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Abstract. In the present paper the impact of net-
work properties on localization accuracy of Rank Based
Fingerprinting algorithm will be investigated. Rank
Based Fingerprinting (RBF) will be described in de-
tail together with Nearest Neighbour fingerprinting al-
gorithms. RBF algorithm is a new algorithm and was
designed as improvement of standard fingerprinting al-
gorithms. Therefore exhaustive testing needs to be per-
formed. This testing is mainly focused on optimal dis-
tribution of APs and its impact on positioning accu-
racy. Simulations were performed in Matlab environ-
ment in three different scenarios. In the first scenario
different numbers of APs were implemented in the area
to estimate the impact of APs number on the localiza-
tion accuracy of the Rank Based Fingerprinting algo-
rithm. The second scenario was introduced to evaluate
the impact of APs placement in the localization area on
the accuracy of the positioning using fingerprinting al-
gorithms. The last scenario was proposed to investigate
an impact of the number of heard APs and distribution
of the RSS values on the accuracy of the RBF algo-
rithm. Results achieved by the RBF algorithm in the
first and second scenarios were compared to commonly
used NN and WKNN algorithms.
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1. Introduction

The basic requirement for Location Based Services
(LBS) [1], [2], is knowledge of the mobile device po-
sition. This can be achieved in many different ways.
Global Navigation Satellite Systems (GNSS), like GPS
(Global Positioning System) or GLONASS (Global
Navigation Satellite System) are widely used, and these
systems work very well in the outdoor environment,

especially in areas with a clear view to the satellites.
However in a dense urban environment GNSS can suf-
fer from the high signal attenuations and reflections,
which can seriously degrade accuracy of the position
estimate. The situation is even worse in the indoor en-
vironment, as GNSS signals are mostly too weak to be
received at all.

These drawbacks of GNSS have motivated the devel-
opment of positioning algorithms that use signals from
existing or newly deployed radio networks. These al-
gorithms use different properties of the radio signals.
Measurements of RSS (Received Signal Strength) and
ToA (Time of Arrival) are most common in the in-
door environment. The work presented in this paper
deals with the RSS measurements. Advantage of RSS
consists in the ability of every device operating in radio
networks to measure this parameter without additional
modifications. Indoor positioning systems can be based
on a different wireless technologies, for example Blue-
tooth (IEEE 802.15), [3], UWB (Ultra Wide Band), [4]
and WiFi (IEEE 802.11), [5], [6], [7], [8], [9], [10], [11],
[12]. This work deals with WiFi signals, because WiFi
is the most common technology in the indoor environ-
ment and it is supported by a wide range of devices,
e.g. cell phones, PDAs, tablets and laptops.

Most indoor positioning systems based on WiFi use
some kind of fingerprinting algorithms. In the finger-
printing algorithms, measured RSS values stored in a
database (known as a radio map) are compared to RSS
values measured by the mobile device during the local-
ization process. A basic difficulty here is that because
of hardware and software differences between the differ-
ent devices (even devices of the same make and model),
the RSS reported by the mobile device may differ from
the RSS in the database, and this can significantly de-
grade the positioning accuracy [6], [7]. One approach
to deal with this issue is to calibrate the RSS scale and
bias for the each device. This can be done for example
using a self-calibration learning algorithm as proposed
in [6]. Another solution was for this issue is to calibrate
used devices in the anchor room as proposed in [7].
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In the previous work [13], we proposed a novel finger-
printing positioning algorithm that uses only the rank-
ings of the APs instead of the RSS values and is called
Rank Based Fingerprinting (RBF) algorithm. Since
rank information is invariant to any monotonic increas-
ing transformation (bias and scale), the algorithm’s
performance seems to be less affected by the change
of the mobile device. Differences in bias and scale are
given by different hardware and software equipments of
use devices. It can be caused for example by different
gains of receivers and antennas.

