Helpdesk

Top image

Editorial board

Darius Andriukaitis
Kaunas University of Technology, Lithuania

Alexander Argyros
The University of Sydney, Australia

Radu Arsinte
Technical University of Cluj Napoca, Romania

Ivan Baronak
Slovak University of Technology, Slovakia

Khosrow Behbehani
The University of Texas at Arlington, United States

Mohamed El Hachemi Benbouzid
University of Brest, France

Dalibor Biolek
University of Defence, Czech Republic

Klara Capova
University of Zilina, Slovakia

Ray-Guang Cheng
National Taiwan University of Science and Technology, Taiwan, Province of China

Erik Chromy
UPC Broadband Slovakia, Slovakia

Milan Dado
University of Zilina, Slovakia

Petr Drexler
Brno University of Technology, Czech Republic

Eva Gescheidtova
Brno University of Technology, Czech Republic

Gokhan Hakki Ilk
Ankara University, Turkey

Janusz Jezewski
Institute of Medical Technology and Equipment, Poland

Rene Kalus
VSB - Technical University of Ostrava, Czech Republic

Ivan Kasik
Academy of Sciences of the Czech Republic, Czech Republic

Jan Kohout
University of Defence, Czech Republic

Ondrej Krejcar
University of Hradec Kralove, Czech Republic

Zbigniew Leonowicz
Wroclaw University of Science and Technology, Poland

Miroslaw Luft
Technical University of Radom, Poland

Stanislav Marchevsky
Technical University of Kosice, Slovakia

Jerzy Mikulski
University of Economics in Katowice, Katowice, Poland

Karol Molnar
Honeywell International, Czech Republic

Thang Trung Nguyen
Ton Duc Thang University, Viet Nam

Miloslav Ohlidal
Brno University of Technology, Czech Republic

Neeta Pandey
Delhi Technological University, India

Alex Noel Joseph Raj
Shantou University, China

Marek Penhaker
VSB - Technical University of Ostrava, Czech Republic

Wasiu Oyewole Popoola
The University of Edinburgh, United Kingdom

Roman Prokop
Tomas Bata University in Zlin, Czech Republic

Karol Rastocny
University of Zilina, Slovakia

Marie Richterova
University of Defence, Czech Republic

Gheorghe Sebestyen-Pal
Technical University of Cluj Napoca, Romania

Sergey Vladimirovich Serebriannikov
National Research University "MPEI", Russian Federation

Yuriy Shmaliy
Guanajuato University, Mexico

Vladimir Schejbal
University of Pardubice, Czech Republic

Bohumil Skala
University of West Bohemia in Plzen, Czech Republic

Lorand Szabo
Technical University of Cluj Napoca, Romania

Adam Szelag
Warsaw University of Technology, Poland

Ahmadreza Tabesh
Isfahan University of Technology, Iran, Islamic Republic Of

Mauro Tropea
DIMES Department of University of Calabria, Italy

Viktor Valouch
Academy of Sciences of the Czech Republic, Czech Republic

Jiri Vodrazka
Czech Technical University in Prague, Czech Republic

Miroslav Voznak
VSB - Technical University of Ostrava, Czech Republic

He Wen
Hunan University, China

Otakar Wilfert
Brno University of Technology, Czech Republic


Home Search Mail RSS


Super-twisting Sliding Mode Control for a Multifunctional Double Stage Grid-connected Photovoltaic System

Brahim Deffaf, Farid Hamoudi, Naamane Debdouche, Yacine Ayachi Amor, Slimane Medjmadj

DOI: 10.15598/aeee.v20i3.4454


Abstract

This paper proposes a super-twisting sliding mode control for a multifunctional system that includes a Photovoltaic (PV) system connected to the grid through the Active Power Filter (APF). The latter is implemented to improve the power quality in the grid side, and injecting the provided photovoltaic power into the grid. Sliding mode control is known as a powerful control with good performance in transient and steady-state conditions. In this work, a Super-Twisting Sliding Mode Control (ST-SMC) is applied to extract the maximum power from the PV source, corresponding to the irradiation level, as well as to the three-phase inverter-based-APF power control. For the system to inject the generated power from the PV source into the grid with respect to the international standards, fulfilling the active power filtering, synchronous reference frame theory is used to generate the appropriate reference signals for harmonic and reactive power compensation. To test the multi-functionality of the system (PV-APF), this one is connected to a grid supplying nonlinear loads that absorb non-sinusoidal currents. Through the simulation results, it has successfully achieved the multi-functionality of the proposed system under steady-state and dynamic conditions. The results also show the effectiveness and moderation of the proposed super-twisting sliding mode control. Furthermore, a comparative study has been established over the conventional PI controller, showing the clear superiority of the proposed control in every aspect.

Keywords


Active Power Filter; power quality; PV system; Super-Twisting Sliding Mode Control.

Full Text:

PDF