Helpdesk

Top image

Editorial board

Darius Andriukaitis
Kaunas University of Technology, Lithuania

Alexander Argyros
The University of Sydney, Australia

Radu Arsinte
Technical University of Cluj Napoca, Romania

Ivan Baronak
Slovak University of Technology, Slovakia

Khosrow Behbehani
The University of Texas at Arlington, United States

Mohamed El Hachemi Benbouzid
University of Brest, France

Dalibor Biolek
University of Defence, Czech Republic

Klara Capova
University of Zilina, Slovakia

Erik Chromy
UPC Broadband Slovakia, Slovakia

Milan Dado
University of Zilina, Slovakia

Petr Drexler
Brno University of Technology, Czech Republic

Eva Gescheidtova
Brno University of Technology, Czech Republic

Ray-Guang Cheng
National Taiwan University of Science and Technology, Taiwan, Province of China

Gokhan Hakki Ilk
Ankara University, Turkey

Janusz Jezewski
Institute of Medical Technology and Equipment, Poland

Rene Kalus
VSB - Technical University of Ostrava, Czech Republic

Ivan Kasik
Academy of Sciences of the Czech Republic, Czech Republic

Jan Kohout
University of Defence, Czech Republic

Ondrej Krejcar
University of Hradec Kralove, Czech Republic

Miroslaw Luft
Technical University of Radom, Poland

Stanislav Marchevsky
Technical University of Kosice, Slovakia

Byung-Seo Kim
Hongik University, Korea

Valeriy Arkhin
Buryat State University, Russia

Rupak Kharel
University of Huddersfield, United Kingdom

Fayaz Hussain
Ton Duc Thang University, Vietnam

Peppino Fazio
Ca’ Foscari University of Venice, Italy

Fazel Mohammadi
University of New Haven, United States of America

Thang Trung Nguyen
Ton Duc Thang University, Vietnam

Le Anh Vu
Ton Duc Thang University, Vietnam

Miroslav Voznak
VSB - Technical University of Ostrava, Czech Republic

Zbigniew Leonowicz
Wroclaw University of Science and Technology, Poland

Wasiu Oyewole Popoola
The University of Edinburgh, United Kingdom

Yuriy S. Shmaliy
Guanajuato University, Mexico

Lorand Szabo
Technical University of Cluj Napoca, Romania

Tran Trung Duy
Posts and Telecommunications Institute of Technology, Ho Chi Minh City, Vietnam

Xingwang Li
Henan Polytechnic University, China

Huynh Van Van
Ton Duc Thang University, Vietnam

Lubos Rejfek
University of Pardubice, Czech Republic

Neeta Pandey
Delhi Technological University, India

Huynh The Thien
Ho Chi Minh City University of Technology and Education, Vietnam

Mauro Tropea
DIMES Department of University of Calabria, Italy

Gaojian Huang
Henan Polytechnic University, China

Nguyen Quang Sang
Ho Chi Minh City University of Transport, Vietnam

Anh-Tu Le
Ho Chi Minh City University of Transport, Vietnam

Phu Tran Tin
Ton Duc Thang University, Vietnam


Home Search Mail RSS


COMPARISON OF MPPT ALGORITHMS FOR DC-DC BOOST CONVERTER IN GRID-TIED PHOTOVOLTAIC SYSTEMS

Nabila Shehata, Ahmed E. A. Hussien, Walid S. E. Abdellatif, Praveen C Ramamurthy, Ahmed Emad-Eldeen

DOI: 10.15598/aeee.v22i2.5318


Abstract

In unpredictable weather circumstances, a maximum power point tracking (MPPT) approach is critical for ensuring maximum photovoltaic (PV) output power is extracted. In This paper we will compare the incremental conductance algorithm (IC) , ρerturb and Observe (ρ& o) ,and the fuzzy logic controller (FLC) as maximum power point tracking (MPPT) techniques. The three algorithms were used on a photovoltaic energy conversion system that was linked to a grid. The suggested methodologies investigate the photovoltaic (PV) system's solar energy conversion performance under various irradiance and temperature circumstances. Lastly, a performance comparison between IC , P O, and FLC has been performed, demonstrating the superiority of the fuzzy controller over the other approaches. FLC converts photovoltaic electricity readily, reducing fluctuations, and it responds quickly to variations in solar irradiation (shading effect). The simulation results demonstrate that the controller using fuzzy logic performs well, allowing the inverter to convert electricity provided by the solar panels.

Keywords


Fuzzy logic control; Perturbation and observation; Incremental conductance; Maximum power point tracking; Photovoltaic; Dc/Dc converter; MATLAB; SIMULINK.

References

References

Apurba, M., Daniel, P., Mohammad, M. T., Suverna, T., Pawan, K. and Pankaj, Y. A review of aspects of additive engineering in perovskite solar cells. J. Mater. Chem. 2020, vol. 8, 27–54, no. 1, pp. 27–54. DOI:10.1039/C9TA07657C.

M. Karimi, H. Mokhlis, K. Naidu, S. Uddin and A. H. A. Bakar. Photovoltaic penetration issues and impacts in distribution network - A review. Renew. Sustain. Energy Rev. 2016, vol. 53, pp. 594–605. DOI:10.1016/j.rser.2015.08.042.

V. K. An Overview of Factors Affecting the Performance of Solar PV Systems. Energy Scan.2017, February, pp. 2–8.

B. Subudhi and R. Pradhan. A comparative study on maximum power point tracking techniques for photovoltaic power systems. IEEE Trans. Sustain. Energy.2013, vol. 4, no. 1, pp. 89–98.