In this paper we will investigate the impact of the
number of Access Points (APs) and their placement
on localization accuracy of the RBF algorithm. We
will try to find the optimal solution for APs placement
to achieve higher localization accuracy. Impact of the
number of APs will be also investigated to find the op-
timal number of APs for localization in the real world
environment. Results achieved by RBF algorithm for
the different number and different placement of the
APs will be compared to traditional fingerprinting al-
gorithms. We will also take a closer look on the dis-
tribution of the localization error in the test area and
try to find what lies behind the higher error in some
parts of the area. The rest of the paper is organized
as follows. In the next section related work in the area
of fingerprinting localization algorithms used in simu-
lations will be described. Section three will introduce
used a simulation model and describe simulation sce-
narios. Achieved simulation results will be shown and
discussed in section four and section five will conclude
the paper and propose some of the ideas for the future
work.

2. Related Work

In this section fingerprinting algorithms used in the
simulations will be described. In general, fingerprinting
algorithms consist of two phases [12]. The first phase
is the offline phase (also called calibration phase), [9].
In this phase, the radio map database is created and
stored in the database at the localization server. The
second phase is called online phase [11]. In this phase
position of the mobile device is estimated using one
of the fingerprinting algorithms. In this paper deter-
ministic NN and WKNN algorithms were used as a
comparison to the RBF algorithm in the simulations.

2.1. Radio Map

Radio map is built during the offline phase. Area where
localization services will be offered is divided into small
cells during this phase. Each cell is represented by one
spot, called Reference Point (RP). In the all reference

points the RSS values from all the transmitters in the
range - fingerprint is measured for the certain period
of time [9]. Principle of the radio map creation can be
seen in Fig. 1. Element of radio map has the form:

Pa = (Na, ~αab, θa); a = 1, 2, ...,M, (1)

where Na is identification of a-th reference point, M is
the number of all RPs, ~αab is the vector of RSS values
and parameter θa obtains additional information which
can be used during the localization phase. Radio map
can be modified or preprocessed before the online phase
to reduce memory requirements or computational cost
of used localization algorithm.

Fig. 1: Radio map creation.

2.2. NN Family Localization Algo-
rithms

Deterministic framework is based on the assumption
that RSS values on each position represent a non-
random vector. The estimate of mobile device position
x̂ can be calculated using:

x̂ =

M∑
a=1

ωaPa

M∑
a=1

, (2)

where Pa is the position of a-th reference point, ωa

represents the weight of a-th reference point and M is
the number of RPs in radio map.

Weighting factors can be calculated as the inverted
value of Euclidean distance between the RSS vectors
from the online and radio map. The estimator (2),
which keeps the K biggest weights and sets the oth-
ers to zero, is called the WKNN (Weighted K-Nearest
Neighbor) method. WKNN with all weights ωa = 1
is called the KNN (K-Nearest Neighbor) method. The
simplest method, where K = 1, is called the NN (Near-
est Neighbor) [14]. WKNN and KNN methods perform
better than the NN method, particularly when values
of parameter K are K = 3 or K = 4 [9]. On the other
hand, NN method can achieve almost the same results
as KNN and WKNN methods in case, that the density
of a radio map is high enough.
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2.3. Rank Based Fingerprinting Al-
gorithm

The main difference between conventional fingerprint-
ing algorithms and the proposed RBF localization al-
gorithm is the way in which measured data from the
online phase and radio map are compared and used to
calculate the position estimate. In the classical finger-
printing algorithms, vectors of RSS values measured in
online and offline phase are directly compared to each
other.

In the RBF algorithm (Fig. 2), the RSS values mea-
sured in the online phase from different APs are sorted
from strongest to weakest in the first step. Then ranks
are assigned to APs based on their position in the
sorted vector ~x. To the first AP in sorted vector rank
value 1 is assigned, to second AP is assigned value 2
and so on - rank value in fact represents the position
of the AP in sorted vector from the online phase. The
sorted vector of APs detected in the online phase is in
the next step compared to vectors stored in the radio
map.

Fig. 2: Block diagram of RBF algorithm.

In this step MAC (Media Access Control) addresses
of APs in sorted the vector from online phase are com-
pared to MAC addresses stored in the sorted vectors of
AP in the radio map database. Based on comparison of
MAC addresses rank vectors ~yM are created from the
data stored in the radio map database. When MAC
addresses of the APs in online and offline phases are
the same, same rank values are assigned to them. This
means that the rank of the AP from the radio map
does not represent the position of AP in a sorted vec-

tor. In case that one (or more) of the APs from the
online phase is not found in the database, the rank
vector created from the radio map is padded with 0,
to achieve the same length as the rank vector from the
online phase.

