple-
mentation specific. Main observations resulting from
the available captures are following:

• Not all streams are properly started by the SYN,
SYN-ACK, ACK sequence and properly ended.
Some streams streams are time-outed.

• IEC 60870-5-104 messages are not segmented by
TCP to more packets.

• Most of the captured messages is directly followed
by empty acknowledgments.

c© 2015 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 538

INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 13 | NUMBER: 5 | 2015 | DECEMBER

• Delayed acknowledgments are rare.

• All transmitted messages has set up the TCP push
flag.

• Some streams contain retransmissions originated
in the application layer.

After retransmissions were identified using expres-
sions detailed in Subsection 5.1. , it turned out that
the data for the application layer are affected in follow-
ing cases:

• From the Monitor perspective, a TCP segment
was acknowledged before its retransmission oc-
curs. This means that the TCP segment was suc-
cessfully received and an ACK was sent by the
receiver, but the ACK was lost after it passed the
Monitor. The sender retransmit the packet after
reaching the Retransmission Timeout (RTO) wait-
ing for the ACK again. In such case, we simply
take into account only the first occurrence of the
TCP segment and drop all retransmissions includ-
ing DUP-ACKs.

• There is one or more retransmissions detected with
an ACK following the retransmission sequence.
The retransmitted TCP segment was lost after it
passed the Monitor at least once. In this case, it is
necessary to decide which packets of the sequence
are to be dropped or accepted. The selection pro-
cess is detailed in Subsection 5.3.

• When TCP segment with a sequence number
lower than already passed segment from the same
sender, it is considered to be out-of-order. In such
case, the first packet was lost before it passed the
Monitor. This out-of-order TCP segment has to
be shifted to different place in time. The algorithm
of the selection and time shift process is described
in Subsection 5.4.

Cases above covered all cases of retransmissions oc-
curring in our captured data which does not mean that
these cover all possible TCP states. Our goal was to
deal with the identified issues and not to produce a uni-
versal tool for the TCP traffic reconstruction. Due to
the already mentioned complexity of two final state ma-
chines at two protocol layers we postponed advanced
time shifts to out future work. The main algorithmic
parts of the traffic reconstruction process are described
in following subsections.

5. Algorithm Designs

The traffic reconstruction process is comprised of sev-
eral steps. At first, the captured data is reassembled to

a matrix containing parameters for the following analy-
sis. Subsequently, the retransmitted packets are iden-
tified (Subsection 5.1.), RTT-to-ACK is estimated
for both network segments (Subsection 5.2.), retrans-
mitted packets to drop are selected (Subsection 5.3.)
or reordered (Subsection 5.4.), and eventually the
dependencies between IEC 60870-5-104 messages are
defined (Subsection 5.5.).

5.1. Identification of Retransmitted
Packets

We have inspired approach in the work [1] and based
the retransmission identification on the detection of
holes in sequence numbers. Since the sequence num-
bers from both communication sides have to be mono-
tonically increasing with the number of sent bytes, the
identification of TCP segments standing outside of the
sequence is straightforward. The basic idea is depicted
in Fig. 2.

Since necessary data was structured into a matrix,
we were able to identify retransmissions using basic
column operations. At first we filtered packets from a
time ordered set of packets Eq. (1) for one direction
depending on a source port as in Eq. (2|) for the client
side and in Eq. (3) for the server side. Subsequently,
we filtered out three sets of packets for each of the
communicating sides. This filter is based on difference
of TCP sequence numbers and lengths of TCP segment
in shifted column as is expressed in Eq. (4), Eq. (5)
and Eq. (6). Using this approach, it is obtained a set
of retransmitted packets Cret, a set packets Cpnc where
the previous segment was not captured and finally a set
of DUP-ACKs Cdack. The same process was applied on
the server side packets.

