
CONTROL ENGINEERING VOLUME: 12 | NUMBER: 5 | 2014 | DECEMBER

Transition Based Synthesis with Modular Encoding
of Petri Nets into FPGAs

Arkadiusz BUKOWIEC, Jacek TKACZ, Marian ADAMSKI

Institute of Computer Engineering and Electronics,
Faculty of Electrical Engineering, Computer Science and Telecommunications,

University of Zielona Gora,
Podgorna 50, 65-246 Zielona Gora, Poland

a.bukowiec@iie.uz.zgora.pl, j.tkacz@iie.uz.zgora.pl, m.adamski@iie.uz.zgora.pl

Abstract. The paper describes a new method for the
synthesis of the application specific logic controllers,
targeted into the FPGA. The initial steps of the pro-
posed control algorithm rely on the notion of a Petri
net, which is an easy way to describe parallel processes.
The algorithm is oriented on transition based logic de-
scription. It allows easy analysis of dynamics and func-
tioning of the circuit. The logic circuit is also decom-
posed into logic blocks responsible for particular func-
tions. It leads to the compact implementation with us-
age of different kind of logic elements like. Additionally
such decomposition allows easy analysis of circuit.

Keywords

Application specific logic controller, FPGA,
logic synthesis, Petri net, structural decompo-
sition.

1. Introduction

A Petri net (PN) [10], [9] is one of the most popular
models used in formal design and synthesis of the ap-
plication specific logic controllers (ASLCs) [13], [15],
[6]. The digital design of such controllers is very of-
ten implemented using field programmable gate arrays
(FPGAs) [1], [15], [2], [16]. The most typical imple-
mentation of Petri nets in the FPGA devices uses the
one-hot local state encoding method, where each place
is represented by a flip-flop [11]. Such approaches are
oriented towards places based logic description. Addi-
tionally, this approach requires hardware implementa-
tion of a large number of logic functions and flip-flops
included in logic blocks.

In this paper we propose a new method for the syn-
thesis of a Petri net. To allow its effective synthesis,

the Petri net is initially converted into Petri macronet
[9], [14]. The proposed algorithm is oriented towards
transition based logic description. It means, that com-
binational equations describe transitions [5] in opposite
to classical algorithms where they describe places [4].
It easy allows to analyze the dynamics of logic con-
troller by exporting variables that describes transition
in Boolean algebra. Additionally, the operations are
encoded with a minimal-length binary vector. This en-
coding allows the realization of logic circuit in compact
way. A microoperation decoder can be implemented
with the use of embedded memory blocks of an FPGA
[12]. It permits the stable work of whole controller.

2. Petri Net

A Petri net [10], [9] is defined as a triple:

PN = (P, T, F), (1)

where:

• P is a finite non-empty set of places,
P = {p1, . . . , pM},

• T is a finite non-empty set of transitions,
T = {t1, . . . , tS},

• F is a set of arcs (from places to transitions and
from transitions to places):

F ⊆ (P × T) ∪ (T × P),

P ∩ T = ∅.

The sets of input and output transitions of a place
pm ∈ P are defined respectively as follows:

•pm = {ts ∈ T : (ts, pm) ∈ F},
pm• = {ts ∈ T : (pm, ts) ∈ F}.

c© 2014 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 435

CONTROL ENGINEERING VOLUME: 12 | NUMBER: 5 | 2014 | DECEMBER

Sets of input and output places of a transition ts ∈ T
are defined respectively as follows:

•ts = {pm ∈ P : (pm, ts) ∈ F},
ts• = {pm ∈ P : (ts, pm) ∈ F}.

A marking of a Petri net is defined as a function:

M : P → N.

For a given place pm the function M(pm) returns
the number of tokens in pm. A place or a set of places
is marked if it contains a token. A transition ts can
be fired if all its input places are marked. Firing a
transition removes one token from each input place and
puts one token in each output place. When the initial
marking M0 is additionally specified, the Petri net can
be represented as a tuple:

PN = (P, T, F,M0). (2)

2.1. Interpreted Petri Net

A Petri net enhanced with an additional feature for
information exchange is called an interpreted Petri net
[9]. This exchange is made by use of binary signals.
Interpreted Petri nets are used as models of concurrent
logic controllers.