A. Rajavel and N. Rathina Prabha. Fuzzy logic controller-based boost and buck-boost converter for maximum power point tracking in solar system. Trans. Inst. Meas. Control. 2021, vol. 43, no. 4, pp. 945–957.

D. Verma, S. Nema, A. M. Shandilya and S. K. Dash. Maximum power point tracking (MPPT) techniques: Recapitulation in solar photovoltaic systems. Renew. Sustain. Energy Rev.2016, vol. 54, pp. 1018–1034.

H. Shahid, M. Kamran, Z. Mehmood, M. Y. Saleem, M. Mudassar and K. Haider. Implementation of the novel temperature controller and incremental conductance MPPT algorithm for indoor photovoltaic system. Sol. Energy.2018, vol. 163, pp. 235–242. DOI:10.1016/j.solener.2018.02.018.

M. Al-Dhaifallah, A. M. Nassef, H. Rezk and K. S. Nisar. Optimal parameter design of fractional order control based INC-MPPT for PV system. Sol. Energy.2018, vol. 159, pp. 650–664. DOI: 10.1016/j.solener.2017.11.040.

R. I. Putri, S. Wibowo and M. Rifa’i. Maximum power point tracking for photovoltaic using incremental conductance method. Energy Procedia.2015, vol. 68, pp. 22–30. DOI: 10.1016/j.egypro.2015.03.228

S. A. Mohamed and M. Abd El Sattar. A comparative study of P&O and INC maximum power point tracking techniques for grid-connected PV systems. SN Appl. Sci..2019, vol. 1, no. 2, pp. 1–13. DOI: 10.1007/s42452-018-0134-4

K. Jain, M. Gupta and A. Kumar Bohre. Implementation and Comparative Analysis of PO and INC MPPT Method for PV System. In: India Int. Conf. Power Electron. IICPE. 2018, pp. 1–6. DOI: 10.1109/IICPE.2018.8709519.

E. A. Gouda, M. F. Kotb and D. A. Elalfy. Modelling and Performance Analysis for a PV System Based MPPT Using Advanced Techniques. Eur. J. Electr. Eng. Comput. Sci.2019, vol. 3, pp. 1–7. DOI: 10.24018/ejece.2019.3.1.47.

A. Ghamrawi, J. P. Gaubert and D. Mehdi. A new dual-mode maximum power point tracking algorithm based on the Perturb and Observe algorithm used on solar energy system. Sol. Energy.2018, vol. 174, pp. 508–514. DOI: 10.1016/j.solener.2018.09.013.

S. Singh, S. Manna, M. I. H. Mansoori and A. K. Akella. Implementation of Perturb Observe MPPT Technique using Boost converter in PV System. In: Int. Conf. Comput. Intell. Smart Power Syst. Sustain. Energy, CISPSSE. 2020, pp. 29–32. DOI: 10.1109/CISPSSE49931.2020.9212203

R. Arulmurugan. Optimization of Perturb and Observe Based Fuzzy Logic MPPT Controller for Independent PV Solar System. Wseas Trans. Syst. 2020,vol. 19, pp. 159–167. DOI: 10.37394/23202.2020.19.21

W. I. Hameed, A. L. Saleh, B. A. Sawadi, Y. I. A. Al-Yasir and R. A. Abd-Alhameed. Maximum power point tracking for photovoltaic system by using fuzzy neural network. Inventions.2019, vol. 4. DOI: org/10.3390/inventions4030033

T. Nahak and Y. Pal. Comparison between conventional, and advance maximum power point tracking techniques for photovoltaic power system. In: IEEE 7th Power India Int. Conf, PIICON .2016.

T. H. Kwan and X. Wu. Maximum power point tracking using a variable antecedent fuzzy logic controller. Sol. Energy.2016, vol. 137, pp. 189–200. DOI: org/10.1016/j.solener.2016.08.008.

M. A. Danandeh and S. M. Mousavi G. A new architecture of INC-fuzzy hybrid method for tracking maximum power point in PV cells. Sol. Energy. 2018, vol. 171, pp. 692–703. DOI: org/10.1016/j.solener.2018.06.098

P. K. Pathak, A. Kumar Yadav and P. A. Alvi. Maximum Power Operation of SPV System using Advanced FL based Control Strategy. In: 8th Int. Conf. Power Syst. Transit. Towar. Sustain. Smart Flex. Grids, ICPS .2019. DOI: 10.1109/ICPS48983.2019.9067615

A. M. Eltamaly, M. S. Al-Saud and A. G. Abokhalil. A novel scanning bat algorithm strategy for maximum power point tracker of partially shaded photovoltaic energy systems. Ain Shams Eng. J. 2020, vol. 11, no. 4, pp. 1093–1103. DOI: org/10.1016/j.asej.2020.02.015

P. K. Pathak and A. K. Yadav. Design of battery charging circuit through intelligent MPPT using SPV system. Sol. Energy. 2019, vol. 178, pp. 79–89. DOI: org/10.1016/j.solener.2018.12.018

J. A. Ramos Hernanz, J. J. Campayo Martín, I. Zamora Belver, J. Larrañaga Lesaka, E. Zulueta Guerrero and E. Puelles Pérez. Modelling of photovoltaic module. Renew. Energy Power Qual. J. 2010, vol. 1, no. 8, pp. 1186–1190.‏

D. K. Sharma and G. Purohit. Advanced perturbation and observation (P&O) based maximum power point tracking (MPPT) of a solar photo-voltaic system. In: India Int. Conf. Power Electron. IICPE.2012, pp. 3–7. DOI: 10.1109/IICPE.2012.6450411.


Full Text:

PDF