In the last step of the RBF algorithm, previously
computed rank vectors are compared to the vector from
online phase using Spearman’s footrule [15]:

DF =

h∑
c=1

|~xc − ~yc| , (3)

where ~xc is the rank of c-th element in vector ~x, yc is
the rank of c-th element in vector ~y and h is the num-
ber of elements in vectors ~x and ~y. The K reference
points with the smallest difference are used to calculate
the estimated position using the weighted average for-
mula (2). In proposed algorithm weights are given by
similarity between rank vectors from online and offline
phase.

3. Simulation Model and Sce-
narios

In this section the simulation model created in the Mat-
lab environment to evaluate localization performance
of indoor localization algorithms based on the finger-
printing will be briefly described. Simulation model
was previously minutely described in [16]. Simulation
scenarios used to achieve the results shown in this pa-
per will be described.

3.1. Simulation Model

In the simulation model the RSS is modeled by two
independent parts: path-loss and immediate variations
of signal strength. Path-loss is based on multi-floor-
and-wall propagation model (MFW), [17].

LMFW = L0 + 10n log(d) +
I∑

i=1

Kwi∑
k=1

Lwik +

+
J∑

j=1

Kfj∑
k=1

Lfjk. (4)

The MFW model considers the nonlinear relationship
between the cumulative penetration loss and the num-
ber of penetrated floors and walls. Total loss LMFW in
distance d can be computed from equation 4, where L0

is the path loss in the distance of 1 m in dB, n is power
decay index, d is the distance between transmitter and
receiver in meters, I is the number of walls types, Kwi

is the number of traversed walls of category i, Lwik is
attenuation due to wall type i and k-th traversed wall
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in dB, J stands for a number of floor types, Kfj is
the number of traversed floors of category j and Lfjk

represents attenuation due to the floor of the type i
and k-th traversed floor in dB. Immediate variations of
signal strength could be caused by objects motion at
observed area. These variations influence RSSI mea-
surements and add measurement error. Behavior of
the variations was derived from experimental measure-
ments. Measurement error is simulated using random
variable with lognormal distribution.

3.2. Simulation Scenarios

In all scenarios the localization process was performed
at an area of 512 square meters. Reference points were
chosen in a grid with the 2 m distance between them.
Localization area can be seen in Fig. 3. In the figure the
lines represents walls of the building and the dots show
positions of the reference points. Position of mobile
device was chosen from the area randomly with the
uniform distribution.

Fig. 3: Localization area.

Each fingerprint is created by measuring of 20 RSS
samples for the each AP in the very short time on all
reference points. The average received signal strength
was calculated from these measurements to eliminate
the signal fluctuations. Simulations were performed
with the 1000 independent trials, i.e. for the 1000 po-
sitions of the mobile device. In the simulations K = 4
was used for WKNN algorithm. In the RBF algorithm,
the number of used RPs to estimate the position of the
mobile device was set to 2. Parameter K for both RBF
and WKNN algorithms was chosen based on results
achieved in previous simulations.

In the first scenario, the number of APs on the area
was changed from 4 up to 12 to evaluate the impact on
localization accuracy of the fingerprinting algorithms.
In this scenario APs were placed randomly, in the area
with the same configuration for every number of APs
and also in all trials.

In the second scenario, impact of AP placement on
the localization accuracy was investigated. In this sce-
nario APs were placed in the area in 4 different shapes
(Fig. 4) - random, symmetric, square and triangle, to
evaluate the impact of AP placement and find the op-
timal solution.

Fig. 4: Shapes of AP placement in the second scenario.

In the figure, green dots represent random placement
of APs, blue crosses show positions of APs in the sym-
metric shape, black × show positions of APs in the
square shape and red squares represent positions of
APs in the triangle shape.

