Helpdesk

Top image

Editorial board

Darius Andriukaitis
Kaunas University of Technology, Lithuania

Alexander Argyros
The University of Sydney, Australia

Radu Arsinte
Technical University of Cluj Napoca, Romania

Ivan Baronak
Slovak University of Technology, Slovakia

Khosrow Behbehani
The University of Texas at Arlington, United States

Mohamed El Hachemi Benbouzid
University of Brest, France

Dalibor Biolek
University of Defence, Czech Republic

Klara Capova
University of Zilina, Slovakia

Erik Chromy
UPC Broadband Slovakia, Slovakia

Milan Dado
University of Zilina, Slovakia

Petr Drexler
Brno University of Technology, Czech Republic

Eva Gescheidtova
Brno University of Technology, Czech Republic

Ray-Guang Cheng
National Taiwan University of Science and Technology, Taiwan, Province of China

Gokhan Hakki Ilk
Ankara University, Turkey

Janusz Jezewski
Institute of Medical Technology and Equipment, Poland

Rene Kalus
VSB - Technical University of Ostrava, Czech Republic

Ivan Kasik
Academy of Sciences of the Czech Republic, Czech Republic

Jan Kohout
University of Defence, Czech Republic

Ondrej Krejcar
University of Hradec Kralove, Czech Republic

Miroslaw Luft
Technical University of Radom, Poland

Stanislav Marchevsky
Technical University of Kosice, Slovakia

Byung-Seo Kim
Hongik University, Korea

Valeriy Arkhin
Buryat State University, Russia

Rupak Kharel
University of Huddersfield, United Kingdom

Fayaz Hussain
Ton Duc Thang University, Vietnam

Peppino Fazio
Ca’ Foscari University of Venice, Italy

Fazel Mohammadi
University of New Haven, United States of America

Thang Trung Nguyen
Ton Duc Thang University, Vietnam

Le Anh Vu
Ton Duc Thang University, Vietnam

Miroslav Voznak
VSB - Technical University of Ostrava, Czech Republic

Zbigniew Leonowicz
Wroclaw University of Science and Technology, Poland

Wasiu Oyewole Popoola
The University of Edinburgh, United Kingdom

Yuriy S. Shmaliy
Guanajuato University, Mexico

Lorand Szabo
Technical University of Cluj Napoca, Romania

Tran Trung Duy
Posts and Telecommunications Institute of Technology, Ho Chi Minh City, Vietnam

Xingwang Li
Henan Polytechnic University, China

Huynh Van Van
Ton Duc Thang University, Vietnam

Lubos Rejfek
University of Pardubice, Czech Republic

Neeta Pandey
Delhi Technological University, India

Huynh The Thien
Ho Chi Minh City University of Technology and Education, Vietnam

Mauro Tropea
DIMES Department of University of Calabria, Italy

Gaojian Huang
Henan Polytechnic University, China

Nguyen Quang Sang
Ho Chi Minh City University of Transport, Vietnam

Anh-Tu Le
Ho Chi Minh City University of Transport, Vietnam

Phu Tran Tin
Ton Duc Thang University, Vietnam


Home Search Mail RSS


ESD Stress Analysis and Suppression in a Single-Junction Thermal Converter

Thato Ernest Kgakatsi, Eugene Golovins, Johan Venter

DOI: 10.15598/aeee.v20i1.4115


Abstract

This article presents an outline of Electric Transient Disturbances (ETDs), represented by the ElectroStatic Discharge (ESD) in accordance with the Human-Body Model (HBM), on the AC-DC transfer measurement standard, represented by the Single-Junction Thermal Converter (SJTC) Thermal Element (TE). Mitigation technique against the power dissipation build-up, higher than the operational margins recommended by a manufacturer, on the TE were proposed and modelled using Laplace Transform (LT) analysis. A mathematical model and an optimization algorithm were developed to determine the equivalent circuit model parameters of a Transient Overload Protection Module (TOPM) that would offer adequate protection against destructive power dissipation levels build-up on the TE. The mathematical model was developed using an 8 kV ESD, which was expected to deliver short-circuit current with a peak value of approximately 5.33 A through a load impedance of approximately 1 m\varOmega. The ESD stress signal was injected into the TOPM connected in parallel with the TE. The active power dissipated by the SJTC TE per period of transient response was calculated from the current and voltage obtained from the mathematical analysis, and the results indicate a power dissipation of 10 mW by the TE. From the algorithm, the model parameter that noticeably influences the power dissipation capabilities of the TOPM is the inductance and it must be smaller than 1.2 nH. A CAD based simulation model was developed and analysed. The simulation results agreed with the mathematical model.

Keywords


Electromagnetic transients; electrostatic discharges; metrology; nonlinear circuits; power dissipation.

Full Text:

PDF