Helpdesk

Top image

Editorial board

Darius Andriukaitis
Kaunas University of Technology, Lithuania

Alexander Argyros
The University of Sydney, Australia

Radu Arsinte
Technical University of Cluj Napoca, Romania

Ivan Baronak
Slovak University of Technology, Slovakia

Khosrow Behbehani
The University of Texas at Arlington, United States

Mohamed El Hachemi Benbouzid
University of Brest, France

Dalibor Biolek
University of Defence, Czech Republic

Klara Capova
University of Zilina, Slovakia

Ray-Guang Cheng
National Taiwan University of Science and Technology, Taiwan, Province of China

Erik Chromy
UPC Broadband Slovakia, Slovakia

Milan Dado
University of Zilina, Slovakia

Petr Drexler
Brno University of Technology, Czech Republic

Eva Gescheidtova
Brno University of Technology, Czech Republic

Gokhan Hakki Ilk
Ankara University, Turkey

Janusz Jezewski
Institute of Medical Technology and Equipment, Poland

Rene Kalus
VSB - Technical University of Ostrava, Czech Republic

Ivan Kasik
Academy of Sciences of the Czech Republic, Czech Republic

Jan Kohout
University of Defence, Czech Republic

Ondrej Krejcar
University of Hradec Kralove, Czech Republic

Zbigniew Leonowicz
Wroclaw University of Science and Technology, Poland

Miroslaw Luft
Technical University of Radom, Poland

Stanislav Marchevsky
Technical University of Kosice, Slovakia

Jerzy Mikulski
University of Economics in Katowice, Katowice, Poland

Karol Molnar
Honeywell International, Czech Republic

Miloslav Ohlidal
Brno University of Technology, Czech Republic

Neeta Pandey
Delhi Technological University, India

Alex Noel Joseph Raj
Shantou University, China

Marek Penhaker
VSB - Technical University of Ostrava, Czech Republic

Wasiu Oyewole Popoola
The University of Edinburgh, United Kingdom

Roman Prokop
Tomas Bata University in Zlin, Czech Republic

Karol Rastocny
University of Zilina, Slovakia

Marie Richterova
University of Defence, Czech Republic

Gheorghe Sebestyen-Pal
Technical University of Cluj Napoca, Romania

Sergey Vladimirovich Serebriannikov
National Research University "MPEI", Russian Federation

Yuriy Shmaliy
Guanajuato University, Mexico

Vladimir Schejbal
University of Pardubice, Czech Republic

Bohumil Skala
University of West Bohemia in Plzen, Czech Republic

Lorand Szabo
Technical University of Cluj Napoca, Romania

Adam Szelag
Warsaw University of Technology, Poland

Ahmadreza Tabesh
Isfahan University of Technology, Iran, Islamic Republic Of

Mauro Tropea
DIMES Department of University of Calabria, Italy

Viktor Valouch
Academy of Sciences of the Czech Republic, Czech Republic

Jiri Vodrazka
Czech Technical University in Prague, Czech Republic

Miroslav Voznak
VSB - Technical University of Ostrava, Czech Republic

He Wen
Hunan University, China

Otakar Wilfert
Brno University of Technology, Czech Republic


Home Search Mail RSS


H∞ Control of Wrim Driven Flywheel Storage System to Ride-Through Grid Voltage Dips

Ahmed Lazrak, Ahmed Abbou

DOI: 10.15598/aeee.v18i1.3546


Abstract

Flywheel Energy Storage Systems (FESSs) are commonly integrated with wind farms to help them to provide many grid services, including frequency control, voltage control, and power smoothing. Although such systems are not concerned by the severe grid code requirements, their ability to ride-through voltage dips is important to ensure better stability of the power grid. In this paper, the authors propose a robust H∞ current controller for a Wound Rotor Induction Machine (WRIM) based FESS during grid voltage dips. The proposed H∞ controller decreases the negative effects of voltage dips in the WRIM system, such as the rotor over-currents and the active power oscillations. On the other hand, it also guarantees the robustness in the presence of parameter perturbation. The proposed controller is designed using a modified mixed-sensitivity H∞ technique to take into consideration grid disturbances and parameter perturbation. Finally, simulations are made in MATLAB/Simulink using SimPowerSystems to verify the effectiveness of the H∞ controller under grid voltage dips with WRIM parameter perturbation. The simulation results show that the proposed H∞ controller can improve the stability of the WRIM based FESS subject to grid voltage dips and guarantee the robustness with parameter perturbation.

Keywords


FESS; H∞ controller, voltage dips, wind farm, WRIM.

Full Text:

PDF