Helpdesk

Top image

Editorial board

Darius Andriukaitis
Kaunas University of Technology, Lithuania

Alexander Argyros
The University of Sydney, Australia

Radu Arsinte
Technical University of Cluj Napoca, Romania

Ivan Baronak
Slovak University of Technology, Slovakia

Khosrow Behbehani
The University of Texas at Arlington, United States

Mohamed El Hachemi Benbouzid
University of Brest, France

Dalibor Biolek
University of Defence, Czech Republic

Klara Capova
University of Zilina, Slovakia

Ray-Guang Cheng
National Taiwan University of Science and Technology, Taiwan, Province of China

Erik Chromy
UPC Broadband Slovakia, Slovakia

Milan Dado
University of Zilina, Slovakia

Petr Drexler
Brno University of Technology, Czech Republic

Eva Gescheidtova
Brno University of Technology, Czech Republic

Gokhan Hakki Ilk
Ankara University, Turkey

Janusz Jezewski
Institute of Medical Technology and Equipment, Poland

Rene Kalus
VSB - Technical University of Ostrava, Czech Republic

Ivan Kasik
Academy of Sciences of the Czech Republic, Czech Republic

Jan Kohout
University of Defence, Czech Republic

Ondrej Krejcar
University of Hradec Kralove, Czech Republic

Zbigniew Leonowicz
Wroclaw University of Science and Technology, Poland

Miroslaw Luft
Technical University of Radom, Poland

Stanislav Marchevsky
Technical University of Kosice, Slovakia

Jerzy Mikulski
University of Economics in Katowice, Katowice, Poland

Karol Molnar
Honeywell International, Czech Republic

Miloslav Ohlidal
Brno University of Technology, Czech Republic

Neeta Pandey
Delhi Technological University, India

Alex Noel Joseph Raj
Shantou University, China

Marek Penhaker
VSB - Technical University of Ostrava, Czech Republic

Wasiu Oyewole Popoola
The University of Edinburgh, United Kingdom

Roman Prokop
Tomas Bata University in Zlin, Czech Republic

Karol Rastocny
University of Zilina, Slovakia

Marie Richterova
University of Defence, Czech Republic

Gheorghe Sebestyen-Pal
Technical University of Cluj Napoca, Romania

Sergey Vladimirovich Serebriannikov
National Research University "MPEI", Russian Federation

Yuriy Shmaliy
Guanajuato University, Mexico

Vladimir Schejbal
University of Pardubice, Czech Republic

Bohumil Skala
University of West Bohemia in Plzen, Czech Republic

Lorand Szabo
Technical University of Cluj Napoca, Romania

Adam Szelag
Warsaw University of Technology, Poland

Ahmadreza Tabesh
Isfahan University of Technology, Iran, Islamic Republic Of

Mauro Tropea
DIMES Department of University of Calabria, Italy

Viktor Valouch
Academy of Sciences of the Czech Republic, Czech Republic

Jiri Vodrazka
Czech Technical University in Prague, Czech Republic

Miroslav Voznak
VSB - Technical University of Ostrava, Czech Republic

He Wen
Hunan University, China

Otakar Wilfert
Brno University of Technology, Czech Republic


Home Search Mail RSS


Characteristics of Magnetic Properties of Substituted Hexagonal Ferrites

Vladimir Jancarik, Anna Gruskova, Jozef Slama, Rastislav Dosoudil, Alvaro Gonzalez, Guillermo Mendoza

DOI:


Abstract

The samples of barium hexaferrite BaFe12-2x(Me1Me2)xO19 with x from 0.0 to 0.6 were prepared by variousmethods. The cationic preference of mainly divalent Me1 = Zn, Co, Ni, Sn ions and tetravalent Me2 = Ti, Zr, Ir, Sn, Ru ionsand their combinations in substituted Ba ferrites was investigated. The substitutions were performed to reduce the grain sizeand high magnetic uniaxial anisotropy field of the M-type Ba ferrite without affecting the magnetic polarisation. The goal isto reach the properties of ferrite proper for high-density magnetic recording and microwave absorption devices. Magneticproperties were determined as a function of the substitution level x. The specific saturation magnetic polarisation Js–m andremanence Js–rincreased with small x due to the substitution of non-magnetic and less magnetic ions in 4f1 and 4f2 sites. Thesteep decrease of coercivity Hc with increasing x may be caused by the Co2+ preference of 4f2 site and Ti4+or Zr4+ions preference of 2b and slightly in 4f1 sites. The temperature coefficient of the coercivity TKHc was very low (0.01kA.m-1.°C-1)for the Co-Zr substitutions and positive for the rest of samples.

Keywords


Substituted hexagoval ferrites; temperature coefficient; magnetic polarisation.

Full Text:

PDF