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Abstract. This paper introduces real time filtering
method based on linear least squares fitted line. Method
can be used in case that a filtered signal is linear. This
constraint narrows a band of potential applications.
Advantage over Kalman filter is that it is computation-
ally less expensive. The paper further deals with appli-
cation of introduced method on filtering data used to
evaluate a position of engraved material with respect to
engraving machine. The filter was implemented to the
CNC engraving machine control system. Experiments
showing its performance are included.
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1. Introduction

The problem of real-time signal filtering is addressed
extensively in technical society. Variety of filters has
been created. As an illustration, we can mention simple
averaging or median filter; highpass, lowpass, bandpass
filters [1] or widely used Kalman filter [2], [3]. The su-
periority of the latter comes out of fact that it relies
not only on measured data, but also on prior knowl-
edge of a measured signal in the form of a mathemati-
cal model. Moreover, the model is iteratively updated
based on previous measurements.

In this paper, we introduce filtering method, which is
also using prior knowledge of the measured signal. We
will show that under certain conditions linear regres-
sion can be used to filter a signal with known mathe-
matical description. The idea of filtering lies in fitting
a curve to already measured data, given the mathemat-
ical description of a curve. This basically means that
if we know what kind of signal we expect we can inter-
polate a measured data by a curve of expected shape
in real-time, thus filtering the noised data.

In the theoretical part of this paper, we describe
mathematical fundamentals of linear regression (LR)
filter for a line fit.

The practical part of the paper is focused on imple-
mentation of LR filter in a CNC engraving machine.
For a correct functionality, a constant distance between
engraving tool and the material has to be held. To ac-
complish a constant distance, proximity measurements
are taken and the tool’s position in Z axis is controlled
accordingly. The proximity sensor data are corrupted
by noise and need to be filtered. To filter the data
and to estimate the position of material surface with
reference to the machine’s frame, we use LR filter.

2. Least Squares Filter

Least squares (LS) error fitting is widely used method
in statistics and other fields of math. Usually it is used
to fit a curve to already measured set of data.

Given a set of n points (data pairs) (xi,yi), i =
1, . . . , n, where xi is an independent variable and yi
is dependent variable, we can fit a line y = ax + b,
using following equations:

a =

n

n∑
i=1

xiyi −
n∑

i=1

xi

n∑
i=0

yi

n

n∑
i=1

x2i −

(
n∑

i=1

xi

)2 , (1)

b =

n

n∑
i=1

x2i − a
n∑

i=1

xi

n
. (2)

This is a common least squares line fitting problem
solution and complete derivation of above equations
can be found in [4]. Theoretically, it can be used to
filter any mathematically described signal which is a
linear combination of functions in form:

f(xi, β) =

m∑
j=1

βjφj(xi), (3)
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where βj are coefficients and φj are functions of in-
dependent variable xi. The signal can also be non-
linear, but there is no closed-form solution for such
LR problem. Instead, numerical algorithms must be
used [5]. Computing LR for more complex functions
requires more sophisticated algorithms such as LU
(lower-upper) decomposition, or singular value decom-
position, which are computationally more expensive
and real time filtering would require more powerful en-
vironment.

If we know that measured signal is linear, we can
use this method for real time signal filtering. With
each measured point, we can compute a new fitted line.
The more points there are the more accurate fit we get.
Pseudo code of LS real time filter would look as follows:

sumx = 0; sumy = 0; sumxx = 0; sumxy = 0; n=0

//initialize variables

while (true)

{

x = determine_x();

y = measure_y();

n++; //iterate number of points

sumx += x; //update sum of x ’s

sumy += y; //update sum of y ’s

sumxy += x * y; //update sum of (x * y)

sumxx += x * x; //update sum of (x * x)

a = (n * sumxy - sumx * sumy) / (n * sumxx -

sumx * sumx); //calculate parameter a

b = (sumy - a * sumx) / n; //calculate

paramenter b

}

Advantage of this code is, that it is very fast and
consumes a small amount of memory. There is no need
to remember all measured points, only sums of x and
y need to be stored. Figure 1 shows filtering of noisy
signal with LS filter. In Fig. 2 averaging filter was used
on the same dataset. At the beginning, performance
of LS filter and averaging filter is comparable. After
having more than 20 data points (x = 0) measured, LS
filter clearly outperforms averaging filter.

