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Abstract. In this paper, a fuzzy state estimation(FSE) 
model is employed, which is based on constrained linear 
programming (LP) optimization, for modelling 
uncertainty in power system state estimation. The 
estimation process is based on uncertainty measurements. 
The uncertain measurements are expressed as fuzzy 
numbers with a triangular and trapezoidal membership 
function that has middle and spread value reflected on the 
estimated states. The proposed fuzzy model is formulated 
as a linear optimization problem, where the objective is 
to minimize the sum of the spread of the states, subject to 
double inequality constraints on each measurement. 
Linear programming technique is employed to obtain the 
middle and the asymmetric spread for every state 
variable. The estimated middle corresponds to the value 
of the estimated state, while the asymmetric spreads 
represent the tightest uncertainty interval around that 
estimated states. The proposed formulation has been 
applied to various test systems such as, 6-bus, IEEE 14-
bus and IEEE30-bus. 
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1. Introduction 

An important aspect of power system operation is the 
availability of an accurate picture of the system-state. A 
state estimator can be used to filter the available 
information creating an accurate and complete picture of 
the system conditions, while a supervisory control and 
data acquisition (SCADA) system is capable of providing 
operators with measured information with less accuracy. 
The redundancy available in the measurement systems 
are traditionally used to reduce the effect of measurement 
errors using state estimation. The objectives of state 
estimation methods are to reduce the variance of the 

estimates and improve their overall accuracy, detection of 
gross errors, invalid topological information and model 
parameter errors. 

 If the errors in a measurement follow a known 
probability distribution, a set of feasible estimates can be 
modeled by a probability distribution function. It is 
unfortunately difficult to characterize statistics of 
observation errors in practice. In such circumstances, it is 
desirable to provide not just a single ‘optimal’ estimate of 
each state variable but also an uncertainty range within 
which we can be assured that the ‘true’ state variable 
must lie. The idea of an uncertainty range is recognizable 
in engineering practice, where the accuracy of a particular 
measurement is often described in percent e.g. plus or 
minus 2 %, rather than by quantifying the standard 
deviation or variance. 

 Introduced the concepts of uncertainty in the 
general context of engineering analysis, estimation and 
optimization   [1]. These concepts have been extended and 
developed and are applied in several areas, e.g. in water 
distribution networks. 

 With an intention to increase the robustness of the 
estimation introduced bounds on the measurements   [2]. 
The approach has been developed, who introduced the 
term set, bounded state estimation (SBSE)   [3]. The 
concepts from robust control theory and allowed for 
uncertainty in both the parameters and the measurements 
has applied   [4]. Using a linear fractional transformation 
the uncertainty is isolated and the problem is formulated 
as a convex semi definite programming problem. The 
semi definite programming problem is solved using a 
linear matrix inequalities approach. For modeling 
uncertainty in power system state estimation proposed a 
fuzzy linear state estimation model based on Tanaka’s 
fuzzy linear regression model   [8]. The uncertainty is 
modeled via deterministic upper and lower bounds on 
measurement errors, which take into account known 
meter accuracies   [6]. 

 In conventional state estimation techniques, the 
accurate knowledge of error statistics of transducers and 
metering equipments is a prerequisite. However, as such 
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information may not be precisely known it can lead to 
less accurate estimates. The overall quality of the 
estimation can be improved by providing additional 
information using estimated bounds together with the 
point estimates. Knowledge of the limiting values or 
bounds that apply to measured quantities facilitates a 
problem formulation that enables the computation of 
bounds on state estimates. Thus, the goal of this paper is 
to model the uncertainties associated with the measured 
quantities in a way that defines an interval (range) with 
respect to their nominal values. The range is governed by 
the tolerance of the measuring instrument (a 
quantification of accuracy usually provided by the 
manufacturer). By utilizing appropriate mathematical 
programming techniques, the confidence interval (or 
bounds) of the state variables can be computed. 

2. Fuzzy Logic 

Fuzzy logic is an artificial intelligence tool that has been 
used in the past decade for many control applications. 
Fuzzy logic emerged from fuzzy set theory founded   [7], 
  [8] by challenging basic assumptions of these theories: 
sharp boundaries in classical set theory, classical logic 
that each proposition must be either true or false, and 
additivity in classical measure theory, particularly 
probability theory. 