P = {p0, p1...pn} ,
pctimei ≤ pctimei+1 ; i ∈ 〈0;n− 1〉,

(1)

C = {p ∈ P | psrc = client} , (2)
S = {p ∈ P | psrc = server} , (3)

,Cret = C |(Csnum
i −(Csnum

i+1 +Cslen
i+1))<0,

i ∈ 〈0; |C|〉,
(4)

Cpnc = C |(Csnum
i −(Csnum

i+1 +Cslen
i+1))>0,

i ∈ 〈0; |C|〉,
(5)

Cdack = C |(Canum
i −Canum

i+1 =0)∧(Cslen
i =0)∧(Cfin

i 6=1),

i ∈ 〈0; |C|〉.
(6)

Each upper index express an attribute of the partic-
ular object as follows: pctime stands for packet’s cap-
tured time, psrc is packet’s source IP address, Csnum is
TCP sequence number, Cslen is TCP segment length,
Canum is TCP acknowledgment number and Cfin

stands for TCP FIN flag.

c© 2015 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 539

INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 13 | NUMBER: 5 | 2015 | DECEMBER

Time

S
e
q
u
e
n
c
e
 n

u
m

b
e
r

Packet loss on the

way to Monitor

Packet loss on the

way from Monitor

Fig. 2: The undisturbed TCP sequence numbering should be
monotonically increasing. Detecting miss-ordered se-
quence numbers identifies TCP retransmissions.

SCADA RTUMonitor

RTT to ACK X

RTT to ACK Y

RTT to ACK A

ACK X

ACK Y

SEG Y

ACK A

SEG A

SEG X

Time

Fig. 3: The RTT-to-ACK sequence of time windows, where
green windows are for the downstream and red windows
are for the upstream.

5.2. RTT-to-ACK Estimation

Having identified the retransmitted packet, it is pos-
sible to compute the RTT-to-ACK delay throughout
the whole capture dynamically. Iterating through the
captured packets, we simply compute a time difference
between a TCP segment and its ACK coming back
as a response to the sender when passing the Mon-
itor. The algorithm skips identified retransmissions.
As there was a great amount of empty ACKs, i.e. seg-
ments without any payload, coming back from the re-
ceiver in both directions immediately after the TCP
segments, we could limit the algorithm only for such
RTT-to-ACK delays with empty ACKs. This approach
removes an error caused by the time, which is needed
by the receiver to process the application message.

The final product of the RTT-to-ACK is a sequence
of time windows for both upstream and downstream
network segments. It can be interpreted as in the
Fig. 3. We did not involve packet lengths in this
algorithm, as most of the packets were about the same
length.

5.3. Selection from Retransmitted
Packets

When there are one or more identical retransmitted
TCP segments captured one by one and followed only
by an ACK, it is necessary to decide to which of them
the ACK was originally assigned. To deal with this
problem, we took into consideration the RTT-to-ACK
time windows reflecting conditions on the transmission
channel in the particular time domain. Since the anal-
ysis is made off-line, it is possible to incorporate not
only the time windows before the retransmission occurs
but also those from the future.

The Alg. 1 is based on the parameter-scaled RTT-to-
ACK time window closest to the first occurrence of the
retransmission. The parameter σ determine a number
of time windows accepted for a mean RTT-to-ACK.
This value is substituted from the time when the ACK
was captured and then the closest of the retransmit-
ted packets is selected for further analysis. Others are
dropped. The number of considered RTT-to-ACKs is
limited by τ in time and by parameter φ in minimum
number of time windows.

Algorithm 1 Retransmission selection.
Require: Set of retransmitted packets R, RTT-to-

ACK times RAtime for sender, σ scaling factor,
τ max one side time limit, φ min packet limit.

Ensure: Index of the selected packet i.

