Helpdesk

Top image

Editorial board

Darius Andriukaitis
Kaunas University of Technology, Lithuania

Alexander Argyros
The University of Sydney, Australia

Radu Arsinte
Technical University of Cluj Napoca, Romania

Ivan Baronak
Slovak University of Technology, Slovakia

Khosrow Behbehani
The University of Texas at Arlington, United States

Mohamed El Hachemi Benbouzid
University of Brest, France

Dalibor Biolek
University of Defence, Czech Republic

Klara Capova
University of Zilina, Slovakia

Erik Chromy
UPC Broadband Slovakia, Slovakia

Milan Dado
University of Zilina, Slovakia

Petr Drexler
Brno University of Technology, Czech Republic

Eva Gescheidtova
Brno University of Technology, Czech Republic

Ray-Guang Cheng
National Taiwan University of Science and Technology, Taiwan, Province of China

Gokhan Hakki Ilk
Ankara University, Turkey

Janusz Jezewski
Institute of Medical Technology and Equipment, Poland

Rene Kalus
VSB - Technical University of Ostrava, Czech Republic

Ivan Kasik
Academy of Sciences of the Czech Republic, Czech Republic

Jan Kohout
University of Defence, Czech Republic

Ondrej Krejcar
University of Hradec Kralove, Czech Republic

Miroslaw Luft
Technical University of Radom, Poland

Stanislav Marchevsky
Technical University of Kosice, Slovakia

Byung-Seo Kim
Hongik University, Korea

Valeriy Arkhin
Buryat State University, Russia

Rupak Kharel
University of Huddersfield, United Kingdom

Fayaz Hussain
Ton Duc Thang University, Vietnam

Peppino Fazio
Ca’ Foscari University of Venice, Italy

Fazel Mohammadi
University of New Haven, United States of America

Thang Trung Nguyen
Ton Duc Thang University, Vietnam

Le Anh Vu
Ton Duc Thang University, Vietnam

Miroslav Voznak
VSB - Technical University of Ostrava, Czech Republic

Zbigniew Leonowicz
Wroclaw University of Science and Technology, Poland

Wasiu Oyewole Popoola
The University of Edinburgh, United Kingdom

Yuriy S. Shmaliy
Guanajuato University, Mexico

Lorand Szabo
Technical University of Cluj Napoca, Romania

Tran Trung Duy
Posts and Telecommunications Institute of Technology, Ho Chi Minh City, Vietnam

Xingwang Li
Henan Polytechnic University, China

Huynh Van Van
Ton Duc Thang University, Vietnam

Lubos Rejfek
University of Pardubice, Czech Republic

Neeta Pandey
Delhi Technological University, India

Huynh The Thien
Ho Chi Minh City University of Technology and Education, Vietnam

Mauro Tropea
DIMES Department of University of Calabria, Italy

Gaojian Huang
Henan Polytechnic University, China

Nguyen Quang Sang
Ho Chi Minh City University of Transport, Vietnam

Anh-Tu Le
Ho Chi Minh City University of Transport, Vietnam

Phu Tran Tin
Ton Duc Thang University, Vietnam


Home Search Mail RSS


Optimal Number, Location, and Size of Distributed Generators in Distribution Systems by Symbiotic Organism Search Based Method

Tri Phuoc Nguyen, Dieu Ngoc Vo, Tung The Tran

DOI: 10.15598/aeee.v15i5.2355


Abstract

This paper proposes an approach based on the Symbiotic Organism Search (SOS) for optimal determining sizing, siting, and number of Distributed Generations (DG) in distribution systems. The objective of the problem is to minimize the power loss of the system subject to the equality and inequality constraints such as power balance, bus voltage limits, DG capacity limits, and DG penetration limit. The SOS approach is defined as the symbiotic relationship observed between two organisms in an ecosystem, which does not need the control parameters like other meta-heuristic algorithms in the literature. For the implementation of the proposed method to the problem, an integrated approach of Loss Sensitivity Factor (LSF) is used to determine the optimal location for installation of DG units, and SOS is used to find the optimal size of DG units. The proposed method has been tested on IEEE 33-bus, 69-bus, and 118-bus radial distribution systems. The obtained results from the SOS algorithm have been compared to those of other methods in the literature. The simulated results have demonstrated that the proposed SOS method has a very good performance and effectiveness for the problem of optimal placement of DG units in distribution systems.

Keywords


Distributed generators; loss sensitivity factor; optimal placement; power loss; radial distribution system; symbiotic organism search algorithm.

Full Text:

PDF