 Unlike classical logic systems, fuzzy logic aims at 
modeling the imprecise modes of reasoning, which is the 
human ability to make a rational decision when 
information is uncertain and imprecise. 

 Fuzzy logic starts with the concept of a fuzzy set. 
A fuzzy set is a set without a crisp, clearly defined 
boundary. It can contain elements with only a partial 
degree of membership. Membership criteria are not 
precisely defined for most classes of objects normally 
encountered in the real world. A fuzzy set F is 
characterized by a membership function, μ, that takes 
values in the interval [0, 1], such that the nearer the value 
of μ (x) to unity, the higher the membership grade of x in 
F. 

3. Problem Formulation 

The nonlinear equations relating the measurements and 
the state vector may be expressed as: 

 . (1)  = h( ) + eZ Y

 For a given set of measurements Z, the exact value 
of Y cannot be determined. What we require, instead, is 

to find the optimal estimate of Y denoted byY . 

 

 Equation (1) can be linearized around some 
operating point Y0 to yield the following relationship: 
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The approach adopted in WLS state estimation is to 
minimize a weighted sum of some function of the 
residuals  [9],  [10],  [11],  [12],  [13],  [14],  [15]. If we 
denote the absolute value of the kth measurement residual 
by Rk, then the goal of WLS estimation is to minimize 
the vector of residuals R: 

 1 2 3[    ... ]mR R R R R . (6) 

 0( ).m kR Z H Y Y    . (7) 

4. Uncertainty Interval State 
Estimation via Linear 
Programming (UILP) 

Uncertainty can be filed with the solution of a series of 
optimization problems formulated is determined 
appropriate. Any angle or voltage bus, together with its 
associated uncertainty, can by a triangular or trapezoidal 
membership functions representing. In the triangular 
membership function Y1 and Y3 are lower and upper 
bounds for the central value (Y2). These constraints 
define the tolerances on the measurements (i.e. the range 
of values within which the true value of the 
measurements quantity should lay). Minimizing a 
particular state variable of interest, subject to the entire 
measurements inequality constraints, provides the lower 
bound on that state variable. 

 Maximizing the state variable, again subject to the 
entire measurements inequalities, provides the upper 
bound for that state. In mathematical form: 

 
                       min  Y

subject to   ( )  

i
Y

l uZ h Y Z 
. (8) 

    lZ Z    . (9) 

   +uZ Z   . (10) 

 Equation (8) defines a nonlinear constrained 
optimization problem, which can be solved directly by a 
suitable nonlinear programming algorithm such as 
sequential quadratic programming  [17]. However, it is 
known that power system models are amenable to 
solution using the WLS approach. Consequently, an 
alternative approach is to linearise Eq. (8) about a 
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suitable point  (which in this case can be provided by 
the WLS) and then a series of linear programming are 
solved to obtain updates dY

^
Y

i to the uncertainty bounds on 
the state variables. For example, the incremental change 
to the lower bound for the ith state can be computed by 
solving the following LP problem: 

 
                            min  

subject to    

i
Y

l u

dY

Z J Y Z



    
. (11) 

 Similarly, the incremental change to the upper 
bound on the ith state can be found by solving the LP 
problem 

 
                         max  

subject to   

i
Y

l u

dY

Z J X Z



    
. (12) 

 Where J is the Jacobian of h(Y) evaluated at  
and ΔZ

^
Y

l and ΔZu are vectors of the incremental changes to 
measurements lower and upper bounds, respectively, 
computed in the following form: 

 
^

   ( )l lZ Z h Y   . (13) 
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 Therefore by performing 2n linear programming 
solutions, all the elements of the vectors dY+ and dY- can 
be calculated. Once dY+ and dY- are known, the bounds 

on are simply found as: 
^

Y

 , (15) 
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 Y Y dY
  

 , (16) 
^

 Y Y dY

 



where  is the point obtained by WLS. 
^
Y

 The computational burden of the process arises 
from the need to perform two LP solutions for every 
uncertainty interval sought. Nevertheless, with the 
measurement redundancy level available in power 
systems, the computational time is reasonable using 
modern hardware and software. For large networks it is 
possible that the dual LP formulation could be applied to 
reduce the execution time  [18],  [19]. 

