Helpdesk

Top image

Editorial board

Darius Andriukaitis
Kaunas University of Technology, Lithuania

Alexander Argyros
The University of Sydney, Australia

Radu Arsinte
Technical University of Cluj Napoca, Romania

Ivan Baronak
Slovak University of Technology, Slovakia

Khosrow Behbehani
The University of Texas at Arlington, United States

Mohamed El Hachemi Benbouzid
University of Brest, France

Dalibor Biolek
University of Defence, Czech Republic

Klara Capova
University of Zilina, Slovakia

Ray-Guang Cheng
National Taiwan University of Science and Technology, Taiwan, Province of China

Erik Chromy
UPC Broadband Slovakia, Slovakia

Milan Dado
University of Zilina, Slovakia

Petr Drexler
Brno University of Technology, Czech Republic

Eva Gescheidtova
Brno University of Technology, Czech Republic

Gokhan Hakki Ilk
Ankara University, Turkey

Janusz Jezewski
Institute of Medical Technology and Equipment, Poland

Rene Kalus
VSB - Technical University of Ostrava, Czech Republic

Ivan Kasik
Academy of Sciences of the Czech Republic, Czech Republic

Jan Kohout
University of Defence, Czech Republic

Ondrej Krejcar
University of Hradec Kralove, Czech Republic

Zbigniew Leonowicz
Wroclaw University of Science and Technology, Poland

Miroslaw Luft
Technical University of Radom, Poland

Stanislav Marchevsky
Technical University of Kosice, Slovakia

Jerzy Mikulski
University of Economics in Katowice, Katowice, Poland

Karol Molnar
Honeywell International, Czech Republic

Miloslav Ohlidal
Brno University of Technology, Czech Republic

Neeta Pandey
Delhi Technological University, India

Alex Noel Joseph Raj
Shantou University, China

Marek Penhaker
VSB - Technical University of Ostrava, Czech Republic

Wasiu Oyewole Popoola
The University of Edinburgh, United Kingdom

Roman Prokop
Tomas Bata University in Zlin, Czech Republic

Karol Rastocny
University of Zilina, Slovakia

Marie Richterova
University of Defence, Czech Republic

Gheorghe Sebestyen-Pal
Technical University of Cluj Napoca, Romania

Sergey Vladimirovich Serebriannikov
National Research University "MPEI", Russian Federation

Yuriy Shmaliy
Guanajuato University, Mexico

Vladimir Schejbal
University of Pardubice, Czech Republic

Bohumil Skala
University of West Bohemia in Plzen, Czech Republic

Lorand Szabo
Technical University of Cluj Napoca, Romania

Adam Szelag
Warsaw University of Technology, Poland

Ahmadreza Tabesh
Isfahan University of Technology, Iran, Islamic Republic Of

Mauro Tropea
DIMES Department of University of Calabria, Italy

Viktor Valouch
Academy of Sciences of the Czech Republic, Czech Republic

Jiri Vodrazka
Czech Technical University in Prague, Czech Republic

Miroslav Voznak
VSB - Technical University of Ostrava, Czech Republic

He Wen
Hunan University, China

Otakar Wilfert
Brno University of Technology, Czech Republic


Home Search Mail RSS


Optimal Controller Design for Speed Governors of Hydroelectric Power Plant

Okkes Tolga Altinoz, Ilhan Kosalay, Derya Gezer

DOI: 10.15598/aeee.v18i2.3493


Abstract

Speed governors have critical importance on hydroelectric power plants, which are adjusted to the rotating speed of hydroelectric generation based on load demand of the grid. The rotating speed is the main factor to balance power generation and load demand. The well-designed controller is needed to control speed governors with high accuracy. A well-defined model is needed to obtain desired control structure. Therefore, in this study, initially, the mathematical model of a hydroelectric power plant is obtained by using physical characteristics of a real-world. Then by using this model and corresponding real-world data, a set of controller parameters is designed by using tuning methodologies based on heuristic optimization algorithms, and their performances are compared with each other and with a classical tuning methodology. Evolutionary-based and nature-inspired-based heuristic optimization algorithms are selected as the tuning algorithms not only to compare the performance of these algorithms with a classical method but also with different origins. The performance of the optimized controller improves the performance of the overall system and helps to get desired performance. The results also indicate that as long as the desired performance criteria are defined as accurate as possible, the performance of the optimization algorithms is acceptable.

Keywords


Hydro power plants, governor speed control, particle swarm optimization, differential evolution, firefly algorithm.

Full Text:

PDF