The Boolean variables occurring in the interpreted
Petri net can be divided into three sets:

• X is the set of input variables, X = {x1, . . . , xL},

• Y is the set of output variables (microoperations
- µO), Y = {y1, . . . , yN},

• Z is the set of internal communication variables
(usually not used, with Z = ∅).

An interpreted Petri net has a guard condition ϕs
associated with every transition ts. The guard condi-
tion ϕs is defined to be a Boolean function of a subset
of variables from the sets X and Z. In a special case,
the condition ϕs can be defined as 1 (always true).
Now, a transition ts can be fired if all its input places
are marked and the current value of the corresponding
Boolean function ϕs is equal to 1.

The conjunction ψm associated with a place pm is
an elementary conjunction of positive literals formed
from output variables from the set Y . If the place pm is
marked, the output variables from corresponding con-
junction ψm are set and other variables are reset. The
conjunction ψm correspond to microinstruction (µI).

2.2. Macro Petri Net

Macro Petri net is a Petri net where part of the net
(subnet) is replaced by one macroplace [9]. It allow
to enhance Petri nets with hierarchy [7] and it sim-
plifies algorithms of coloring and verification of Petri
net. There are many classes of subnets that could be
replaced by macroplace, for e.g.:

• State machine subnets [10],

• Two-pole blocks [9],

• Parallel places [10],

• P-blocks [9].

These classes create to many possibilities of merging
Petri net into macro Petri net. For the synthesis pur-
pose, the best solution is application of mono-active
macroplaces [9]. This is macroplaces that have one
input and one output and consist of only sequential
places. Only Petri macronets with such macroplaces
will be used in this article.

3. Idea of Synthesis Method

The idea of proposed synthesis method is based on the
modular encoding of places together with functional
parallel decomposition of the Petri net-based logic cir-
cuit [4]. The novelty of this approach is that places are
encoded with use of minimal length code separately
inside each macroplace and macroplaces are encoded
with use of one-hot encoding. The state of Petri net is
determined by concatenation of these codes. Combina-
tional circuit is oriented towards transition generation,
and output variables (names of particular microopera-
tions) are placed in configured memories of FPGA. It
leads to realization of a logic circuit in double-level ar-
chitecture (Fig. 1), where the transition coder (TC) of
first level is responsible for activation of the transitions:

T = TC(X,Q), (3)

The register block (REG) holds a current state of
Petri net in the register (RG). It also has additional
custom combinational logic (LOGIC) connected to its
inputs. This logic is responsible for generation of the
next state based on active transitions and current state:

Q∗ = RG(LOGIC(T,Q)), (4)

where Q is the set of variables used to store the codes
of currently marked places and macroplaces. The in-
ternal custom combinational logic of the register also
generates the code of microoperation:

Z = LOGIC(T,Q), (5)

c© 2014 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 436

CONTROL ENGINEERING VOLUME: 12 | NUMBER: 5 | 2014 | DECEMBER

where Z is the set of variables used to store the codes of
currently executed microinstruction. The second level
decoder (D) is responsible for generation of microoper-
ations based on microinstruction code and it is imple-
mented using memory blocks. Their functionality can
be described by function:

Y = D(Z). (6)

Fig. 1: Logic circuit of Petri net.

Such approach allows to use logic elements and em-
bedded memory blocks available in modern FPGA de-
vices.

The entry point to the synthesis method is the inter-
preted Petri macronet. The outline of synthesis process
includes following steps:

• Modular encoding of places. The purpose of this
step is to assign the shortest binary local code
Ko(pm) to each place pm inside each macroplace
mpo, where o = 1, . . . , O and it is an number of
macroplace. Macroplaces are encoded by assign-
ing the one-hot code K(mpo) to each macroplace
mpo. The global code C(pm) of global place pm is
determined as concatenation of these codes:

C(pm) = K(mpo) ∗Ko(pm). (7)

The total required number of variables for encod-
ing is equal to:

R = O +

O∑
o=1

ro, (8)

where ro is a required number of variables for o-th
macroplace:

ro = dlog2(|Po|)e, (9)

where Po ⊆ P is a set of places that are placed
inside macroplace mpo.
To store the macroplace code we use Q0 =
{q1, . . . , qO} variables and to store the local place
codes we use Qo = {qO+r+1, . . . , qO+r+ro} (r =∑o−1
j=1 rj). Now, these variables create set Q =⋃O
o=0Q

o and |Q| = R.
The process of encoding begins from assigning the
one-hot codes to macroplaces. Then, places re-
ceive minimal length codes inside each macroplace
independently.

• Formation of microinstructions. Let all microop-
erations create U different microinstructions Yu ⊆
Y , Υ = {Y1, . . . , YU} in the Petri net. Let cre-
ate O subsets Υo ⊆ Υ, where Υo consists only of
microinstructions associated with places from set
Po.

• Encoding of microinstructions. All microinstruc-
tions are encoded by binary code Co(Yu) sepa-
rately in each subset Υo. The number of variables
used is

ρo = dlog2(|Υo|+ 1)e. (10)

To store this code we use Zo = {zρ+1, . . . , zρ+ρo}
(ρ =

∑o−1
j=1 ρj) variables and Z =

⋃O
i=1 Z

o. The
process of encoding is trivial, and it required to as-
sign binary code Co(Yu) to each microinstruction
Yu ∈ Υo starting from value 1. The value 0 is re-
served for situation where considered place do not
generate any microinstruction. Let assume that
particular one microinstruction Yu can belong to
several subsets. In such situation it will receive
several codes.

• Formation of conjunctions. Conjunctions describe
macroplaces, places and global places. They are
needed for easier form of Eq. (3) and Eq. (5) that
describe digital circuit. The conjunction describ-
ing the macroplace mpo equals to the affirmation
of variable qo ∈ Q0. This variable is equal to 1
in the code K(mpo). The conjunction describing
the place pm consists of affirmation or negation of
variables qr ∈ Qo that are used to store the code
Ko(pm) of this place. If variable qr is equal to 1 in
the code Ko(pm) then affirmation of this variable
is used otherwise its negation is used. The con-
junction describing the global place pm consists of
the macroplacempo and the place pm conjunction.
It corresponds to the code C(pm).

• Formation of logic equations. Logic equations de-
scribe Eq. (3) and Eq. (5) of combinational cir-
cuit TC and custom combinational logic LOGIC of
register REG. The characteristic function of tran-
sition is defined as conjunction of conjunctions of
all its input global places and guard condition:

ts =
∧

(•ts) ∧ ϕs. (11)

The function to generate the code of next place
calculated by the custom combinational logic
LOGIC is defined as:

qr = qr ⊕
∨

(•qr)⊕
∨

(qr•), (12)

and the function to generate code microoperation
is defined as:

zρ =
∨

(Pzρ), (13)

c© 2014 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 437

CONTROL ENGINEERING VOLUME: 12 | NUMBER: 5 | 2014 | DECEMBER

where Pzρ is a set of global places conjunctions
that generate microoperations Yu represented by
the Co(Yu) that has variable zρ set to 1.

• Formation of memory contents. The memory con-
tent can be described as tables or as equations
according to the function Eq. (6). In case of tabu-
lar description there is required to create O tables.
The table consists of two columns. First column is
an address and it is described by variables zρ ∈ Zo.
The second column is a binary value (vector) of op-
erations. It is based on value of output variables
form the set Y o =

⋃u=|Υo|
u=1 Yu|Yu ∈ Υo. In each

line of the table, there should be placed a binary
value with only these bits yn set that are in mi-
croinstruction Yu represented by code Co(Yu) that
equals to the address from the first column of this
line.

