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Abstract. The theoretical background for abstract for-
malization of vague phenomenon of complex systems is
fuzzy set theory. In the paper are defined vague data as
specialized fuzzy sets - fuzzy numbers and there is de-
scribed a fuzzy linear regression model as a fuzzy func-
tion with fuzzy numbers as vague regression parame-
ters. To identify the fuzzy coefficients of model the
genetic algorithm is used. The linear approximation
of vague function together with its possibility area are
analytically and graphically expressed. The suitable nu-
merical experiments are performed namely in the task
of two-dimensional fuzzy function modelling and the
time series fuzzy regression analysis as well.
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1. Introduction

Regression models are often used in engineering prac-
tice wherever there is a need to reflect more indepen-
dent variables together with the effects of other unmea-
sured disturbances and influences. In classical regres-
sion, we assume that the relationship between depen-
dent variables and independent variables of the model
is well-defined and sharp. In the real world, however,
hampered by the fact that this relationship is more or
less non-specific and vague. This is particularly true
when modelling complex systems which are difficult to
define, difficult to measure or in cases where it is in-
corporated into the human element [8].

The suitable theoretical background for abstract for-
malization of vague phenomenon of complex systems is
fuzzy set theory. In the paper are defined vague data
as specialized fuzzy sets - fuzzy numbers. Next, a fuzzy

linear regression model as a fuzzy function with fuzzy
numbers as vague parameters is identified using the
genetic algorithms.

2. Model Definition

2.1. Ordinary Lienar Model

The ordinary linear regression model of the investi-
gated system [11] is given by a linear combination of
values of its input variables:

Y = A0 +A1x1 + . . .+Anxn = A0 +

n∑
i=1

Aixi, (1)

where (x1, . . . , xn) are input variables and
(A0, A1, . . . , An) are ordinary regression coefficients.

The conventional regression model is based on the
assumption that the system characteristics is defined
as sharp, precise and deviations between the observed
and estimated values of dependent variables are results
of observation errors. The origin of a deviation between
the observed and estimated values of dependent vari-
ables may not be of significant extent caused by poor
local variables of the system structure. The causes of
these variations are in a not very sharp nature of the
system parameters. Such fuzzy phenomenon must also
be reflected in the fuzziness of the corresponding pa-
rameters of the model.

2.2. Uncertainty Interval Linear
Model

The development of the indeterminate regression
model is the development of the model of vagueness,
using the formalization of uncertainty rather than nu-
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Fig. 1: Ordinary one-dimensional linear interval regression
model.

merical intervals [3], [9]:

Y = A0 +A1x1 + . . .+Anxn = A0 +

n∑
i=1

Aixi. (2)

Regression coefficients are numeric interval:

A (ai + ei, ai − ei) ≡ Ai (ai, ei) , (3)

where a is the middle of the interval is and e is half of
its width. For one dimensional function:

Y (x) = A0 +A1x = (a0, e0) + (a1, e1)x, (4)

the interval regression model is depicted in Fig. 1.

2.3. Interval Model Fuzzification

Regression models reflecting the vagueness of the mod-
elled systems are called fuzzy regression models [10], [1]
and [8]. The indeterminate nature of the fuzzy regres-
sion model is represented by the fuzzy output values
and the fuzzy regression coefficients in the form of spe-
cialized fuzzy sets - fuzzy numbers. The shape of fuzzy
linear regression model is given by:

Ỹ = Ã0x0 + Ã1x1 + . . .+ Ãnxn =

n∑
i=0

Ãixi, (5)

where x0 = 1 and
(
Ã0, Ã1, . . . , Ãn

)
are fuzzy regres-

sion coefficients - fuzzy sets. The fuzzy set Ã is de-
fined as image, which assigns to every element x of
universum X number µÃ (x) ∈ 〈0, 1〉 as a degree of its
membership function Ã [6], [7]:

Ã =
{
x, µÃ (x) | x ∈ X

}
;µÃ (x) ≥ 0,∀x ∈ X. (6)

At least piecewise continuous function µÃ (x) =
f (x) is called membership function, which defined

Fig. 2: Triangular membership function of fuzzy number Ã.

