Helpdesk

Top image

Editorial board

Darius Andriukaitis
Kaunas University of Technology, Lithuania

Alexander Argyros
The University of Sydney, Australia

Radu Arsinte
Technical University of Cluj Napoca, Romania

Ivan Baronak
Slovak University of Technology, Slovakia

Khosrow Behbehani
The University of Texas at Arlington, United States

Mohamed El Hachemi Benbouzid
University of Brest, France

Dalibor Biolek
University of Defence, Czech Republic

Klara Capova
University of Zilina, Slovakia

Ray-Guang Cheng
National Taiwan University of Science and Technology, Taiwan, Province of China

Erik Chromy
UPC Broadband Slovakia, Slovakia

Frantisek Cvachovec
University of Defence, Czech Republic

Milan Dado
University of Zilina, Slovakia

Petr Drexler
Brno University of Technology, Czech Republic

Eva Gescheidtova
Brno University of Technology, Czech Republic

Valeria Hrabovcova
University of Zilina, Slovakia

Gokhan Hakki Ilk
Ankara University, Turkey

Janusz Jezewski
Institute of Medical Technology and Equipment, Poland

Rene Kalus
VSB - Technical University of Ostrava, Czech Republic

Ivan Kasik
Academy of Sciences of the Czech Republic, Czech Republic

Jan Kohout
University of Defence, Czech Republic

Ondrej Krejcar
University of Hradec Kralove, Czech Republic

Igor Piotr Kurytnik
University of Bielsko-Biala, Poland

Zbigniew Leonowicz
Wroclaw University of Science and Technology, Poland

Miroslaw Luft
Technical University of Radom, Poland

Stanislav Marchevsky
Technical University of Kosice, Slovakia

Jerzy Mikulski
University of Economics in Katowice, Katowice, Poland

Karol Molnar
Honeywell International, Czech Republic

Miloslav Ohlidal
Brno University of Technology, Czech Republic

Ibrahim Taner Okumus
Sutcu Imam University, Turkey

Milos Orgon
Slovak University of Technology, Slovakia

Annraoi M de Paor
University College Dublin, Ireland

Neeta Pandey
Delhi Technological University, India

Marek Penhaker
VSB - Technical University of Ostrava, Czech Republic

Wasiu Oyewole Popoola
The University of Edinburgh, United Kingdom

Roman Prokop
Tomas Bata University in Zlin, Czech Republic

Karol Rastocny
University of Zilina, Slovakia

Marie Richterova
University of Defence, Czech Republic

Gheorghe Sebestyen-Pal
Technical University of Cluj Napoca, Romania

Sergey Vladimirovich Serebriannikov
National Research University "MPEI", Russian Federation

Yuriy Shmaliy
Guanajuato University, Mexico

Vladimir Schejbal
University of Pardubice, Czech Republic

Bohumil Skala
University of West Bohemia in Plzen, Czech Republic

Lorand Szabo
Technical University of Cluj Napoca, Romania

Adam Szelag
Warsaw University of Technology, Poland

Ahmadreza Tabesh
Isfahan University of Technology, Iran, Islamic Republic Of

Mauro Tropea
DIMES Department of University of Calabria, Italy

Martin Vaculik
University of Zilina, Slovakia

Viktor Valouch
Academy of Sciences of the Czech Republic, Czech Republic

Vladimir Vasinek
VSB - Technical University of Ostrava, Czech Republic

Jiri Vodrazka
Czech Technical University in Prague, Czech Republic

Miroslav Voznak
VSB - Technical University of Ostrava, Czech Republic

He Wen
Hunan University, China

Otakar Wilfert
Brno University of Technology, Czech Republic


Home Search Mail RSS


Adjustable Gain Enhanced Fuzzy Logic Controller for Optimal Wheel Slip Ratio Tracking in Hard Braking Control System

Paulinus Chinaenye Eze, Bonaventure Onyekachi Ekengwu, Nnaemeka Christopher Asiegbu, Thankgod Izuchukwu Ozue

DOI: 10.15598/aeee.v19i3.4124


Abstract

This paper has presented hard braking control system based on Adjustable Gain Enhanced Fuzzy Logic Controller (AGE-FLC) for optimal wheel slip ratio tracking performance. The purpose of the study was to improve slip ratio tracking and eliminate cycling while achieving very much shortened distance during emergency braking. The model of a braking vehicle at speed of 30 m.s^-1 subject to wheel locking was developed and implemented in MATLAB/Simulink environment. Simulation was conducted without a controller to study the slip ratio performance of the system on different road surfaces. The simulation results showed that stopping distance was 135.2 m in 5 seconds. A Fuzzy Logic Controller (FLC) whose control signal was enhanced by adding an adjustable gain mechanism to its output was designed. Simulation results showed that the AGE-FLC controller offered optimal tracking of desired wheel slip ratio of 0.1 as fast as possible on all road surface scenarios, while improving the stopping distance by 70.4% on dry road surface, 63.3% on wet road surface, 57.5% on cobblestone road surface and 48.8% on snow road surface in 2.651seconds.

Keywords


Antilock braking system; fuzzy logic controller; hard braking; wheel slip ratio.

Full Text:

PDF