• Formation of logic circuit and implementation.
This step describes the rules of design of the
Petri net HDL model and its implementation into
FPGA device. Here is applied a bottom-up ap-
proach. Conjunctions of places can be described
using standard bit-wise operators. Then logic
equations can be described with the use of these
conjunctions using continuous assignments or pro-
cedural assignments as well as bit-wise operators.
There should be created a module for circuit TC
with inputs X and Q and outputs T . The reg-
ister REG should be described as R-bits register
with an asynchronous set. The typical synthesis
template can be used [3]. the decoderD can be de-
scribed as processes with the case statement. As,
the embedded memory blocks are synchronous,
the sensitivity list of such processes includes only
clock signal. The reset has to be realized as a syn-
chronous one because typical memory blocks do
not support any asynchronous control signal. To
ensure that such a described module could be syn-
thesized as a memory block it is required to set the
value of the special synthesis directive. The syntax
of this directive depends on FPGA vendor. The
top-level module should describe connections of all
components according to the block diagram pre-
sented in Fig. 1. Additionally the global reset and
clock signals are connected to set and clock inputs
of register and reset and clock inputs of decoder.
The edge that trigs the decoder has to be opposite
to the edge that trigs the register, and then oper-
ations are generated during only one clock cycle.
The created model of logic circuit can be passed
into third-party synthesis tool.

4. Example of Method
Application

The method of Petri net synthesis, described in the
previous section, is illustrated by its application on
Petri net PN1 (Fig. 2a). This Petri net describes con-
trol process of an industrial mixer of aggregate content
and water [8]. This Petri net is not complicated and
it is a good example to illustrated a synthesis steps.
For the synthesis purpose it was compacted into Petri
macronet (Fig. 2b).

Firstly, the places have to be encoded (step Modular
encoding of places). There is O = 6 macroplaces, so it
is required to use r0 = 6 variables Q0 = {q1, . . . , q6} to
encode macroplaces. Macroplaces contains respectively
2, 1, 3, 1, 2, and 2 places, so it is required to use r1 = 1,
r2 = 1, r3 = 2, r4 = 1, r5 = 1, and r6 = 1 variables
Q1 = {q7}, Q2 = {q8}, Q3 = {q9, q10}, Q4 = {q11},
Q5 = {q12}, and Q6 = {q13} to encode places inside
each macroplace. In total, it is required to use R =
13 variables Q = {q1, . . . , q13} to encode all places.
Macroplaces receive following one-hot codes K(mpo)
using variables from Q0 subset:

K(mp1) = 1−−−−−; K(mp2) = −1−−−−;
K(mp3) = −− 1−−−; K(mp4) = −−−1−−;
K(mp5) = −−−− 1−; K(mp6) = −−−−−1;

and places receive following binary codesKo(pm) inside
each macroplace using variables from correspondingQo
subset:

K1(p1) = 0; K1(p2) = 1; K2(p3) = 1;
K3(p4) = 00; K3(p5) = 01; K3(p6) = 10;
K4(p7) = 1; K5(p8) = 1; K5(p9) = 0;
K6(p10) = 0; K6(p11) = 1;

As an alternative, the Gray code can be applied also
for places.

When encoding of places is finished the microinstruc-
tions can be formed (step Formation of microinstruc-
tions) and encoded (step Encoding of microinstruc-
tions). The set of microinstructions Υ is formed based
on control algorithm and for the example Petri net
PN1 there is U = 6 different microinstructions: Y1 =
{Y T1}, Y2 = {Y V 1}, Y3 = {Y T2}, Y4 = {Y V 2}, Y5 =
{YM}, Y6 = {Y V 3}, and Υ = {Y1, Y2, Y3, Y4, Y5, Y6}.
This set is divided into O = 6 subsets: Υ1 = {Y1},
Υ2 = {∅}, Υ3 = {Y2, Y3}, Υ4 = {∅}, Υ5 = {Y4},
and Υ6 = {Y5, Y6}. Empty sets are omitted in the
encoding process and now, microinstructions can be
encoded with ρ1 = 1, ρ3 = 2, ρ5 = 1, and ρ6 = 2
variables Z1 = {z1}, Z3 = {z2, z3}, Z5 = {z4}, and
Z6 = {z5, z6}. The sample encoding can be as follows:

C1(Y1) = 1; C3(Y2) = 01; C3(Y3) = 10;
C5(Y4) = 1; C6(Y5) = 01; C6(Y6) = 10;

c© 2014 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 438

CONTROL ENGINEERING VOLUME: 12 | NUMBER: 5 | 2014 | DECEMBER

(a)

(b)

Fig. 2: (a) Petri net PN1 and (b) its Petri macronet.