1: RAclosest = min(|RAtime −R.firsttime|)
2: winit = RAclosest · σ
3: RA = RA ∈ ((R.firsttime − winit), (R.lasttime +
winit))

4: wRAs = RA.lasttime −RA.firsttime
5: wτ = (R.lasttime + τ)− (R.firsttime − τ)
6: if wRAs > wτ then
7: RA = RA ∈ wτ
8: end if
9: if |RA| < φ then

10: RA = φclosestRA
11: end if
12: t = ACKR

time −mean(RA)
13: return i = minindex(|t−Rtime|)

5.4. Packet Reordering

In case the TCP segment was lost before it passed the
Monitor, the retransmitted one can be captured for the
first time after a segment with higher sequence num-
ber already passed the Monitor. The retransmitted
TCP segment is to be placed in before the first occur-
rence of the following segment, which captured time is
tsourceprev . This is the only case where we attempted to
do a time shift during the packet reordering. As it is

c© 2015 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 540

INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 13 | NUMBER: 5 | 2015 | DECEMBER

easy to find out a minimal time delta δsourcemin between
two consecutive packets from a common sender, we es-
timated the time for the out-of-the-order TCP segment
as tsourceprev − δsourcemin .

5.5. Message Dependencies

Finally, last two algorithms describe the way a particu-
lar IEC 60870-5-104 message depends on its originating
message in both time and logical domain. At first, it
is necessary to estimate the time when a message was
sent and received on both communicating sides. This
can be done again using a column shift method on a
newly created column in the original matrix. As we as-
sume that both TCP the bi-directional flow is passing
the same capturing interface and the path in a network
is in both directions symmetrical, we for the simplicity
approximate the end-to-Monitor delay tetm as a half of
RTT-to-ACK which is closest to the investigated TCP
segment. The dispatch time of the message is then es-
timated as td = tcap − tetm, where tcap is a time when
the TCP segment was captured (including the reorder-
ing). Similarly, the time of the message reception is
estimated as tr = tcap + tetm.

The second step is to determine logical dependen-
cies between messages. Since the IEC 60870-5-104 uses
similar mechanism to TCP with sent/to-receive coun-
ters, the relations are simply identified for numbered
messages (type I). However, the IEC 60870-5-104 does
contain also unnumbered messages (type U) and super-
visor messages (S). For this reason, we implemented a
simple decision algorithm in Alg. 2.

Algorithm 2 Message dependencies.
Require: Investigated message m. Set of captured

messages M .
Ensure: Originating message o.

1: α = (Msrc 6= msrc) ∧ (M tcap < mtcap)
2: if mtype == U then
3: o = last(M |α)
4: end if
5: if mtype == S then
6: o = last(M |α∧(Mtx=mrx−1))
7: end if
8: if mtype == I then
9: o = (M |α∧(Mrx=mtx)∧max(Mrx))

10: end if
11: return o

Although the Alg. 2 always led to proper results with
logical dependencies, it was necessary to correct some
results in the case of the time dependencies. The time
difference between the originator tr and its successors
ts could give the overlapping timestamps. Since the
message cannot be sent before its logical originator

was received, we have implemented time barriers. In
case of the overlapping times, the time difference of
the successor dispatch time is changed to zero. Time
barriers are also implemented to check estimated times
against captured times. As the message, depending on
the communicating side, cannot be received or sent be-
fore it was captured. In such case, the dispatch time is
shifted in the middle of related captured times.

6. Evaluation

Each algorithm described in previous Section 5. was
integrated into a complex application to analyze TCP
streams from a real-world capture containing the IEC
60870-5-104 communication. Since it was not possible
to verify the proposed approach on a capture from the
undefined network topology without exact information
from both communicating sides, we decided to base
the evaluation on simulations. The evaluation focuses
mainly on the domain of time dependencies.