Fig. 3: Membership functions of fuzzy regression coefficients.

fuzzy set Ã conclusively. The membership function is
usually in engineering praxis approximated by broken
line (Fig. 2).

Triangular fuzzy set Ã then formalizes uncertain
number (fuzzy number) “about x2”. The degree of un-
certainty of number x2 is defined as the width of the
carrier bearing of the fuzzy set Ã as closed interval
〈x1, x3〉 (Fig. 2). Parameters of that fuzzy sets con-
stitute structured vector of values of breaking point
[x1, x2, x3]. Using this vector fuzzy sets are computer-
formalized.

In the fuzzy regression model, the fuzzy regression
coefficients (fuzzy numbers) Ã are defined using its tri-
angular shape membership function µÃ (x) (Fig. 3),
where α is the mean value (core) of fuzzy number
Ã and c is a half of the width of the carrier bearing
Ãi = {α, c}. The output variable Ỹ of fuzzy regression
model (Eq. (5)) is fuzzy number defined using the tri-
angular membership function (similar Fig. 3), where β
is the mean value (core) of fuzzy number Ỹ and d is a
half of the width of the carrier bearing Ỹ = {β, d}.
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Fuzzy regression modelling (Eq. (5)) requires opera-
tion with fuzzy numbers. For this types of operations
it is needed to use relations of fuzzy arithmetic with
usage of extensional principle.

3. Fuzzy Arithmetic
Application

Extensional principle (principle of extension) allows to
transfer operation over ordinary numbers to operation
over fuzzy numbers. It allows to create fuzzy arith-
metic for computing with imprecise (fuzzy) numbers
[2].

Let consider universum U and V and function f ,
which maps U to V , i.e.:

f : U → V (7)

and fuzzy set A ⊆ U . Fuzzy set A then in V induces
fuzzy set, whose membership function is defined by re-
lation:

µf (v) =

=


supf(u)=v µA (u) if ∃ u ∈ U such that

v = f (u) ,

0 elsewhere
. (8)

Using the extension principle fuzzy numbers arith-
metic can be defined [6]. Take the case of the sum of
two fuzzy numbers m (“about m”) and n (“about n”).
These relations are needed for calculation of output
value Ỹ (Eq. (5)):

µm̃⊗ñ = supx,y/z=x·ymin (µm̃ (x) , µñ (x)) , (9)

µm̃⊕ñ = supx,y/z=x+ymin (µm̃ (x) , µñ (x)) . (10)

4. Fuzzy Model Identification

4.1. Identification Method
Description

Fuzzy number Y 0
j is mentioned of a triangular type.

The values dj can be calculate by the formula:

dj =
1

2

∣∣y0j+1 − y0j−1

∣∣ , (11)

where j = 1, 2, . . . ,m is the number of observations.
Finding values αi and ci as searched parameters of
fuzzy regression coefficients Ãi (Fig. 3) is defined as
an optimization issue.

Fitness of the linear regression fuzzy model to
the given data is measured through the Bass-
Kwakernaaks’s index H, Fig. 4, [4]. Adequacy of the

Fig. 4: Adequacy of linear regression model.

observed and estimated values is conditioned by the
relation (Eq. (12)), the maximum intersection (consis-
tency) of two fuzzy sets, the estimated Ỹ ∗

j and the
examined Ỹ 0

j ; must be higher than the set value H:

maxy
{
µỹ0 (y) ∧ µỹ∗ (y)

}
=

= Cons
(
Ỹ 0, Ỹ ∗

)
≥ H. (12)

Only if the condition (Eq. (12)) is fulfilled we as-
sume good estimation of the observed output value Ỹ 0

j .
The relation (Eq. (13)) is satisfied under the condition
(Fig. 4):

Y ∗,H ≤ Y 0,H
, (13)

Y 0,H ≤ Y ∗,H
j . (14)

Consider the determined level H the boundary of
intervals Y ∗,H and relations (Eq. (13), Eq. (14) can be
expressed:

Y ∗,H = − (1−H)

n∑
i=0

ci |xi|+ αxi, (15)

Y
∗,H

= (1−H)

n∑
i=0

ci |xi|+ αxi. (16)

According to the Fig. 3, it can be written:

Y ∗,0 = y0j (1−H) d0, (17)

Y
∗,0

= −y0j (1−H) d0. (18)

The conditions (Eq. (13), Eq. (14)) can be written
in the shape: ∑n

i=0

∑m
j=1 ai,jxi,j +

+(1−H)
∑n

i=0

∑m
j=1 ci,j |xi,j | ≥

≥ y0j + (1−H) d0, (19)
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−
∑n

i=0

∑m
j=1 ai,jxi,j +

+(1−H)
∑n

i=0

∑m
j=1 ci,j |xi,j | ≥

≥ −y0j + (1−H) d0,

ci,j ≥ 0. (20)

The requirement on adequacy of the estimated and
observed values will be complemented by the require-
ment on minimum possible total uncertainty of the
identified fuzzy regression function:

n∑
i=0

m∑
j=1

ci,j → min, i = 0, 1, . . . , n,

j = 1, 2, . . . ,m,

(21)

where i = 0, 1, . . . , n is the number of input values
of the regression function and j = 1, 2, . . . ,m is the
number of observations.

4.2. Model Parameters Optimization

Then we can set the optimization problem:

• minimization of fuzzy model vagueness (Eq. (21)),

• under the condition (Eq. (12)).

To solve the minimization problem under the con-
dition, many authors use the linear programming
method. Nevertheless, in this paper we use the genetic
algorithm method to solve this problem [4]. Mainly,
the reason is that the authors are oriented to use un-
conventional methods of artificial intelligence in order
to prove their quality and efficiency in solving complex
tasks. Genetic algorithms are a representative of evolu-
tionary methods; their higher computational complex-
ity is nowadays eliminated by high-performance com-
puting. They are widely used in the search for optimal
solutions. They can be well used for the identifica-
tion of fuzzy regression models where they deal with
the task of finding the optimal fuzzy regression coef-
ficients as triangular fuzzy numbers. The identifica-
tion of fuzzy regression coefficients – fuzzy numbers:
Ã0, Ã1, . . . , Ãn, was divided into two tasks:

• the identification of the mean value (core) αi of
fuzzy number Ãi and

• the identification of ci as a half of the width of the
carrier bearing Ãi = {αi, ci}.

The tasks are solved by using the genetic algorithm
in series. First the identification of αi and then the
identification of ci are done. Thus, the optimization of
the fuzzy linear regression model is a two-step process
when two genetic algorithms, designated G1 and G2,

are used. For the identification of the mean value (core)
αi of fuzzy number Ãi the minimization of the fitness
function J1 is defined in the form:

min J1 = min
1

m

m∑
j=1

(
y0j − βj

)2
, (22)

and the genetic algorithm GA1 is used. For the identi-
fication of as a half of the width of the carrier bearing
Ãi the minimization of the fitness function J2 is defined
in the form:

min J2 = min

m∑
j=1

n∑
i=0

|cj,i| , (23)

and the genetic algorithm GA2 with two constraints
(Eq. (21)) is used. Minimization of the fitness func-
tion J2 is based on the previous identification of the
role of the mean value (core) αi and uses the already
identified values of αi for determining the width of the
carrier bearing αi. The value of H = 0.5 is expertly
determined in the next part of paper.

4.3. Genetic Algorithms Utilization

As mentioned before, the classical method of linear pro-
gramming used for the identification of fuzzy regression
coefficients [11] was substituted by using a genetic algo-
rithm (GA) [4]. Mainly, the reason is that the authors
are oriented to use unconventional methods of artifi-
cial intelligence in order to prove their quality and effi-
ciency in solving complex tasks. Genetic algorithms are
a representative of evolutionary methods; their higher
computational complexity is nowadays eliminated by
high-performance computing. They are widely used in
the search for optimal solutions. They can be well used
for the identification of fuzzy regression models where
they deal with the task of finding the optimal fuzzy
regression coefficients as triangular fuzzy numbers.

The identification of fuzzy regression coefficients –
fuzzy numbers: Ã0, Ã1, . . . , Ãn, was divided into two
tasks:

• the identification of the mean value (core) αi of
fuzzy number Ãi and

• the identification of ci as a half of the width of the
carrier bearing Ãi = {αi, ci}.