When all encodings are finished place conjunctions
(step Formation of conjunctions) and logic equations
(step Formation of logig equations) can be formed.
Place conjunctions are created on the base of the place
codes. First place conjunctions of macroplaces have to
be denoted and for the Petri net PN1 that is as follows:

mp1 = q1; mp2 = q2; mp3 = q3;
mp4 = q4; mp5 = q5; mp6 = q6;

Then, conjunctions of local place inside each
macroplace can be formed:

lp1 = q7; lp2 = q7; lp3 = q8;
lp4 = q9 q10; lp5 = q9 q10; lp6 = q9 q10;
lp7 = q11; lp8 = q12; lp9 = q12;
lp10 = q13; lp11 = q13;

Finally, conjunctions of global places can be created
based on Eq. (7):

p1 = mp1 lp1; p2 = mp1 lp2; p3 = mp2 lp3;
p4 = mp3 lp4; p5 = mp3 lp5; p6 = mp3 lp6;
p7 = mp4 lp7; p8 = mp5 lp8; p9 = mp5 lp9;
p10 = mp6 p10; p11 = mp6 p11;

After that, logic equations for each transition ts can
be formed:

t1 = p1 xn1; t2 = p2 p3; t3 = p4 xf1;
t4 = p5 xn2; t5 = p6 xf1; t6 = p7 p8;
t7 = p10 xf4; t8 = p11 xf3; t9 = p9 xf2

and logic equation for each variable qr can be denoted:

q1 = q1 ⊕ t5 ⊕ t2; q2 = q2 ⊕ t8 ⊕ t2;
q3 = q3 ⊕ t2 ⊕ t5; q4 = q4 ⊕ t5 ⊕ t6;
q5 = q5 ⊕ t8 ⊕ t6; q6 = q6 ⊕ t6 ⊕ t8;
q7 = q7 ⊕ t1 ⊕ t2; q8 = q8 ⊕ t8 ⊕ t2;
q9 = q9 ⊕ t4 ⊕ t5; q10 = q10 ⊕ t3 ⊕ t4;
q11 = q11 ⊕ t5 ⊕ t6; q12 = q12 ⊕ t9 ⊕ t6;
q13 = q13 ⊕ t7 ⊕ t8;

and logic equation for each variable zρ can be created:

z1 = p1; z2 = p5; z3 = p4 ∨ p6

z4 = p9; z5 = p11; z6 = p10

Then, the content of operation memory can be
formed (step Formation of memory contents). In case
of Petri net PN1 there have to be created four such
tables which are shown in Tab. 1. Two macroplaces do
not generate any microinstructions so they are omitted.

Finally, the logic circuit can be described (step For-
mation of logic circuit and implementation) In our ap-
proach the VHDL was used. But in similar way it can
be also described with the use of Verilog. The mod-
ule for circuit TC (Fig. 3) uses input variables and

c© 2014 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 439

CONTROL ENGINEERING VOLUME: 12 | NUMBER: 5 | 2014 | DECEMBER

entity TC i s
port (XN1, XF1, XN2, XF2, XF3, XF4 : in

STD_LOGIC;
Q : in STD_LOGIC_VECTOR(1 to 13) ;
T : out STD_LOGIC_VECTOR(1 to 9)) ;

end TC;
architecture TC of TC i s

signal mp : STD_LOGIC_VECTOR(1 to 6) ;
signal lp : STD_LOGIC_VECTOR(1 to 11) ;
signal p : STD_LOGIC_VECTOR(1 to 11) ;

begin
mp(1) <= Q(1) ;
mp(2) <= Q(2) ;
. . .
mp(6) <= Q(6) ;
lp (1) <= not Q(7) ;
lp (2) <= Q(7) ;
. . .
lp (11) <= Q(13) ;
p (1) <= mp(1) and lp (1) ;
p (2) <= mp(1) and lp (2) ;
. . .
p (11) <= mp(6) and lp (11) ;
T(1) <= p (1) and XN1;
T(2) <= p (2) and p (3) ;
. . .
T(9) <= p (9) and XF2 ;

end TC;