The simulation model was designed as an industrial
network with a point-to-point low-bandwidth channel
for telemetric operations. Even though the channel is
usually burdened with high Bit Error Rate (BER) in
such setups, it is often shared by more TCP streams
in parallel. The network model depicted in Fig. 4
consists of two connection types. First one, which
is placed between Monitor and Routers, is a low-
bandwidth channel with bandwidth 14 kbps and BER
10−4. The second one, placed between Routers and end
devices, is the standard FastEthernet with bandwidth
100 Mbps and BER 10−10. The payload of inspected
TCP streams was designed according to patterns found
in the real-world captured IEC 60870-5-104 traffic. In
our scenarios, the connection was always initiated from
RTU sending bulk application data [3] in predefined
times towards the SCADA server, which responded at
least by 6 bytes of application data with probability
varying from 0.3 to 0.5. To make the simulation more
realistic, we loaded shared links by 5 concurrent TCP
streams transferring random block data. Each simula-
tion scenario was repeated one hundred times.

The analysis is based on three captures produced
on SCADA, RTU and Monitor at each simulation run.
All captures were recorded at devices with absolutely
synchronized system times, and thus, capture time of
each captured frame had the same initial time point.
Following estimations are based clearly on the capture
from the Monitor, as in the real-world case. Remain-
ing captures were used only for comparison purposes.
Results characterizing TCP streams are shown in
Tab. 1. As one can see, the TCP stream length is
varying significantly for different streams. This is due
the several factors. At first, the capture itself had lim-
ited length, and at second, some streams were during

c© 2015 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 541

INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 13 | NUMBER: 5 | 2015 | DECEMBER

Fig. 4: Simulation topology of industrial network with low-
bandwidth connections between Routers and Monitor.

the capturing disconnected and repeatedly established.
It is also notable that a total number of packets is in
some case almost two times higher than the total num-
ber of transferred application messages (RTU and SCD
messages).

Tab. 1: Rounded mean values characterizing TCP streams.

Id Length
[s]

Total
pckts.

[-]

Re-
order

[-]

Drop
[-]

RTU
msg.
[-]

SCD
msg
[-]

8 6352 2680 10 69 1073 420
10 2634 406 3 33 87 49
12 1498 419 4 18 163 86
13 1832 298 4 15 102 48
17 4352 1080 12 52 386 126

At first, we focused on a time difference between
two messages representing a SCADA control command
and RTU responses, and vice versa. As the simulated
data had no logical dependency defined at the applica-
tion layer, we have determined the originator, i.e. the
message causing dispatch of application triggered mes-
sages, as the closest TCP segment with non-zero length
and acknowledgment number lower than message to be
dispatched. Due to this step, all messages had origi-
nator preceding their dispatch time which correlates
with the observed behavior of the IEC 60870-5-104
protocol. The results of deviations between estimated
and real time differences obtained from simulations are
depicted in Fig. 5a. If we compare the mean deviation
of the particular TCP stream with the real-time differ-
ence between messages showed in Fig. 5b, we can find
that the relative deviation is up to 4 %. This is an
acceptable level for most simulation purposes.

At Second, we attempted to evaluate an end-to-end
delay as a second product of the time estimations based
on the dynamic RTT-to-ACK evaluation. Although
this is not directly related to the produced traffic
description for the traffic generator, it illustrates the
accuracy of the proposed approach. Results showing
deviations between the estimated and real end-to-end
delays are depicted in Fig. 6a. If we compare those
results with a corresponding mean end-to-end delays
showed in Fig. 6, we can see that the relative devia-
tion reaches 12 % in worst case. Even though this is a
higher number than in the case of time dependencies,
it is still tolerable in the scope of this article.

8 10 12 13 17
Stream number [-]

0.7

0.8

0.9

1.0

1.1

D
e
v
ia

ti
o
n
 b

e
tw

e
e
n
 e

st
im

a
te

d
 a

n
d
 r

e
a
l
ti

m
e
 d

if
fe

re
n
ce

 [
s]

(a) Deviation between es-
timated and real times
differences.

8 10 12 13 17
Stream number [-]

0

50

100

150

200

250

R
e
a
l
ti

m
e
 d

if
fe

re
n
ce

 [
s]

(b) Time differences be-
tween an originator
triggered messages.