The tasks are solved by using the genetic algorithm
in series. First the identification of αi and then the
identification of ci are done.

As it was mentioned before, the genetic algorithm is
an unconventional optimisation method, which is used
for minimization of the target optimization function
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Fig. 5: Binary coded parameters in structure of chromosome.

Fig. 6: Adequacy of linear regression model.

(fitness function). It is used instead of conventional
methods, such as the linear programming method.

GA is a seeking procedure which looks for the best
solutions according to the fitness function based on the
processes observed in Nature, on the principle of natu-
ral selection and genetic laws, i.e. selection, crossover
and mutation. The basis of GA is to use a character
string, also called a chromosome, in which parameters
of an optimized model are stored. An example of a
chromosome which is composed of three parameters
k1, k2 and k3 expressed by three 5-bit binary words is
shown in Fig. 5.

Individual bits represent the string of chromosome
genes; at the particular optimization step their specific
values represent binary codes of three parameters of
the model. Each chromosome is evaluated by the size
of its fitness function, the value of which determines
the distance of a solution (which is represented by a
particular chromosome) from the optimal solution.

The set of evaluated n-chromosomes represents one
population, the best individuals (solutions) of which
are genetic operations of selection and are picked out
for follow-up populations. Selected individuals are sub-
jected to genetic operations of crossover, in which two
individuals (parents) interchange gene circuits and gen-
erate two new chromosomes - offspring with different
combinations of k1, k2 and k3. The descendants, who
were generated this way, then form a new population
where individuals (solutions) appear to have better
characteristics (better fitness function value) than the
best individual in the population of parents. Then, an

Fig. 7: Fuzzy linear regression function for unemployment in
the Czech Republic.

appropriate follow-up offspring population is created
(solution step, iteration) and the genetic crossing pro-
cedure is repeated. Good convergence for finding an
optimal individual (solution) is supported by a genetic
operation - mutation. The features of genetic opera-
tions as selection, crossover and mutation are defined
by setting the internal parameters of the genetic algo-
rithm in the way that the convergence of a solution to
optimum is favorable.

The procedure of the genetic algorithm is usually
finished by a solution step (population) in which the
values of the fitness function of the best current indi-
vidual and the best individual in the last step vary less
than the specified limit (stop-criterion). As an optimal
solution is then determined the best chromosome of
the last population. Corresponding (coded) parameter
values are used in the optimal model.

The main tasks while designing a genetic algorithm
are the method of encoding the optimized parameters
to a chromosome string and the definition of its fitness
function. Optimization of the fuzzy linear regression
model is a two-step process when two genetic algo-
rithms, designated G1 and G2, are used.

5. Fuzzy Model Verification

For proving of efficiency of proposed method, the two
dimensional linear function in form:

Y 0 = 20 + 48x1 − 120x2, (24)

was chosen. The set of Y 0 with ten members us-
ing (Eq. (19), Eq. (20)) was created. For creating the
set of Y 0 the values of x1 and x2 were chosen ran-
domly from the standard uniform distribution on the
open interval (0, 1) but multiplied by random integer.
For fuzzification of observed value a = 0.1 was used.
The result can be seen in Fig. 6, [5].
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The usage in economic area is depicted in Fig. 7.
As an input data the unemployment rate in the Czech
republic for years 2009 to 2011 was used.

6. Conclusion

Abstract mathematical models of complex systems are
often not very adequate because they do not accurately
reflect the natural uncertainty and vagueness of the
real world. The suitable theoretical background for ab-
stract formalization of vague phenomenon of complex
systems could be fuzzy set theory, which was shortly
described. In the paper vague data as specialized fuzzy
sets - fuzzy numbers are defined and it is described a
fuzzy linear regression model as a fuzzy function with
fuzzy numbers as vague parameters. Interval and fuzzy
regression technology are discussed, the linear fuzzy
regression model is proposed. It is used the effective
genetic algorithm instead of commonly used linear pro-
gramming method for identification of fuzzy regression
coefficients of the model. The two-dimensional numeri-
cal example and practical economic usage are presented
and the possibility area of vague model is graphically
illustrated. Next research will be focused on model
vague non-linear systems.
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