Fig. 3: VHDL description of transition coder.

entity REG i s
port (c lk , r e s : in STD_LOGIC;

T : in STD_LOGIC_VECTOR(1 to 9) ;
Q : out STD_LOGIC_VECTOR(1 to 13) ;
Z : out STD_LOGIC_VECTOR(1 to 6)) ;

end REG;
architecture REG of regREGis

signal intQ : STD_LOGIC_VECTOR(1 to 13) ;
signal mp : STD_LOGIC_VECTOR(1 to 6) ;
signal lp : STD_LOGIC_VECTOR(1 to 11) ;
signal p : STD_LOGIC_VECTOR(1 to 11) ;

begin
RG: process (c lk , r e s) begin

i f r e s = ’1 ’ then
intQ <= "1100100100000" ;

e l s i f (RISING_EDGE(c lk)) then
intQ (1) <= intQ (1) xor T(5) xor T(2) ;
. . .
intQ (12) <= intQ (12) xor T(9) xor T(6) ;
intQ (13) <= intQ (13) xor T(7) xor T(8) ;

end i f ;
end process ;
Q <= intQ ;
mp(1) <= . . .
lp (1) <= . . .
p (1) <= . . .
Z(1) <= p (1) ;
. . .
Z(6) <= p(10) ;

end reg ;

Fig. 4: VHDL description of register.

conjunctions in continuous assignments for transition.
Conjunctions are defined as internal signals and they
are described as continuous assignments.

entity D i s
port (c lk , r e s : in STD_LOGIC;

Z : in STD_LOGIC_VECTOR(1 to 6) ;
YT1, YV1, YT2, YV2, YM, TV3 : out

STD_LOGIC) ;
attribute bram_map : s t r i n g ;
attribute bram_map of D: entity i s " yes " ;

end D;
architecture D of D i s
begin

O1: process (c l k) begin
i f FALLING_EDGE(c lk) then

i f r e s = ’1 ’ then
YT1 <= ’ 0 ’ ;

else case Z(1) i s
when ’ 0 ’ => YT1 <= ’ 0 ’ ;
when ’ 1 ’ => YT1 <= ’ 1 ’ ;
when others => YT1 <= ’ 0 ’ ;

end case ;
end i f ;

end i f ;
end process ;
O3 : process (c l k) begin

i f FALLING_EDGE(c lk) then
i f r e s = ’1 ’ then

YV1 <= ’ 0 ’ ; YT2 <= ’ 0 ’ ;
else case Z(2 to 3) i s

when "00" => YV1 <= ’ 0 ’ ; YT2 <= ’ 0 ’ ;
when "01" => YV1 <= ’ 1 ’ ; YT2 <= ’ 0 ’ ;
when "10" => YV1 <= ’ 0 ’ ; YT2 <= ’ 1 ’ ;
when others => YV1 <= ’ 0 ’ ; YT2 <= ’ 0 ’ ;

end case ;
end i f ;

end i f ;
end process ;
O5 : process . . .
O6 : process . . .

end D;

Fig. 5: VHDL description of operations decoder.

Fig. 6: Block diagram of top-level module.

The module of register REG (Fig. 4) describes the
logic of code changes and generate code of microin-
struction. It also requires definition of conjunctions as
internal signals.

The decoder D (Fig. 5) generates outputs signals.

It can be synthesized as embedded memory block
if there is added special synthesis directive. In this
file, there is such directive for Xilnix devices that

c© 2014 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 440

CONTROL ENGINEERING VOLUME: 12 | NUMBER: 5 | 2014 | DECEMBER

Fig. 7: Simulation results of logic circuit.

sets bram_map attribute to yes. The top-level mod-
ule (Fig. 6) describes connections of all modules. In
our case it is cerated in graphical editor of Active-HDL
environment.