Fig. 5: Comparison of real time differences between originator
and dispatched messages obtained from end devices de-
picted in Fig. 5b with their deviation showed in Fig. 5a.
A red line stands for mean value, a blue box shows first
and third quartile and whiskers are placed on 5 % and
95 % borders.

8 10 12 13 17
Stream number [-]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

D
e
v
ia

ti
o
n
 b

e
tw

e
e
n
 e

st
im

a
te

d
 a

n
d
 r

e
a
l
e
n
d
-t

o
-e

n
d
 d

e
la

y
 [

s]

(a) Deviation between
end-to-end delays.

8 10 12 13 17
Stream number [-]

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

R
e
a
l
e
n
d
-t

o
-e

n
d
 d

e
la

y
 [

s]

(b) Real end-to-end delay
in both directions.

Fig. 6: Deviation of real end-to-end delays and estimated end-
to-end delays in Fig 6a shows the accuracy of the pro-
posed approach in comparison to real end-to-end delays
analyzed in both directions and depicted in Fig. 6b.

7. Conclusion

The traffic generators used in simulation environments
often suffer by an insufficient real-world traffic sources.
Due to this reason, we decided to create an analyzer of
the IEC 60870-5-104 protocol with the goal to synthe-
size a captured traffic to form a description file, which
can be used as an input for traffic generators. Proposed
algorithms show a possible way how to deal with the
reconstruction of the original application data from an
impaired TCP stream.

c© 2015 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 542

INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 13 | NUMBER: 5 | 2015 | DECEMBER

The presented approach, which is based on the dy-
namic evaluation of the RTT-to-ACK delay, proved its
usability when estimating time dependencies for gen-
erated applications messages. Simulation results show
that the relative deviation between estimated and real
end-to-end delays reaches up to 12 %. Even more
encouraging results were obtained in case of relative
deviation between estimated and real time differences
reaching in average only 4 % at investigated TCP
streams.

Since we understand that the analysis is now limited
to the specific TCP implementation, we plan to extend
it for other implementations and to verify our results
in the field as well.

Acknowledgment

This work was supported by grant
no. VG20132015104, and by grant no.
SGS13/200/OHK3/3T/13.

References

[1] BENKO, P. and A. VERES. A passive method for
estimating end-to-end TCP packet loss. In: Global
Telecommunications Conference 2002 (GLOBE-
COM ’02). Taipei: IEEE, 2002, pp. 2609–
2613. ISBN 0-7803-7632-3. DOI: 10.1109/GLO-
COM.2002.1189102.

[2] GEYER, F., S. SCHNEELE and G. CARLE.
RENETO, a realistic network traffic generator for
OMNeT++/INET. In: Proceedings of the 6th In-
ternational ICST Conference on Simulation Tools
and Techniques. Brussels: ICST, 2013, pp. 73–81.
ISBN 978-1-4503-2464-9.

[3] HEGR, T. Simulation patterns of the RTU traffic.
2015.

[4] IEC 60870-5-104. Transmission protocols-Network
access for IEC 60870-5-101 using standard trans-
port profiles. Geneva: IEC, 2006.

[5] JIANG, H. and C. DOVROLIS. Passive estima-
tion of TCP round-trip times. ACM SIGCOMM
Computer Communication Review. 2002, vol. 32,
iss. 3, pp. 75–88. ISSN 0146-4833.

[6] LEON-GARCIA, A. and I. WIDJAJA. Com-
munication networks: fundamental concepts and
key architectures. Boston: McGraw-Hill, 2000.
ISBN 00-702-2839-6.

[7] LU, G. and X. LI. On the correspondency be-
tween TCP acknowledgment packet and data

packet. In: Proceedings of the Conference on In-
ternet measurement - IMC ’03. New York: ACM
Press, 2003, pp. 259–272. ISBN 1-58113-735-4.
DOI: 10.1145/948205.948239.