We can compare the complexity of LR filter to
Kalman filter, since it also relies on a model of mea-
sured signal. The Kalman filter model assumes the
true state at time k is evolved from the state at (k−1)
according to:

xk = Fkxk−1 +BkuK + wk, (4)

where Fk is the state transition model which is ap-
plied to the previous state xk−1; Bk is the control in-
put model which is applied to the control vector uk;
wk is the process noise which is assumed to be drawn
from a zero mean multivarate normal distribution with
covariance Qk [2].
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Fig. 1: Least squares filter.
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Fig. 2: Average filter using 3 samples.

At time k an observation (or measurement) zk of the
true state xk is made according to:

zk = Hkxk + vk, (5)

where Hk is the observation model which maps the
true state space into the observed space and vk is the
observation noise which is assumed to be zero mean
Gaussian white noise with covariance Rk [2].

The filtered value x̂k|k of measured signal in time k
is computed in two stages: predict and update.

Predict:

x̂k|k−1 = Fkx̂k−1|k−1 +Bk−1uk−1, (6)

Pk|k−1 = FkPk−1|k−1F
T
k +Qk. (7)

Update:

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)−1, (8)

x̂k|k = x̂k|k−1 +Kk(zk −Hkx̂k|k−1), (9)

Pk|k = (I −KkHk)Pk|k−1. (10)
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Practical implementation of Kalman filter requires
a model of the system in the form of matrices Fk, Bk,
Hk, and process noise and sensor noise covariances Qk

and Rk. The more precise model and estimate of co-
variances are, the better the performance of filter is
achieved. From a computing point of view, in the gen-
eral case, Kalman filter requires multiplications, addi-
tions and inversion of matrices. Computationally most
expensive is the inversion of matrix in Eq. (8).

3. Application of LS Filter

In our application, LS filter is used to filter a signal
from a proximity sensor which is measuring a distance
of material that is engraved by CNC machine. The
machine was built for engraving planar solid surfaces,
such as stone blocks. The engraved picture is not 3D,
but only planar (similar to drawing). Engraving is per-
formed by hammering on the material with pointed
diamond. This would theoretically require X−Y plot-
ter which has a working plane in parallel with mate-
rial. This parallelism must be rather accurate, so that
a constant distance between the tool and material is
held. In our case, required distance is 1 ± 0, 5 mm.
Bedding the material with such accuracy is often a dif-
ficult task. For this reason, a degree of freedom in
Z-axis was added to the machine. The only purpose of
Z-axis movement is to compensate for non-parallelism
of material surface with respect to working plane of the
machine. A deflection from parallelism is evaluated by
measuring the distance between the diamond tool tip
and the material surface in certain points. Measure-
ments are performed by rather unconventional prox-
imity sensor which uses touching of a tool tip with ma-
terial to evaluate the distance. A detailed description
of the sensor can be found in [6]. From the nature of
touch sensor principle, it is obvious that the bigger the
distance, the longer it takes to measure it. In our ma-
chine small distances up to 3 mm can be measured in
tens of milliseconds, but a 15 mm distance can take up
to 3 seconds (!) to measure. This constraint comes out
of fact, that small distances are measured only by mov-
ing the tool tip which has low mass. In contrast, for
longer distances, whole engraving tool with consider-
ably bigger mass has to be moved. Taking in account
above constraints, sensor allows to measure distance
with each and every stroke of hammering tool while
engraving (the engraving distance is 1 mm). In ad-
dition, the measurement is taken during the time the
tool is performing its stroke, so it does not introduce
any additional time delay.

On the other hand, initial evaluating of material sur-
face plane might take longer, because every point in
which we measure distance might take 3 seconds to

measure. That is why amount of initial measurement
points is limited.

