
SOFTWARE ENGINEERING VOLUME: 10 | NUMBER: 1 | 2012 | MARCH

© 2012 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 28

GENERATING PARALLEL APPLICATIONS FROM MODELS BASED
ON PETRI NETS

Stanislav BOHM1, Marek BEHALEK1

1Department of Computer Science, Faculty of Electrical Engineering and Computer Science, VSB-Technical University
of Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech Republic

stanislav.bohm@vsb.cz, marek.behalek@vsb.cz

Abstract. Parallel and distributed systems play an
important role in the development of information
technologies and their application. These systems are
very useful but their development and usage is inherently
more difficult. A solution can be a tool focused on
systematic, well-arranged design, analysis and
verifications these systems. This article briefly describes
the tool Kaira intended for modelling, simulation and
generation of parallel applications. A developer is able to
model parallel programs and different aspects of
communication using Kaira. Models are based on the
variant of Coloured Petri nets. The important feature of
our tool is automatic generation of standalone parallel
applications from models. The final application can be
generated with different parallel back-ends, currently it
can be threads or MPI.

Keywords

Coloured Petri nets, fast prototyping, modelling,
parallel-distributed applications.

1. Introduction

In the world of scientific and technical computations,
parallel computers are natural and common tools. They
give us possibility to decrease computational time or run
applications too large for a single machine. But these
profits are paid by a more complex development of
applications for such systems compared to their
sequential counterparts. Difficulties with the development
of parallel applications arise in each part of the
development process from designing parallel algorithms,
through their implementation to testing and debugging. It
can be a problem especially for researchers with little or
no experience in the field of a parallel programming. In
these areas the real output is not often an implemented
application but a product of its executions. In extreme
cases we might run these applications only once. As
a result, a sequential solution is often used even if we

have access to supercomputers or computer clusters.

For such scientific computations we want to get a
parallel implementation quickly and easily. As a solution
we start to work on a programming tool Kaira. It allows
creating a visual model of communication and
parallelism of a program and a programmer can insert
sequential codes into such model (thus reuse existing
codes). Behaviour of a model can be observed in
simulations and at the end a programmer can generate a
final stand-alone application by “one click”.

Visual models in Kaira are based on our variant of
Coloured Petri nets (CPN) [1]. CPNs provide
a theoretical background and we use their syntax and
semantics.

In the current version, sequential codes inserted
into a model are written in C/C++ and resulting
applications can be generated for different parallel back-
ends. Right now, threads or Message Passing Interface
(MPI) [2] are supported. Therefore generated applications
can run on parallel computers with a distributed memory
architecture. Visual models are also used for debugging.
The debug information can be shown to a user in a more
high-level way compared to classic debugging solutions
so a user gains a global overview of a state of
computation more easily.

The tool is an open source project and can be
obtained at http://verif.cs.vsb.cz/kaira.

2. State of the Art

There are many approaches to parallel programming and
also many tools targeted to this area. A nice overview of
tools for parallel and distributed applications
development presents paper [3].

Today’s CPUs usually contain more cores and we
can for example use a system API for threads to create
parallel applications, but this approach requires solving
different low level issues. On a higher level of abstraction
there are tools like OpenMP. If a main computation can

SOFTWARE ENGINEERING VOLUME: 10 | NUMBER: 1 | 2012 | MARCH

© 2012 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 29

be expressed as more or less independent cycles then
OpenMP can help a lot. But problem arises if
a computation requires nontrivial communication and
synchronization. Moreover these solutions are often
closely tied to usage of computers with shared memory.

But when we move to the area of supercomputers
then the memory is usually distributed and mentioned
approaches cannot be straightforwardly applied. The
industrial standard for computation without shared
memory is MPI. But this standard represents rather a low
level approach. Generally speaking, it is API for sending
messages between nodes. There is no common approach
how to parallelize sequential solutions in abstract way for
environments without shared memory (compared to
approach represented by OpenMP).

In our research, we are focused on the
development of applications in high level way for
computers without shared memory with tens or hundreds
nodes. Especially we focus on applications with
nontrivial communication.

