Helpdesk

Top image

Editorial board

Darius Andriukaitis
Kaunas University of Technology, Lithuania

Radu Arsinte
Technical University of Cluj Napoca, Romania

Ivan Baronak
Slovak University of Technology, Slovakia

Khosrow Behbehani
The University of Texas at Arlington, United States

Mohamed El Hachemi Benbouzid
University of Brest, France

Dalibor Biolek
University of Defence, Czech Republic

Klara Capova
University of Zilina, Slovakia

Ray-Guang Cheng
National Taiwan University of Science and Technology, Taiwan, Province of China

Erik Chromy
UPC Broadband Slovakia, Slovakia

Milan Dado
University of Zilina, Slovakia

Petr Drexler
Brno University of Technology, Czech Republic

Eva Gescheidtova
Brno University of Technology, Czech Republic

Gokhan Hakki Ilk
Ankara University, Turkey

Janusz Jezewski
Institute of Medical Technology and Equipment, Poland

Rene Kalus
VSB - Technical University of Ostrava, Czech Republic

Ivan Kasik
Academy of Sciences of the Czech Republic, Czech Republic

Jan Kohout
University of Defence, Czech Republic

Ondrej Krejcar
University of Hradec Kralove, Czech Republic

Zbigniew Leonowicz
Wroclaw University of Science and Technology, Poland

Miroslaw Luft
Technical University of Radom, Poland

Stanislav Marchevsky
Technical University of Kosice, Slovakia

Jerzy Mikulski
University of Economics in Katowice, Katowice, Poland

Karol Molnar
Honeywell International, Czech Republic

Thang Trung Nguyen
Ton Duc Thang University, Viet Nam

Miloslav Ohlidal
Brno University of Technology, Czech Republic

Neeta Pandey
Delhi Technological University, India

Alex Noel Joseph Raj
Shantou University, China

Marek Penhaker
VSB - Technical University of Ostrava, Czech Republic

Wasiu Oyewole Popoola
The University of Edinburgh, United Kingdom

Roman Prokop
Tomas Bata University in Zlin, Czech Republic

Karol Rastocny
University of Zilina, Slovakia

Marie Richterova
University of Defence, Czech Republic

Gheorghe Sebestyen-Pal
Technical University of Cluj Napoca, Romania

Sergey Vladimirovich Serebriannikov
National Research University "MPEI", Russian Federation

Yuriy Shmaliy
Guanajuato University, Mexico

Vladimir Schejbal
University of Pardubice, Czech Republic

Bohumil Skala
University of West Bohemia in Plzen, Czech Republic

Lorand Szabo
Technical University of Cluj Napoca, Romania

Adam Szelag
Warsaw University of Technology, Poland

Ahmadreza Tabesh
Isfahan University of Technology, Iran, Islamic Republic Of

Mauro Tropea
DIMES Department of University of Calabria, Italy

Viktor Valouch
Academy of Sciences of the Czech Republic, Czech Republic

Jiri Vodrazka
Czech Technical University in Prague, Czech Republic

Miroslav Voznak
VSB - Technical University of Ostrava, Czech Republic

He Wen
Hunan University, China

Otakar Wilfert
Brno University of Technology, Czech Republic


Home Search Mail RSS


Modeling and Robust Control of a Grid Connected Direct Driven PMSG Wind Turbine By ADRC

Imad Aboudrar, Soumia El Hani, Hamza Mediouni, Ahmed Aghmadi

DOI: 10.15598/aeee.v16i4.2952


Abstract

In this paper, we present the modeling and control of a grid connected Variable Speed Wind Energy Conversion System (VS-WECS) based on a Direct Driven Permanent Magnet Synchronous Generator (DD-PMSG). A new robust control has been proposed and utilized to operate the wind turbine so as to extract the maximum power from the wind energy and to ensure a unit power factor. This control is known as the Active Disturbance Rejection Control (ADRC) and it is based on the Extended State Observer (ESO). It consists in controlling, through the stator currents, the machine side converter in order to adapt the rotational speed of the generator to the different wind speed profiles (Maximum Power Point Tracking MPPT). In addition, it ensures the control of the DC bus voltage and the exchange of active and reactive powers between the wind turbine and the electrical power grid. In order to evaluate the performance of the proposed control a series of simulations are made under the MATLAB/SIMULINK environment. The results obtained by simulation show that the proposed strategy is efficient in terms of stability and precision as well as for the robustness with regard to the internal disturbances when variying the parameters of the machine.

Keywords


ADRC; ESO; MPPT; PLL; PMSG; wind turbine.

Full Text:

PDF