The designed circuit is verified in Active-HDL envi-
ronment with use of a test-bench. The test-bench is
described in VHDL and it emulate one cycle of work of
an industrial mixer. The simulation results are sown
in the Fig. 7.

Tab. 1: Operation memories tables of PN1.

Addr. µO Addr. µO
z1 Y T1 z2 z3 Y V 1 Y T2
0 0 00 00
1 1 01 10

10 01

Addr. µO Addr. µO
z4 Y V 2 z5 z6 YM Y V 3
0 0 00 00
1 1 01 10

10 01

5. Summary

The paper presents a method of realization of appli-
cation specific logic controller. A formal description
of the method is then accompanied with a simple ex-
ample. The specification of the control algorithm uses
the notion of a Petri net, which allows an easy descrip-
tion of parallel processes. We note that it is possible
to apply formal verification methods to test the algo-
rithm. The proposed method of synthesis is based on
transition based logic description of the logic circuit
and modular encoding of places. It allows to extend
formal verification methods by additional analysis the
dynamics of the circuit. Additionally the logic circuit is

decomposed into three logic blocks responsible for par-
ticular functions: dynamic generation of transitions,
store the state of the controller and generate output
control signals. It allows the compact implementation
of logic circuit into FPGA device with usage of dif-
ferent kind of logic elements like: LUTs, flip-flops and
embedded memories. Additionally such decomposition
allows easy analysis of circuit functioning.

References

[1] BOMAR, B. W. Implementation of mi-
croprogrammed control in FPGAs. IEEE
Transactions on Industrial Electronics. 2002,
vol. 49, iss. 2, pp. 415–422. ISSN 0278-0046.
DOI: 10.1109/41.993275.

[2] BOROWIK, G., M. RAWSKI, G. LABIAK,
A. BUKOWIEC and H. SELVARAJ. Effi-
cient logic controller design. In: 2010 Fifth
International Conference on Broadband and
Biomedical Communications. Malaga: IEEE,
2010, pp. 1–6. ISBN 978-1-4244-6952-9.
DOI: 10.1109/IB2COM.2010.5723633.

[3] BROWN, S. and Z. VERNESIC. Fundamentals
of digital logic with VHDL design. New York:
McGraw-Hill Higher Education. 2005. ISBN 978-
0077221430.

[4] BUKOWIEC, A. and M. ADAMSKI. Synthesis
of Petri nets into FPGA with operation flexi-
ble memories. In: 2012 IEEE 15th International
Symposium on Design and Diagnostics of Elec-
tronic Circuits. Tallin: IEEE, 2012, pp. 16–
21. ISBN 978-1-4673-1186-1. DOI: 10.1109/D-
DECS.2012.6219016.

c© 2014 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 441

CONTROL ENGINEERING VOLUME: 12 | NUMBER: 5 | 2014 | DECEMBER

[5] BUKOWIEC, A. and M. ADAMSKI. Transition
based synthesis with code markers of Petri nets
into GPGAs. In: 12th IFAC Conference on Pro-
grammable Devices and Embedded Systems PDeS
2013. Velke Karlovice: IFAC, 2013. pp. 181–86.
ISBN 978-3-902823-53-3. DOI: 10.3182/20130925-
3-CZ-3023.00030.

[6] DOLIGALSKI, M. Behavioral specification di-
versification for logic controllers implemented in
FPGA devices. In: Proceedings of the Annual
FPGA Conference on - FPGAworld ’12. New
York: ACM Press, 2012, pp. 1–5. ISBN 978-1-
4503-1645-3. DOI: 10.1145/2451636.2451642.

[7] ESPARZA, J. and M. SILVA. On the analysis
and synthesis of free choice systems. Advances in
Petri Nets 1990. Berlin: Springer, 1991, pp. 243–
286. ISBN 978-3-540-53863-9. DOI: 10.1007/3-
540-53863-1_28.

[8] GNIEWEK, L. and J. KLUSKA. Hardware Im-
plementation of Fuzzy Petri Net as a Con-
troller. IEEE Transactions on Systems, Man
and Cybernetics, Part B (Cybernetics). 2004,
vol. 34, iss. 3, pp. 1315–1324. ISSN 1083-4419.
DOI: 10.1109/TSMCB.2003.822956.