Besides these well known and commonly used
technologies like OpenMP and MPI there are also other
approaches that are still subject of research. We want to
mention particular technologies and approaches that we
found interesting and that were an inspiration for us.

First we want to mention the functional style of
programming. It can be very attractive for parallel
applications [4]. However functional programming
languages are not widely used and some algorithms are
harder to express using them.

As we mentioned above our models are based on
a variant of CPN. CPN are used in Kaira as the graphical
language for modelling. So in some aspects the algorithm
is also modelled in the declarative way.

Arcs in Kaira are annotated by a textual
inscription language. This inscription language also
adopts the functional style of programming. In the area of
high level Petri nets, it is a common approach to combine
Petri nets with a general programming language.

There are also approaches that extend widely used
programming languages like Java to ensure ability of
automatic parallel execution. For example Out-of-Order
Java [5] and Deterministic Java [6] extends Java by
constructs with well defined parallel behaviour.
A parallel execution then came naturally and it is
produced by a compiler. This kind of parallelization is
mostly tied with computers with shared memory. Also
a programmer has to rely on a compiler. For example,
even if a bottleneck is found, it can be hard to change the
resulting program and solve the problem.

In our tool, the parallelization has to be expressed
explicitly in Petri nets but a programmer can chose
different levels of abstraction. Models can be very
specific but also they can be expressed in an abstract way
and many things can be left on the tool. Translating
models into executable forms is in all cases performed

automatically. This explicitness gives a programmer more
control (especially over communication) in a program but
he can still choose to work with a high level model and
specify some parts in more detail later if necessary. These
options are crucial for obtaining prototypes in short time
and also for possibility to create models with good
performance.

CPN Tools [1], [7] and Renew [8], [9] are ones of
the best known tools in the world of high level Petri nets.
CPN Tools is one of the most famous tools for designing
CPN. CPN ML (the variant of Standard ML) is used as
the net inscription language. The strong points of this tool
are simulations, the state space analysis and the
performance analysis. CPN Tools is (for example) very
good at modelling protocols. The main difference from
Kaira is the absence of a code generation. So a user can
model applications but when he wants to get executable
codes he needs to write them by hand from scratch.

Renew is the tool for designing reference nets.
These nets combine the object oriented programming
with Petri nets. In Renew, Java is used as the inscription
language for annotations of arcs and other elements. Any
Java library can be used in models. Renew is also good at
modelling parallelism. A user can have more parallel
running instances of a net. Communication is ensured by
synchronization of firing transitions, instead of flows of
tokens like in Kaira. The simulation in Renew can run
simultaneously on more processors but it is restricted to
machines with shared memory. Any program generated
by Kaira can also run on computers without shared
memory due to MPI. Moreover Renew cannot generate
stand-alone applications. The typical usage of Renew is
designing multi agent systems. It is not designed for
a high performance computing.

3. Introduction to Kaira

In this section we want to shortly describe Kaira basic
features and properties. We show its usage on simple
examples. More details can be found in papers [10] and
[11].

The tool itself provides a standalone development
environment so a whole application can be written in it.
The most basic function of the tool is a creation of
graphical models. The tool also assists a developer with
inserting custom codes into models. A user is able to
simulate these models and generate stand-alone parallel
applications.

Kaira also provides other possibilities such as
recording of generated application’s runs. Created logs
can be visualized in original models. We can use these
logs for debugging and profiling. A replay of a log file is
shown in Fig. 1. The net used in screenshot is the same as
the net used later in the text (Fig. 2).

SOFTWARE ENGINEERING VOLUME: 10 | NUMBER: 1 | 2012 | MARCH

© 2012 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 30

Fig. 1: The screenshot of Kaira during replaying of a log file.

The tool also offers an automatic agglomeration of
parallel task to available computing nodes. So a user can
create a high-level model with a large number of parallel
activities and these tasks are then automatically assigned
to processes.

Fig. 2: The example of a model.

Our own variant of CPN is used as a graphical
language for Kaira models. In CPN, tokens are not only
black dots like in ordinary (Place/Transition) Petri nets
but they have values like number 6 or string Hello. In
Fig. 2 it can be seen an example of our CPN. In the
example, each place has assigned a data type and only
tokens with values of a corresponding type can be stored
in a place. An assigned data type is displayed at the right
bottom side of a place. A place’s initial content is written
at the upper right side.