[8] SCHIAVONE, M., P. ROMIRER-
MAIERHOFER, F. RICCIATO and A. BAIOC-
CHI. Towards Bottleneck Identification in Cellular
Networks via Passive TCP Monitoring. Ad-hoc,
Mobile, and Wireless Networks. 2014, vol. 8487,
no. 1, pp. 72–85. ISBN 978-3-319-07424-5.
DOI: 10.1007/978-3-319-07425-2_6.

[9] STROWES, S. D. Passively Measuring TCP
Round-trip Times. Queue - High-frequency Trad-
ing. 2013, vol. 11, iss. 8, pp. 50–61. ISSN 1542-
7730. DOI: 10.1145/2523426.2539132.

[10] VARGA, A. The OMNeT++ Discrete Event Sim-
ulation System. In: Proceedings of the Eu-
ropean Simulation Multiconference (ESM’2001).
Prague: ESM, 2001, pp. 1–65. ISBN 1-56555-225-
3.

[11] VISHWANATH, K. V. and A. VAHDAT. Real-
istic and responsive network traffic generation.
In: Proceedings of the 2006 conference on Applica-
tions, technologies, architectures, and protocols for
computer communications (SIGCOMM ’06). New
York: ACM Press, 2006, pp. 111–122. ISBN 1-
59593-308-5. DOI: 10.1145/1159913.1159928.

[12] HAIJIN, Y., K. LI, S. WATTERSON and D.
LOWENTHAL. Improving passive estimation of
TCP round-trip times using TCP timestamps.
In: Proceedings of IEEE International Work-
shop on IP Operations and Management. Bei-
jing: IEEE, 2004, pp. 181–185. ISBN 0-7803-8836-
4. DOI: 10.1109/IPOM.2004.1547614.

[13] RFC 793: Transmission Control Protocol. In-
ternet Engineering Task Force (IETF) [online].
1981. Available at: http://www.ietf.org/
rfc/rfc793.txt.

[14] RFC 1323: TCP Extensions for High Perfor-
mance. Internet Engineering Task Force (IETF)
[online]. 1992. Available at: http://www.ietf.
org/rfc/rfc1323.txt.

About Authors

Tomas HEGR received his M.Sc. in computer
science at the Czech Technical University in Prague
in 2012. He participates in teaching activities at the
department of Telecommunication engineering. His
research interests involve industrial networks based
on Ethernet and Software-Defined Networking in all

c© 2015 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 543

http://dx.doi.org/10.1109/GLOCOM.2002.1189102
http://dx.doi.org/10.1109/GLOCOM.2002.1189102
http://dx.doi.org/10.1145/948205.948239
http://dx.doi.org/10.1007/978-3-319-07425-2_6
http://dx.doi.org/10.1145/2523426.2539132
http://dx.doi.org/10.1145/1159913.1159928
http://dx.doi.org/10.1109/IPOM.2004.1547614
http://www.ietf.org/rfc/rfc793.txt
http://www.ietf.org/rfc/rfc793.txt
http://www.ietf.org/rfc/rfc1323.txt
http://www.ietf.org/rfc/rfc1323.txt

INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 13 | NUMBER: 5 | 2015 | DECEMBER

research areas.

Leos BOHAC received the M.Sc. and Ph.D.
degrees in electrical engineering from the Czech
Technical University, Prague, in 1992 and 2001,

respectively. Since 1992, he has been teaching optical
communication systems and data networks with the
Czech Technical University, Prague. His research
interest is on the application of high-speed optical
transmission systems in a data network.

c© 2015 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 544

	Introduction
	Related Work
	Problem Definition
	Split Communication Domain
	TCP Retransmissions

	Stream-Specific Constrains
	Algorithm Designs
	Identification of Retransmitted Packets
	RTT-to-ACK Estimation
	Selection from Retransmitted Packets
	Packet Reordering
	Message Dependencies

	Evaluation
	Conclusion