5. Fuzzy State Estimation 

In this paper, the basic procedure for obtaining the 
membership function of fuzzy voltages and angles, in the 
triangular membership measurements (Fig. 1), a WLS is 
solved for the central values (Y2), and then the variation 
around them (Y1 and Y3) are calculated using fuzzy 
arithmetic and linear programming. Similarly, for the 
trapezoidal membership measurements (Fig. 2), WLS is 
solved for the inner breakpoints (Y2 and Y3) and then the 

outer breakpoints (Y1 and Y4) are calculated using fuzzy 
arithmetic and linear programming. 

 This approach was applied for fuzzy power flow 
  [16]. 

 
Fig. 1: Triangular fuzzy distribution. 

 
Fig. 2: Trapezoidal fuzzy distribution. 

 It is noticeable in sections 7 and 8, for all 
estimated values, triangular and trapezoidal functions like 
Fig. 1 and Fig. 2 are obtained. 

6. Implementation of Proposed 
Method and Result Analysis 

In this section some results obtained using the proposed 
algorithms typical test system 6 - bus as shown in Fig. 3 
 [20], 30 - data bus test network. All state variables will be 
calculated to show the concepts of the present approach is 
shown. The LP problems have been solved by the 
function linprog incorporated in the MATLABTM 
optimization toolbox. 

 
Fig. 3: Online diagram of six-bus system. 
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 In the tests presented here and in further tests the 
Newton–Raphson process was found to perform reliably, 
with convergence occurring within three or four 
iterations. 

7. Triangular Fuzzy State 
Estimation Analysis with UILP 

In order to demonstrate the ability of the proposed 
algorithm, the state estimation solutions for 6-bus (shown 
in Fig. 3) and modified IEEE 30-bus test systems are 
presented under uncertainty of measurements. In order to 
save space, 6-bus system results are given in detail, 
whereas 30-bus system results are given only with 
trapezoidal distribution uncertainties. 

 Cases I and II: Tables 1and 2 show the triangular 
fuzzy state estimation for the 6-bus and IEEE-14 
network, respectively. The measurements uncertainty is 
represented as a uniform distribution over the interval 
[-5 % 5 %] of the nominal value of the measurements. A 
WLS was used to compute the central point (Y2) states. 

 The outer breakpoints in triangular fuzzy 
distribution (Y1 and Y3) of the state variables were found 
using Eq. (8)–(14). 

8. Trapezoidal Fuzzy State 
Estimation with UILP 

For applying the trapezoidal fuzzy distribution (Fig. 2), 
first the inner breakpoints (Y2 and Y3) were obtained for 
angle and magnitude of voltages using fuzzy arithmetic 
and WLS. Then, outer breakpoints (Y1 and Y4) were 
calculated. (Y1) calculated in Eq. (11) and Eq. (16), and 
Y4 in Eq. (12) and Eq. (15). 

 Cases III and IV: Tables 3 and 4 illustrate the 
trapezoidal fuzzy distribution for magnitude and angle of 
voltages that fuzzy measurements include trapezoidal and 
trapezoidal-triangular membership function, respectively. 

 Cases V and VI: Results for 14 and 30-bus test 
system with uncertainties in the measurements are shown 
in the Tables 5 and 6, respectively. 

 The results indicate that for a particular breakpoint 
of a variable of interest, the FSE finds out a specific 
mismatch vector from input variable vector and evaluated 

function vector in case of uncertainty in measurements, in 
the universe of discourse defined by the range of 
uncertainty in these variables. 

8. Advantages and Practicalities 
THE Fuzzy State Estimation with 
UILP 

The availability of the triangular or trapezoidal 
membership function on state estimates can have 
practical advantages for the power system operator. For 
Critical quantities, such as a power flow which is close to 
its thermal, stability or contractual limit, the operator can 
gain confidence that the true value is not exceeding the 
constraint provided that the state estimate and both 
bounds are all within the limit. The uncertainty range on 
the estimate also gives a useful indication of the quality 
of the metering configuration for the relevant part of the 
power system. For example, where a voltage level often 
has a wide estimated uncertainty range, this would 
suggest that the metering in that area is insufficient. This 
type of additional information could be very useful 
during the installation or upgrading of an online state 
estimator. In addition with the introduction of 
measurement variation in the formulation, a more 
realistic and accurate uncertainty range is attainable now 
about the different system quantities. 