4. Estimation of Material
Surface Plane Position

To evaluate the parallelism deflection of material sur-
face and machine working plane, we measure distance
in a few representative points and fit a plane on these
points. Based on this equation, a Z-axis would be
driven, so that a constant distance between the tool
and material is kept. To define a plane, at least 3
points are necessary. To make sure, that engraved pic-
ture lies completely on a material surface, we picked
from 4 to 6 representative measurement points depend-
ing on outer shape of the picture. Since the sensor has
some error, measured points do not lie exactly on a
plane. So we came to over-determined task of fitting
a plane to 4 ÷ 6 points. To do this, we used a multi-
ple linear least squares regression [7], [8], [9], [10]. The
plane equation is:

ax+ by + cz + d = 0. (11)

z can be calculated as:

z = −d
c
− a

c
x− b

c
y. (12)

Since there is an additional sensor error in z direction
we can write:

z = k0 + k1x+ k2y + e, (13)

where

k0 = −d
c
, k1 = −a

c
, k2 = −b

c
. (14)

As we have more measured points, we can write the
Eq. (13) in matrix form:

z = J~k + E, (15)

where

J =

 1 x1 y1
...

...
...

1 xn yn

 . (16)

n is the number of measured points and ~k is a vector
of unknown parameters.

The square residual error E2 is calculated by rear-
ranging and then squaring E as is shown below:

E2 = (z− J~k)2 = (z− J~k)T (z− J~k)

= zT z + ~kT (JTJ)~k − 2zTJ~k. (17)
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At the minimum square residual error, the derivatives
of E2 with respect to the unknown ~k are equal to zero:

∂(E2)

∂~k
= 2JTJ~k − 2JT z = 0. (18)

This gives the equation:

JTJ~k = JT z. (19)

By solving the equation we get the vector of parameters
~k:

~k = JTJ\JT z. (20)

The equation of fitted plane ρ is then:

ρ : z = k0 + k1x+ k2y. (21)

Estimation of material surface position is depicted in
Fig. 3. The origin of coordinate system is placed into
the tip of the tool. After measuring five representative
points (pink) a fitted plane ρ is calculated.

Fig. 3: CNC machine mb2300; Red - origin of coordinate sys-
tem is placed on the tip of diamond tool. Yellow- fitted
plane ρ is calculated out of five measured points (pink).

5. Z-Axis Position Control

The computed fitted plane equation is fetched to the
machine control system in the form of coordinates of
image corners.

C =

 x1 y1 z1
...

...
...

x4 y4 z4

 .

C =


0 0 z1

img width 0 z2
0 img width z3

img width img width z4

 . (22)

Matrix C basically represents a rectangle that be-
longs to plane ρ. Each row of C is a corner of engraved
image. We denote them C1, C2, C3 and C4 where
C1 = (x1, y1, z1) and so on.

Subsequently, two lines l and r, identical with left
and right side of the rectangle are computed using
parametric equations:

l : LL = C1 + (C1− C3)t, (23)

r : LR = C2 + (C2− C4)t, (24)

where parameter t ∈< 0, 1 >. Finally, equation of the
middle line m, intersecting left and right line, perpen-
dicular to both lines is computed:

m : LM = LL + (LL − LR)s. (25)

where parameter s ∈< 0, 1 >. The engraved image is
the result of thousands of strokes of the tool. When
projected to X − Y plane (Fig. 4), the tool trajectory
starts at the top of the image and continues row by
row, until it reaches the bottom of the image. We
calculate the Z-axis tool position in any 2D point p
with coordinates (x, y) as follows:

1. Calculate points LL and LR letting t =
y/img height.

2. Calculate point LM letting s = x/img width.

Z coordinate of point LM is a desired Z-axis tool
position in point p. Since coordinates (x, y) are known,
it is sufficient to calculate only z-coordinate of vectors
LL, LR and LM .