Let us consider the following problem. We want to
perform some computations for an interval of numbers.
We can divide our task to separate subtasks but
a computation time of each subinterval is notably
different and we cannot guess it in advance. It is
ineffective to simply divide all subtasks to working nodes
at the beginning. As a result we introduce a master node
that divides parts of the work to other nodes. When
a working node finishes a computation of an assigned
subtask, it sends results to the master node and waits for
a new job. For the sake of simplicity we fix the number
of working nodes to five. The net solving this problem is
shown in Fig. 2.

The place ready in our example represents idling
workers. At the beginning it contains an id (a number) of
each worker. The place counter stores an integer
representing the start of the next assigned interval. When
the transition divide is fired then it takes an id of an idling
worker from the place ready and it assigns a new
subinterval and increases the number in the place
counter.

Fig. 3: The example of an area.

The significant feature of our modification of CPN
is blue areas. The example can be seen in Fig. 3. There is
a fragment of a net enclosed by blue area with inscription
“5”. It can be imagined in the way that we have separated
copies of this fragment as it is shown in Fig. 4. These five
replication’s runs independently on each other with
separated content of places. Blue areas allow us easily
express a computation that is performed on distributed
data.

Fig. 4: The visualization of replications of the area in the Fig. 3.

Our example shows (Fig. 2) five replications of
the right part of the net containing the transition compute
and one place. Each replication represents a working
node in our algorithm. The expression after “@” in the
inscription of the edge from the transition divide specifies
an identification number of replications where we want to
send an interval. It allows us to establish communication
between replications defined by blue areas. The double
border of the transition compute means that there is a
C++ function inside the transition. This function performs
a computation on an interval of numbers. When this
transition finishes its computation then it returns a token

ready

counter

results

SOFTWARE ENGINEERING VOLUME: 10 | NUMBER: 1 | 2012 | MARCH

© 2012 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 31

into the place ready and it also sends results to the master
node.

When we reach the limit in the place counter and
all workers finish their computations then all results are
written at once using the transition write results.

The integration with C++ code into the model is
done by two ways: The code can be inserted into
transitions and places or C++ types and functions can be
integrated into the inscription language. The latter allows
for example integrate some C++ library for matrix
operations. Tokens can represent matrices and one dges
we can have expressions for operations with them. We
show here the former method: inserting codes into a
transition. The similar idea with auto-generated templates
works also for other cases of integration.

Let us assume that we want to insert a code into
the transition divide. The tool opens a new editor tab with
the following code:
struct Vars {

int start;
int worker;

};

void function(CaContext &ctx, Vars
&var)
{

}

Fig. 5: Source code.

This code is generated from the model and it will
be updated when the model is changed. A user cannot
modify this code but he can write what he wants as a
function’s body. The second parameter gives us an access
to variables used on edges around the transition. The first
parameter is an interface for calling some internal
functions. Every time when a transition is fired then a
function assigned to the transition is called.

The same idea works also for places but the codes
inside places serve for initialization purposes. For
example function can load some data from a file.

4. Ant Colony Optimizations

The nature of our tools allows easily experimentation
with created algorithms. A programmer can test different
concepts by just editing few arcs. It can be especially
useful where algorithm itself is a subject of experiments.
This situation often occurs in case of metaheuristics. We
have described how can be our tool used for one of well
known metaheuristic algorithm: Ant Colony Optimization
(ACO) [12]. It was a main theme of a paper [13].

ACO is a wide spread nature inspired
metaheuristic algorithm. It is a successful tool with
practical applications in the areas of optimization,

scheduling, and path finding to name just a few. The
basic idea of the algorithm is inspired by real life ant
colonies. Real ants usually find an optimal path between
two places. ACO algorithm is inspired by our
understanding of these real life observations. In ACO,
there is a colony of ants. These ants try to explore a given
space. While they explore this space they place
pheromones along their way and also they are guided by
pheromones of other ants. Ants try to fulfil a certain goal.
For example, they try to find a best path to a target place.
These pheromones slowly evaporate in time. Also in time
new generations of ants are produced. During this process
successful ants are boosted while unsuccessful ones are
eliminated. These basis steps are repeated until we get a
path (it is a solution in fact) that satisfy our needs.