9. Trapezoidal Fuzzy State 
Estimation Losses and Active 
Line Flow 

The fuzzy membership functions losses and active line 
flow obtaining with voltage (with consideration the 
relations of the voltage and power) and fuzzy arithmetic. 
Tables 7 and 8 depict fuzzy distribution (breakpoint 
values) of real power losses, while Tab. 9 display 
distribution of the real line flows on a few sample lines 
due to fuzziness in the measurements for 6 bus. The 
variations in the measurements are in the interval [-5 % 
5 %] nominal measurements.

Tab.1: Results for case I. 

Bus No. V (p.u.) θ ﴾˚﴿ 

 V1 V2 V3 θ1 θ2 θ3 
1 1,0500 1,0500 1,0500 0 0 0 

2 1,0302 1,0497 1,0692 -3,6535 -3,5891 -3,5246 

3 1,0552 1,0742 1,0931 -4,5935 -4,5003 -4,4072 
4 0,9680 0,9888 1,0096 -4,3083 -4,1854 -4,0624 

5 0,9675 0,9883 1,0092 -5,3642 -5,2034 -5,0426 

6 0,9890 1,0108 1,0325 -6,3648 -6,1782 -5,9915 
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Tab.2: Results for case II. 

Bus No. V (p.u.) θ ﴾˚﴿ 

 V1 V2 V3 θ1 θ2 θ3 
1 1,0600 1,0600 1,0600 0,0000 0,0000 0,0000 

2 1,0370 1,0450 1,0560 -5,2293 -5,0038 -4,3549 
3 1,0060 1,0074 1,0084 -13,1232 -12,7371 -11,5703 

4 1,0142 1,0173 1,0228 -10,4027 -10,2679 -8,9939 

5 1,0214 1,0214 1,0266 -8,9916 -8,8356 -7,6640 
6 1,0693 1,0754 1,0789 -14,1907 -14,1901 -12,1236 

7 1,0543 1,0584 1,0651 -13,4726 -13,4000 -11,0023 

8 1,0812 1,0821 1,0847 -13,9072 -13,5457 -11,1273 
9 1,0520 1,0546 1,0637 -15,0083 -15,0074 -12,7096 

10 1,0448 1,0498 1,0606 -15,2139 -15,1361 -12,4138 

11 1,0468 1,0548 1,0638 -15,0462 -14,8574 -12,4069 
12 1,0528 1,0643 1,0721 -15,2529 -14,9322 -12,7149 

13 1,0491 1,0569 1,0634 -15,1145 -14,9969 -12,8288 

14 1,0367 1,0464 1,0602 -16,1773 -15,8186 -13,1964 
 

Tab.3: Results for case III. 

Crisp solution Fuzzy state estimation solution 

|V| (p.u.) θ (˚) Bus No. 
|V| (p.u.) θ (˚) 

V1 V2 V3 V4 θ1 θ2 θ3 θ4 
1 1,0500 0 0,9983 1,0319 1,0703 1,0893 0 0 0 0 

2 1,0497 -3,5891 0,9859 1,0272 1,0739 1,0969 -5,2058 -3,5828 -3,5090 -2,5968 
3 1,0742 -4,5003 1,0072 1,0430 1,1055 1,1340 -6,4462 -4,4918 -4,4742 -3,7867 

4 0,9888 -4,1854 0,9328 0,9708 1,0112 1,0375 -5,1548 -4,1688 -4,1389 -3,2675 

5 0,9883 -5,2034 0,9397 0,9616 1,0146 1,0570 -5,4611 -5,1974 -5,1730 -4,1354 
6 1,0108 -6,1782 0,9559 0,9796 1,0422 1,0828 -6,5440 -6,2000 -6,1213 -5,1792 

 

Tab.4: Results for case IV. 

Crisp solution Fuzzy state estimation solution 

|V| (p.u.) θ (˚) Bus No. 
|V| (p.u.) θ (˚) 

V1 V2 V3 V4 θ1 θ2 θ3 θ4 
1 1,0500 0 0,9996 1,0316 1,0702 1,0889 0,0000 0,0000 0,0000 0,0000 

2 1,0497 -3,5891 1,0079 1,0492 1,0501 1,0731 -5,2853 -3,5898 -3,5884 -2,6038 
3 1,0742 -4,5003 1,0372 1,0730 1,0754 1,1039 -6,4822 -4,5103 -4,4904 -3,7853 

4 0,9888 -4,1854 0,9519 0,9877 0,9899 1,0140 -5,1567 -4,1707 -3,5898 -3,3287 

5 0,9883 -5,2034 0,9675 0,9873 0,9894 1,0297 -5,4448 -5,2256 -5,1811 -4,1881 
6 1,0108 -6,1782 0,9876 1,0103 1,0113 1,0509 -6,4974 -6,2029 -6,1535 -4,8609 

 

Tab.5: Results for case V. 