In the third scenario, position of mobile device was
generated in the grid thru the whole localization area
with a step of 0,5 m. In this scenario, the distribu-
tion of localization error over the area was investigated.
Simulations were performed in 100 individual trials for
each position of the mobile device. Impact of the num-
ber of the APs in the range and distribution of the RSS
values from APs on the achieved accuracy was investi-
gated in this simulation scenario.

4. Simulation Results

In the first simulations, impact of the number of APs
distributed on the localization area was evaluated. Re-
sults achieved in this simulation are shown in Fig. 5.

From Fig. 5 it can be seen that number of APs in
the localization area has an impact on localization ac-
curacy of all fingerprinting localization algorithms. Ac-
cording to achieved results in this simulation, RBF al-
gorithm seems to be less affected by changing the num-
ber of APs compared to the traditional algorithms. On
the other hand, NN and WKNN algorithms seem to be
more affected, if the number of APs is lower than 9. In
case that the number of APs is 9 and higher the per-
formance of algorithms used in simulations seems not
to be significantly affected.

Fig. 5: Impact of the number of APs.
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It can be seen that RBF algorithm achieved the
best results in all cases. When number of APs is
lower than 9 this difference is more obvious, since me-
dian localization error achieved by RBF algorithm is
more than 50 % lower compared to WKNN algorithm.
When number of APs is higher than 8, the difference
in median localization accuracy between WKNN and
RBF localization algorithms decrease to approximately
30 %. These results prove that the localization accu-
racy of the RBF algorithm is less affected by the num-
ber of APs in the range, compared to NN and WKNN
algorithms.

On the basis of achieved results it is possible to
choose optimal number of APs equal to 9, since fur-
ther increase of the number of APs does not provide
significant improvement of the localization accuracy.
When optimal number of APs was found in the pre-
vious simulation, the second scenario was proposed to
find optimal shape of APs placement in the area to
further improve localization accuracy. In this scenario,
number of APs was equal to 9. Achieved results are
depicted in Fig. 6.

Fig. 6: Impact of the shape of APs.

From the figure it can be seen that shape of APs
placement does not have an impact on the accuracy
of RBF localization algorithm. Achieved results for
the RBF algorithm are almost the same for all inves-
tigated cases. Small differences in the results for RBF
algorithm are probably caused by differences in ran-
dom positions of the mobile device than by the dif-
ferences in APs positions. From the results it can be
seen that shape of APs placement has more significant
impact on classical fingerprinting algorithms. These
algorithms achieved the best results with symmetric
shape of APs, and in the other hand the worst results
when APs were placed in square shape. RBF algo-
rithm seems to be immune to shape of APs placement
in the localization area. This simulation proves that
RBF localization algorithm is more stable and accu-
rate compared to NN and WKNN algorithms.

Further investigation of localization accuracy of the
RBF algorithm was performed for random placement of
APs. In Fig. 7 and Fig. 8 mean localization error over
the localization area and distribution of the number of

APs in the range are shown. Blue dots in Fig. 7 rep-
resent positions of APs in the localization area. From
the figures above it can be seen that localization er-
ror is not affected by the number of APs in range. It
can be seen that in the area, where a lower number of
APs was in the range, the same localization accuracy
as on the rest of the area was achieved. On the other
hand, localization error was higher in the area where
the maximum number of APs was in range (lower right
corner in Fig. 7).

Fig. 7: Distribution of mean localization error in the area.

Fig. 8: Distribution of the number of APs in range.

In the next simulation we decided to take a closer
look on the impact of the RSS values on the accuracy
of the RBF algorithm. In the first step, the distribution
of the average RSS value from all APs in the range for
the each point in the area was investigated. Achieved
results are shown in Fig. 9.

Fig. 9: Distribution of mean RSS values from all APs in the
range.

From the achieved results it can be seen that average
RSS values are the lowest in the area where the highest
localization error was achieved. It is also clear that
localization accuracy in the area where the average RSS
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values were the highest is not significantly increased.
Based on this fact we decided to take a closer look on
the numbers of APs divided into three groups:

• APs with low RSS value (RSS < −85 dBm),

• APs with medium RSS value (−85 dBm < RSS
< −65 dBm),

• APs with high RSS value (RSS > −65 dBm).

Achieved results for the APs with low RSS values
are shown in Fig. 10.