The paper [13] presents usage of Kaira to
parallelization of the ACO algorithm. At the beginning,
we had working sequential ACO implementation. In the
paper, we present different approaches how to use Kaira
to transform this solution into a parallel version. This
original sequential implementation was not created
exclusively for our experiments but was implemented by
other research group from our department - Department
of Computer Science, FEI VSB-TUO. It was used to
solve some real life problems and for research purpose in
other research areas [14].

Although there are plenty of categories of parallel
ACO algorithms, the majority of parallel
implementations use the multi-colony (multi-population)
ACO [15] which is roughly equivalent to the islands
model of parallel genetic algorithms. In this approach,
each process executes an independent ACO instance. The
independent colonies might exchange solutions at a
defined time. However, the usefulness of certain
communication patterns and strategies is still a subject of
further studies.

One of our solutions was based on the fully
connected model where each colony communicates with
all other colonies. This model is captured by net in the
Fig. 6.

In fact this model represents the whole parallel
solution. Besides the model and original source codes we
need to write proximately 20 lines of C++ code that is
hidden in transition Compute. This code executes one
step in ACO algorithm. This means that a new generation
of ants is produced. The so far most successful solution is
found and this solution is sent to other colonies. They
merge this solution with their data.

SOFTWARE ENGINEERING VOLUME: 10 | NUMBER: 1 | 2012 | MARCH

© 2012 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 32

Fig. 6: Parallel ACO model where colonies are fully connected.

In the model, the number of blue areas
corresponds to the number of colonies. These colonies are
then automatically assigned to processes. Kaira
automatically assigns more ant colonies to one process if
needed.

For practical experiments, we use the travelling
salesman problem (TSP). We use TSP because it was
often used as a case study in the research of ACO [12],
[15]. Experiments were performed on a HPC Windows
Server 2008 R2 with 6 nodes. Each of these nodes has 8
cores. Nodes are connected with 20 Gb·s-1 InfiniBand.
During our practical experiments we try to explore two
things. First we try to test correctness of created
solutions. A core functionality of parallel solutions
expects several ant colonies working together. So they
cannot be easily compared with the original
implementation. So first we found settings (the number of
ants, computed generations and number of ant colonies)
that perform similar amount of work and gives similar
results. While we use TSP the result is a path through a
graph. We can easily compare the quality of founded
solutions simply by comparing costs of founded paths.
Then we test performance and scalability of created
solutions.

Particular measured numbers are not so important,
but for example if we used presented parallel solution
with 16 ant colonies using 16 processors then the
execution time was reduced approximately 14,7 times
compared to the execution time using only one processor.
So presented parallel solution scales well with this
number of processors.

In different experiment, we fix the quality of
obtained solutions. Then we need approximately 22,7
seconds using the original sequential implementation to
find solution with this quality compared to 3,2 seconds
when we use 16 processors and presented parallel
implementation. This means speedup approximately
seven times.

To summarize this section, metaheuristics often
requires experiments to find a proper algorithm usage and
settings to solve a given problem. A parallel computing

can be very useful mainly because it can reduce time to
find a solution with given properties. On the other hand
parallel programming can be more time consuming and
we need more development time to get an optimal
parallel version. The tool like Kaira simplifies
development and allows experiments with created
solutions.

5. Future Work

The Kaira version presented here works well for different
tasks. We successfully use it for a parallelization of
metaheuristic algorithms mentioned above. On the other
hand, there are still algorithms where our graphical model
becomes complicated even if the core of a problem is
relatively simple. One of issues is manipulation with
objects that have internal structures.

We can take computing with matrices as an
example. A matrix can be viewed as one object or as a set
of rows/columns or as a set of individual values. If we
want to distribute matrices to working nodes then it is
useful to consider a matrix as a token. On the other hand
if we want to model a computation on a matrix then it is
often better to represent each value of matrix as a token.
The natural solution is to introduce functions that can
scatter a token to more tokens according to their internal
structure and functions that can gather such tokens and
reconstruct a container token. But this solution brings
new problems. They are mostly connected to
synchronizations and separation of computations. For
example we have to prevent mixing tokens from different
objects or computations together. Such issues can be
solved even in the current version but it often ends with a
nontrivial net with many extra arcs and transitions.