V (p.u.) θ ﴾˚﴿ 
Bus No. 

V1 V2 V3 V4 θ1 θ2 θ3 θ4 
1 1,0600 1,0600 1,0600 1,0600 0,0000 0,0000 0,0000 0,0000 

2 1,0312 1,0450 1,0965 1,1023 -5,4542 -5,1612 -4,9414 -4,2850 

3 1,0062 1,0100 1,0795 1,0981 -13,1273 -12,7434 -12,6257 -11,4456 
4 1,0103 1,0158 1,0889 1,0945 -10,4064 -10,3578 -10,2300 -9,1191 

5 1,0100 1,0179 1,0929 1,0982 -9,1395 -8,9438 -8,7872 -7,9560 

6 1,0505 1,0700 1,1584 1,1590 -14,2057 -14,2041 -14,1463 -12,0554 
7 1,0515 1,0552 1,1450 1,1518 -13,4753 -13,4055 -13,3383 -10,9219 

8 1,0834 1,0900 1,1698 1,1601 -13,9112 -13,5527 -13,5184 -11,0795 

9 1,0462 1,0487 1,1391 1,1483 -15,0360 -15,0285 -14,7706 -12,4521 
10 1,0379 1,0417 1,1342 1,1451 -15,2383 -15,1525 -14,8071 -12,0646 

11 1,0383 1,0464 1,1392 1,1482 -15,0545 -14,8659 -14,7242 -12,2516 

12 1,0309 1,0424 1,1483 1,1562 -15,2578 -14,9367 -14,9072 -12,6629 
13 1,0330 1,0408 1,1410 1,1475 -15,2612 -15,0054 -14,9484 -12,7536 

14 1,0116 1,0213 1,1300 1,1439 -16,1799 -15,8270 -15,7404 -13,0928 
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9. Conclusion 

A new analysis of uncertainty in fuzzy estate estimation 
is presented in this paper. The uncertainty is assumed to 
be present in the measurements that have fuzzy 
membership functions (triangular or trapezoidal). The 
uncertainty in the output (angle and magnitude of 
voltages) was obtained from the fuzzy arithmetic and 
linear programming method. The advantage of this 
method is that one can assume different fuzzy 

membership functions for measurements of fuzzy state 
estimation whether triangular, trapezoidal or trapezoidal-
triangular. 

 When applied and tested on different systems 
standard proposed estimator can be very effective as a 
tool for estimating the confidence interval unknowns and 
their uncertainty and imprecision due to be considered. 
Convergence and evaluation based on time, estimates 
indicated that this support can be a valuable tool in 
estimating the power line system used state. 

Tab.6: Results for case VI. 

 