[9] KARATKEVICH, A. Dynamic Analysis of Petri
Net-Based Discrete Systems. Berlin: Springer,
2007. ISBN 978-3-540-71464-4.

[10] MURATA, T. Petri nets: Properties, analysis
and applications. Proceedings of the IEEE. 1989,
vol. 77, iss. 4, pp. 541–580. ISSN 0018-9219.
DOI: 10.1109/5.24143.

[11] PASTOR, E. and J. CORTADELLA. Efficient en-
coding schemes for symbolic analysis of Petri nets:
Properties, analysis and applications. In: Pro-
ceedings Design, Automation and Test in Europe.
Paris: IEEE, 1998, pp. 790–795. ISBN 0-8186-
8359-7. DOI: 10.1109/DATE.1998.655948.

[12] RAWSKI, M., G. BOROWIK, T. LUBA, P.
TOMASZEWSKI and B. FALKOWSKI. Logic
synthesis strategy for FPGAs with embed-
ded memory blocks. In: Mixed Design of Inte-
grated Circuits & Systems, 2009. MIXDES ’09.
MIXDES-16th International Conference. Lodz:
IEEE, 2009, pp. 296–301. ISBN 978-1-4244-4798-
5.

[13] ROKYTA, P., W. FENGLER and T. HUM-
MEL. Electronic System Design Automation Us-
ing High Level Petri Nets. In: Hardware Design
and Petri Nets. Boston: Springer, 2000, pp. 193–
204. ISBN 978-1-4757-3143-9. DOI: 10.1007/978-
1-4757-3143-9_10.

[14] TKACZ, J. and M. ADAMSKI. Macrostate encod-
ing of reconfigurable digital controllers from topo-
logical Petri net structure. Przeglad Elektroniczny.
2012, vol. 8, no. 8, pp. 137–140. ISSN 0033-2097.

[15] WEGRZYN, M. Implementation of safety criti-
cal logic controller by means of FPGA. An-
nual Reviews in Control. 2003, vol. 27, iss. 1,
pp. 55–61. ISSN 1367-5788. DOI: 10.1016/S1367-
5788(03)00007-5.

[16] WISNIEWSKI, R., A. BARKALOV, L.
TITARENKO and W. HALANG. Design of
microprogrammed controllers to be implemented
in FPGAs. International Journal of Applied
Mathematics and Computer Science. 2011,
vol. 21, iss. 2, pp.401-412. ISSN 1641-876X.
DOI: 10.2478/v10006-011-0030-1.

About Authors

Arkadiusz BUKOWIEC received a Bachelor degree
in computer engineering from Technical University
of Zielona Gora. During these studies he completed
industrial practice at Aldec Inc. in Henderson, NV,
USA. Then, he received Master degree and a Ph.D.
degree in computer science from the University of
Zielona Gora. During the master thesis he was
working for Aldec Poland. During the Ph.D. studies
he spent one semester at Universidade Nova de Lisboa.
Since 2003, he has been working at the University of
Zielona Gora. His research interests include methods
of design, synthesis and verification of digital circuits.

Jacek TKACZ graduated from the University
of Zielona Gora and since 2009 works in the Chair
of Computer Engineering. Dr. Tkacz’s research is
devoted to symbolic methods of theorem proving and
their application to computer science and electronics.
He is also interested in novel design and development
technologies for application software, including mobile
applications. During the years 1997-2005 he was
involved in design and development of the PROLIB
software, used by many Polish libraries.

Marian ADAMSKI is a retired head of the
Institute of Computer Science and Electronics at the
University of Zielona Gora. His research interests
include the design of digital systems, understood as
digital microsystems, and formal methods in pro-
gramming of logical controllers. A member of IEEE,
IEE, ACM, PTEiTS (Polish Society for Theoretical
and Applied Electrical Engineering) and PTI (Polish
Computer Science Society).

c© 2014 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 442

	Introduction
	Petri Net
	Interpreted Petri Net
	Macro Petri Net

	Idea of Synthesis Method
	Example of Method Application
	Summary