6. On the Fly Parameters
Tuning

A few experiments have shown that driving a Z-axis
tool position based only on the fitted plane ρ is not
accurate enough. Every measured point involves some
error. Fitted plane minimizes squared sum of errors.
In adverse cases it might happen that summed error of
fitted plane is much smaller than measurement error,
which concludes to rather big error in coincidence of a
real and fitted plane. In worst cases, the Z axis error
was bigger than 1 mm. However, the fitted plane gives
a good estimate of where the real material surface is.

Computing z-coordinate of the tool is based on lines
l, r and m. By adjusting the parameters of these lines,
more accurate Z-axis control could be achieved. Re-
finement of parameters of these lines is accomplished
by carrying out further measurements of surface dis-
tance during engraving.
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Fig. 4: X−Y projection of measured stroke lengths of engraved
image.

0 100 200 300 400

0

5

10

15

x

z[
m

m
]

 

 

y = 204

measured
L

R tuned
 & L

L tuned

m
fit

Fig. 5: X − Z projection of one row of engraved image.
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Fig. 6: Y − Z projection of line rfit (blue), fitted on points
LR tuned (green) which are computed for each row of
engraved image.

Proximity sensor allows measuring distance with
each stroke of hammering tool. Regular image consists
of tens to hundreds of strokes in each row (Fig. 4).

By fitting a line mfit to points measured in a row,
we get more accurate estimate of surface in given row
(Fig. 5). In order to handle cases with a few measure-
ment points (< 20), we also include marginal points
(intersections of lines m, l and m, r) to set of points
fitted by mfit. The equation of mfit is calculated at
the end of each row. Based on this equation, we cal-
culate a z-coordinate of new point LL tuned(0, ycurr, z)
and point L(R tuned(img width, ycurr, z), where ycurr
is y-coordinate of the current row. Points LL tuned and
LR tuned serve for tuning parameters of lines l and m,
respectively. This is done by calculating new lines lfit
and rfit. Line lfit is fitted on set {C1, C3, LL tuned i},
line rfit is a fitted on set {C2, C4, LR tuned i}, where
i = 0, . . . , ycurr (Fig. 6). Finally, we update a z-
coordinate of corners C1, C2, C3 and C4 by calcu-
lating it using starting and ending points of lfit and
rfit. In the next image row, new values of corners are
used to calculate lines l, r and m.

Fig. 7: Estimated plane ρ (yellow) and its last adjustment
(blue).

Figure 4 to Fig. 7 were created by plotting a mea-
sured data from real engraved picture. In Fig. 7, fitted
plane ρ (yellow) computed out of five measured points
(pink crosses) is depicted. Blue plane is the final up-
date of ρ at the end of engraving. As can be seen, two
planes are slightly displaced. That confirms the fact,

Fig. 8: Accuracy of Z-axis position control.
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that estimating a surface position only by five measure-
ments is not very accurate.

In Fig. 8, there is a X − Z projection of engraved
image from Fig. 4. The measurement shows that the
distance is kept on 1 mm with an error < 0, 5 mm
which comprises with initial requirements of engraving
machine.

7. Conclusion

In this paper the real time filtering method based on
linear regression has been introduced. The filter is
based on the idea of fitting a curve on a set of already
measured data, supposing that a mathematical model
of the signal is available. The experimental measure-
ments were focused on practical application of filter in
CNC machine, to estimate a position of machined ma-
terial, where a filtered signal has the shape of a line.
Therefore, computing of fit is simple and fast. LR fil-
ter in comparison to Kalman filter is less expensive
from a computing point of view because in the general
case Kalman filter in practical implementation requires
multiplications, additions and inversion of matrices.

In this application, a main goal was to keep a con-
stant distance of engraving tool from engraved mate-
rial. Numerous portraits have been engraved using pro-
posed system, while measuring and saving the tool po-
sition data, which confirm a correct functionality of the
system, i.e. that the system is capable of keeping the
tool in required distance. The control system of the
machine is based on an ATmega162, 8-bit, fixed-point
microcontroller.

The advantage of our method is in computational
simplicity since it requires only a few summations, mul-
tiplications and divisions of floating point variables so
it is well suited for a real time use in computationally
non-powerful environments e.g. with 8-bit microcon-
trollers.
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