Fig. 10: Distribution of APs with RSS values lower than
−85 dBm.

From the results it can be seen that in the area where
the highest localization error was achieved, high num-
ber of APs with low RSS values were in the range. The
results for the APs with medium RSS values are shown
in Fig. 11.

Fig. 11: Distribution of APs with RSS values in range from
−85 dBm to −65 dBm.

It can be seen that in the lower right corner low
number of APs with the medium RSS values were in
the range. It is important to notice that number of
APs with the medium RSS values in the range is much
higher everywhere else in the area. Results achieved
for the last group of the APs are shown in Fig. 12.

From these results it can be seen that number of
APs with high RSS values in the range does not have
a significant impact on localization accuracy. This is
proven by the fact that achieved accuracy in the up-
per right corner of the area was the same as in the
other parts of the area, even when there were not APs
with the high RSS values.On the basis of the results

Fig. 12: Distribution of APs with RSS values higher than
−65 dBm.

achieved in this scenario it seems that localization ac-
curacy is given by the number of APs with low and
medium RSS values. If the number of APs with the
low RSS is high and number of APs with the medium
RSS values is low, then the localization error is signif-
icantly increased. The number of APs with high RSS
values significantly influences the accuracy of RBF al-
gorithm. This is due to the fact that the low RSS values
are much more affected by the fluctuations and noise
compared to medium and high RSS values. From the
results it is clear that, when the number of APs with
the high and medium RSS values is lower than 50 % of
all APs in the localization area, the localization accu-
racy is significantly decreased. In this case localization
error increased to 200–300 % of the average localiza-
tion error. The lowest accuracy of the RBF algorithm
was achieved when only less than 34 % of APs has high
or medium RSS values. This error was 600 % higher
compared to average localization error in the area.

5. Conclusion and Future
Work

In this paper, the exhaustive investigation of RBF al-
gorithm was performed. The impact of the number of
APs and APs placement in the localization area on lo-
calization accuracy was investigated using simulations.
Simulations were performed in Matlab environment.
According to achieved results, it can be seen that RBF
localization can achieve much better results, compared
to WKNN algorithm. In case that number of APs in
the area is not enough high, localization error achieved
by RBF algorithm is 50 % lower compared to localiza-
tion error achieved by WKNN algorithm. In case that
number of APs in the area is higher RBF algorithm still
outperforms WKNN algorithm, but difference decrease
to approximately 30 %.

From results achieved in the second simulation sce-
nario it seems that RBF fingerprinting algorithm is not
strongly affected by shape on which APs are placed
in the localization area. RBF algorithm achieved
best results from used localization algorithms in all
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cases. Small differences in accuracy were more prob-
ably caused by differences in measured RSS samples
in the simulations, than by changes in the shape of
APs placement in the localization area. On the other
hand, NN and WKNN algorithms achieved best results
for symmetric shape of APs placement in the area. It
can also be seen that NN and WKNN algorithms are
more affected by shape of APs placement in the area.
Achieved results showed that recently developed RBF
algorithm can achieve more accurate results compare
with commonly used NN and WKNN algorithms. It is
also clear that RBF algorithm is more stable and is less
affected by the number of APs in the localization area.
Localization accuracy of RBF algorithm is not affected
by shape of APs placement as well. This parameter
also seems to have an impact on NN and WKNN algo-
rithms, since the difference in median localization error
between the best and the worst case is over 1 m.

Extensive investigation of the accuracy achieved by
the RBF algorithm over the localization area has
shown, that algorithm achieved the same level of accu-
racy even in areas, where number of APs in the range
was lower. Higher localization errors were achieved in
an area, where RSS values from a large number of APs
in range were lower than −85 dBm. Results of this
simulation show that RBF algorithm is immune to the
varying of the number of APs in range. On the other
hand, its accuracy is highly affected when RSS values
from APs are low, due to changes in ranks caused by
high RSS fluctuations. In the future the RBF algo-
rithm will be implemented to the WifiLOC positioning
system and real world experiments will be performed
to validate results achieved in the simulations. Based
on the achieved results algorithm for removal of APs
with negative impact on the localization accuracy will
be developed and tested.
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