Helpdesk

Top image

Editorial board

Darius Andriukaitis
Kaunas University of Technology, Lithuania

Radu Arsinte
Technical University of Cluj Napoca, Romania

Ivan Baronak
Slovak University of Technology, Slovakia

Khosrow Behbehani
The University of Texas at Arlington, United States

Mohamed El Hachemi Benbouzid
University of Brest, France

Dalibor Biolek
University of Defence, Czech Republic

Klara Capova
University of Zilina, Slovakia

Ray-Guang Cheng
National Taiwan University of Science and Technology, Taiwan, Province of China

Erik Chromy
UPC Broadband Slovakia, Slovakia

Milan Dado
University of Zilina, Slovakia

Petr Drexler
Brno University of Technology, Czech Republic

Eva Gescheidtova
Brno University of Technology, Czech Republic

Gokhan Hakki Ilk
Ankara University, Turkey

Janusz Jezewski
Institute of Medical Technology and Equipment, Poland

Rene Kalus
VSB - Technical University of Ostrava, Czech Republic

Ivan Kasik
Academy of Sciences of the Czech Republic, Czech Republic

Jan Kohout
University of Defence, Czech Republic

Ondrej Krejcar
University of Hradec Kralove, Czech Republic

Zbigniew Leonowicz
Wroclaw University of Science and Technology, Poland

Miroslaw Luft
Technical University of Radom, Poland

Stanislav Marchevsky
Technical University of Kosice, Slovakia

Jerzy Mikulski
University of Economics in Katowice, Katowice, Poland

Karol Molnar
Honeywell International, Czech Republic

Thang Trung Nguyen
Ton Duc Thang University, Viet Nam

Miloslav Ohlidal
Brno University of Technology, Czech Republic

Neeta Pandey
Delhi Technological University, India

Alex Noel Joseph Raj
Shantou University, China

Marek Penhaker
VSB - Technical University of Ostrava, Czech Republic

Wasiu Oyewole Popoola
The University of Edinburgh, United Kingdom

Roman Prokop
Tomas Bata University in Zlin, Czech Republic

Karol Rastocny
University of Zilina, Slovakia

Marie Richterova
University of Defence, Czech Republic

Gheorghe Sebestyen-Pal
Technical University of Cluj Napoca, Romania

Sergey Vladimirovich Serebriannikov
National Research University "MPEI", Russian Federation

Yuriy Shmaliy
Guanajuato University, Mexico

Vladimir Schejbal
University of Pardubice, Czech Republic

Bohumil Skala
University of West Bohemia in Plzen, Czech Republic

Lorand Szabo
Technical University of Cluj Napoca, Romania

Adam Szelag
Warsaw University of Technology, Poland

Ahmadreza Tabesh
Isfahan University of Technology, Iran, Islamic Republic Of

Mauro Tropea
DIMES Department of University of Calabria, Italy

Viktor Valouch
Academy of Sciences of the Czech Republic, Czech Republic

Jiri Vodrazka
Czech Technical University in Prague, Czech Republic

Miroslav Voznak
VSB - Technical University of Ostrava, Czech Republic

He Wen
Hunan University, China

Otakar Wilfert
Brno University of Technology, Czech Republic


Home Search Mail RSS


A Novel Strategy of Maximum Power Point Tracking for Photovoltaic Panels Based on Fuzzy Logic Algorithm

Mohammad Eydi, Seyyed Iman Hosseini Sabzevari, Reza Ghazi

DOI: 10.15598/aeee.v18i1.3511


Abstract

From the perspective of renewable energy industry investment, absorbing maximum power from renewable sources is a vital factor. Hence, an algorithm is required to change the operating point of renewable energy sources in different environment conditions accordingly. This paper proposes a novel algorithm for tracking the Maximum Power Point (MPP) of a Photovoltaic (PV) panel. In this paper, an auxiliary parameter based on the voltage and power of the PV panel is suggested. By adopting this parameter, independence of irradiation and temperature, the interval between the operating point and the MPP can be estimated. Furthermore, the range of the MPP voltage variations is calculated with respect to various irradiations and temperatures. Then, a novel fuzzy logic Maximum Power Point Tracking (MPPT) algorithm is proposed based on the introduced parameter and voltage variations interval of the MPP. The proposed algorithm has appropriate respond to environment condition changes with proper speed and accuracy. In addition, unlike Hill Climbing (HC) and Perturb and Observe (P&O), the proposed method has no chattering in steady state. The abovementioned claims are successfully validated via the software MATLAB/Simulink.

Keywords


Fuzzy Logic Algorithm; MPPT; PV Panel; Range of MPPs Variations.

Full Text:

PDF