We are working on solution based on modules. On
the first sight it can looks similar like Hierarchical Colour
Petri nets [1], but their semantic is different. Instances of
modules are created dynamically during execution of a
net. Our semantic allows working with structured objects
on different levels of their internal structure and nets
remains well arranged as a result.

The other problem connected to the current
version can occur for models with higher level of
abstraction where parallel activities are not fixed but the
shape and size of structure of net's replication depends on
the input. To solve this problem we are preparing the new
view on nets’ replications. It can be viewed in the way
that a whole computation is executed on an infinite tree
(with infinite branching) where each node represents one
replication. It is backward compatible because we can
obtain the same behaviour as in the current version if we
use only the top level of the tree. But if we use the whole
tree then we can easily model even problems with
a recursive nature.

SOFTWARE ENGINEERING VOLUME: 10 | NUMBER: 1 | 2012 | MARCH

© 2012 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 33

6. Conclusion

We propose a tool for modelling, simulating and
generating parallel applications. We have been motivated
by real-life scientific problems and our work is focused
on parallel applications with nontrivial data flows and
communication. We are interested in scientific
computations where to get an application (and its results)
quickly is more important than a handmade solution with
a slightly better performance. The strong reason why to
use Kaira is the reduction of development time. The
development itself is simplified and the programmers
don’t need to be experienced in the area of parallel or
distributed systems. We believe that Kaira can be useful
during implementation of parallel algorithms, even if we
are still in the beginning and we are experimenting with
basic principles of the whole idea. It will also need lot of
programmers’ work to get our tool into the form of
a mature development environment.

To summarize, we propose the extensions of
syntax and semantics of CPN that are useful for
modelling of parallel algorithms. Also we offer the tool
that helps to create and simulate such model. Our goal is
not only to implement the tool that can demonstrate our
model but we want to create a complete development
environment for parallel applications. Therefore
important aspects of our tools is ability to integrate
existing C++ libraries and at the end to create stand-alone
applications from the models. We also want to utilize our
model in other parts of development process. For
example in debugging applications, where the distribute
states of running programs can be shown in the abstract
way as state of Petri Net so a programmer can easily
realize what happens in applications.

Acknowledgements

The work was supported by GACR P202/11/0340:
Modelling and verification of parallel systems. This
article has been elaborated in the framework of the
IT4Innovations Centre of Excellence project, reg. no.
CZ.1.05/1.1.00/02.0070 supported by Operational
Programme 'Research and Development for Innovations'
funded by Structural Funds of the European Union and
state budget of the Czech Republic.

References

[1] JENSEN, Kurt and Lars M. KRISTENSEN. Coloured Petri
Nets - Modelling and Validation of Concurrent Systems.
Berlin/Heidelberg: Springer, 2009. ISBN 978-3-642-00283-0.

[2] SNIR, Marc, Steve OTTO, Steven HUSS-LEDERMAN, David
WALKER and Jack DONGARRA. MPI-The Complete
Reference, Volume 1: The MPI Core. 2nd (revised). Cambridge:
MIT Press, 1998. ISBN 0-262-69215-5.

[3] DELISTAVROU, Constantinos T. and Konstantinos G

MARGARITIS. Survey of software environments for parallel
distributed processing: Parallel programming education on real
life target systems using production oriented software tools. In:
14th Panhellenic Conference on Informatics. 2010. p. 231–236.
ISBN 978-0-7695-4172-3.

[4] LOIDL, Hans, W., Fernando RUBIO, et al. Comparing parallel
functional languages: Programming and performance. Journal
Higher-Order and Symbolic Computation. September 2003,
vol. 16, iss. 3., p. 203–251. ISSN 1388-3690.

[5] JENISTA, James C., Hum E. YONG and Brian DEMSKY.
OoOJava: software out-of-order execution. In: Proceedings of
the 16th ACM symposium on Principles and practice of
parallel programming. San Antonio, TX, USA, 2011. p. 57-68.
ISBN 978-1-4503-0119-0.