Crisp solution Fuzzy state estimation solution 

|V| (p.u.) θ ﴾˚﴿ Bus No. 
|V| (p.u.) θ ﴾˚﴿ 

V1 V2 V3 V4 θ1 θ2 θ3 θ4 

1 1,0200 0,0000 0,9762 0,9984 1,0492 1,0672 0 0 0 0 

2 1,0000 -0,4154 0,9529 0,9826 1,0124 1,0191 -0,5082 -0,4154 -0,4154 -0,3225 

3 0,9826 -1,5218 0,9318 0,9631 0,9944 1,0018 -1,6888 -1,5218 -1,5218 -1,3548 

4 0,9796 -1,7949 0,9292 0,9604 0,9916 0,9991 -1,9719 -1,7949 -1,7949 -1,6180 

5 0,9823 -1,8637 0,9349 0,9635 0,9922 1,0025 -2,1154 -1,8637 -1,8637 -1,6121 

6 0,9728 -2,2671 0,9225 0,9536 0,9848 0,9922 -2,4974 -2,2671 -2,2671 -2,0368 

7 0,9671 -2,6519 0,9176 0,9479 0,9782 0,9866 -2,9243 -2,6519 -2,6519 -2,3795 

8 0,9602 -2,7259 0,9095 0,9411 0,9727 0,9795 -2,9836 -2,7259 -2,7259 -2,4681 

9 0,9804 -2,9967 0,9296 0,9608 0,9921 1,0000 -3,2122 -2,9967 -2,9967 -2,7812 

10 0,9845 -3,3748 0,9346 0,9649 0,9953 1,0042 -3,5252 -3,3748 -3,3748 -3,2243 

11 0,9804 -2,9974 0,9267 0,9608 0,9949 1,0000 -3,2435 -2,9974 -2,9974 -2,7514 

12 0,9853 -1,5370 0,9337 0,9657 0,9977 1,0052 -1,5443 -1,5370 -1,5370 -1,5298 

13 0,9996 1,4763 0,9477 0,9797 1,0117 1,0196 1,2895 1,4763 1,4763 1,6631 

14 0,9765 -2,3083 0,9249 0,9570 0,9890 0,9960 -2,4265 -2,3083 -2,3083 -2,1901 

15 0,9802 -2,3119 0,9289 0,9606 0,9922 0,9998 -2,3129 -2,3119 -2,3119 -2,3109 

16 0,9770 -2,6446 0,9258 0,9575 0,9892 0,9966 -2,7534 -2,6446 -2,6446 -2,5358 

17 0,9771 -3,3922 0,9270 0,9576 0,9881 0,9967 -3,5392 -3,3922 -3,3922 -3,2452 

18 0,9687 -3,4786 0,9179 0,9494 0,9808 0,9881 -3,5084 -3,4786 -3,4786 -3,4487 

19 0,9654 -3,9582 0,9144 0,9461 0,9778 0,9847 -4,0182 -3,9582 -3,9582 -3,8982 

20 0,9690 -3,8711 0,9178 0,9496 0,9814 0,9884 -3,9187 -3,8711 -3,8711 -3,8234 

21 0,9932 -3,4887 0,9444 0,9737 1,0030 1,0131 -3,6891 -3,4887 -3,4887 -3,2882 

22 0,9998 -3,3928 0,9510 0,9802 1,0094 1,0198 -3,5838 -3,3928 -3,3928 -3,2018 

23 1,0000 -1,5893 0,9482 0,9800 1,0119 1,0199 -1,6506 -1,5893 -1,5893 -1,5279 

24 0,9891 -2,6315 0,9380 0,9694 1,0009 1,0089 -2,7378 -2,6315 -2,6315 -2,5252 

25 0,9905 -1,6900 0,9368 0,9706 1,0044 1,0103 -1,9732 -1,6900 -1,6900 -1,4068 

26 0,9719 -2,1397 0,9168 0,9524 0,9879 0,9913 -2,3970 -2,1397 -2,1397 -1,8824 

27 1,0001 -0,8282 0,9462 0,9802 1,0142 1,0201 -1,1444 -0,8282 -0,8282 -0,5119 

28 0,9747 -2,2657 0,9237 0,9550 0,9863 0,9941 -2,5207 -2,2657 -2,2657 -2,0108 

29 0,9799 -2,1285 0,9214 0,9603 0,9992 0,9995 -2,5592 -2,1285 -2,1285 -1,6978 

30 0,9678 -3,0417 0,9072 0,9484 0,9872 0,9896 -3,4689 -3,0417 -3,0417 -2,6145 
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Tab.7: Results for case VII. 

Fuzzy distribution (p.u.) 
Crisp Ploss (p.u.) 

PFL1 PFL2 PFL3 PFL4 
0,0777 0,0669 0,0750 0,0850 0,0900 

 

Tab.8: Results for case VIII. 

Fuzzy distribution (p.u.) 
Crisp Ploss (p.u.) 

PFL1 PFL2 PFL3 PFL4 
0,0279 0,0084 0,0266 0,0271 0,0514 

 

Tab.9: Fuzzy distribution of real state estimation on simple lines of 6-bus system. 

Fuzzy distribution (p.u.) 
Line No. Crisp state estimation (p.u.) 

PFL1 PFL2 PFL3 PFL4 
3(1-5) 0,3502 0,3270 0,3483 0,3521 0,3740 

5(2-4) 0,3922 0,3171 0,3511 0,4445 0,4791 
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