[6] BOCCHINO, Robert L., Vikram S. ADVE, Sarita V. ADVE
and Marc SNIR. Parallel Programming Must Be Deterministic
by Default. In: First USENIX Workshop on Hot Topics in
Parallelism. Berkeley, CA, USA, 2009. Available at:
http://static.usenix.org/event/hotpar09/tech/full_papers/bocchin
o/bocchino.pdf.

[7] CPN Tools [online]. 2011. Available at: http://cpntools.org/.

[8] KUMMER, Olaf; Frank WIENBERG, Michael DUVIGNEAU,
Joern SCHUMACHER, Michael KOEHLER, Daniel MOLDT,
Heiko ROELKE and Ruediger VALK. An extensible editor and
simulation engine for petri nets: Renew. In: Applications and
Theory of Petri Nets. Volume 3099 of LNCS. Berlin: Springer,
2004, p. 484-493. ISBN 978-3-540-27793-4_29.

[9] Renew [online]. 2012. Available at http://renew.de.

[10] BOHM, Stanislav and Marek BEHALEK. Kaira: Modelling
and generation tool based on Petri nets for parallel applications.
In: UkSim 13th International Conference on Computer
Modelling and Simulation. Cambridge, 2011, p. 403 –408.
ISBN 978-1-61284-705-4.

[11] BOHM, Stanislav; Marek BEHALEK and Ondrej
GARNCZARZ. Developing parallel applications using Kaira.
Digital Information Processing and Communications. Volume
188 of Communications in Computer and Information Science.
Springer, 2011, p. 237-251. ISSN 1865-0929.

[12] DORIGO, Marco and Thomas STUETZLE. The ant colony
optimization metaheuristic: Algorithms, applications, and
advances. In: Handbook of Metaheuristics, International Series
in Operations Research, Management Science. New York:
Springer, 2003. vol. 57, p. 250–285. ISBN 0-306-48056-5_9.

[13] BEHALEK, Marek, Stanislav BOHM, Pavel KROMER,
Martin SURKOVSKY and Ondrej MECA. Parallelization of
ant colony optimization algorithm using Kaira. In: 11th
International Conference on Intelligent Systems Design and
Applications (ISDA 2011). Cordoba, Spain, November 2011, p.
510–515. ISBN 978-1-4577-1675-1.

[14] SNASEL, Vaclav, Pavel KROMER, Jan PLATOS, Milos
KUDELKA, Zdenek HORAK and Katarzyna WEGRZYN-
WOLSKA. Two new methods for network analysis: Ant colony
optimization and reduction by forgetting. In: Advances in
Intelligent Web Mastering - 3 - AWIC 2011, ser. Advances in
Soft Computing. Springer, 2011, vol. 86, p. 225–234. ISBN
978-3-642-18029-3_23.

[15] MANFRIN, Max, Mauro BIRATTARI, Thomas STUETZLE
and Marco DORIGO. Parallel ant colony optimization for the
traveling salesman problem. In: Ant Colony Optimization and
Swarm Intelligence, ser. LNCS. Berlin/Heidelberg: Springer,
2006, vol. 4150, p. 224–234. ISBN 978-0-769-53357-5.

SOFTWARE ENGINEERING VOLUME: 10 | NUMBER: 1 | 2012 | MARCH

© 2012 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 34

About Authors

Stanislav BOHM was born in 1985. He received M.Sc.
from computer science in 2009 and he is currently
working towards the Ph.D. degree at VSB Technical
University of Ostrava. His main research topics are
modelling parallel algorithms, generating programs from
Petri nets and verification questions about counter

machines.

Marek BEHALEK was born in 1979. He received Ph.D.
degree from informatics and applied math in 2009 at VSB
Technical University of Ostrava. He is currently working
as the assistant professor at the Department of computer
science at FEECS VSB Technical University of Ostrava.
His research areas are programming languages, their
evolution and applications. Right now he is focused on
the parallel programming.

	1. Introduction
	2. State of the Art
	3. Introduction to Kaira
	4. Ant Colony Optimizations
	5. Future Work
	6. Conclusion

