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Restoration of Optical Spectrum
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Abstract. This article deals with research of luminous
sources which could be applied in indoor Free Space Op-
tic (FSO) networks. Indoor FSO networks have po-
tential to replace standard IEEE 802.11 in the future.
Suitable selection and configuration of optical radiation
sources can at the same time provide communication
and lighting in indoor spaces. This article is engaged
in spectral mergence of optical sources, willful suppres-
sion of part of emitted visible spectrum and consequen-
tial restoration of this optical spectrum.
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1. Introduction

The users of data networks have two main require-
ments, high data rate and mobility. In indoor spaces
the standard IEEE 802.11, known as Wi-Fi, fulfills
these requirements. However, this standard gets near
to its limits of transmission and capacity possibilities,
therefore it is necessary to develop other technologies.
The solution could be networks using optical waves.

2. Indoor FSO Networks

The FSO networks use radiation of light to data trans-
mission, the transmission medium is the air. The in-
door FSO networks work inside buildings. Their ad-
vantage comparing to the outdoor FSO networks is
that they are not so much influenced by the atmo-
spheric effects. The range of the indoor FSO networks
covers the given room only, the optical waves cannot
penetrate the adjoining rooms and that is why these
networks are more resistant to eavesdropping. The
other advantages are low cost of the components for

optical communication, their small size and low power
consumption, which are important parameters.

The disadvantage of the indoor FSO networks is link
extinguishment by people or by some objects. Another
problem is optical noise. This optical noise can be
caused by either room lighting, light bulbs, or by flu-
orescent lamps. The sunlight causes optical noise too.
These unwanted light sources are called ambient light.

The indoor FSO networks are divided according to
the line of sight between a transmitter and a receiver
and according to the direction. The first criterion clas-
sifies them into the networks with a line of sight and
into the networks with a non-line of sight. According to
the direction there are directed, non-directed and hy-
brid networks [1]. All these possibilities are in Fig. 1,
where TX is a transmitter and RX is a receiver.

Fig. 1: Classification of indoor FSO networks.

The indoor FSO networks can also be divided in ac-
cordance with the type of the optical spectrum that
they use for their activity. There are networks using
infrared radiation. These networks are built on the ex-
periences with infrared radiation used in remote con-
trols of home electronics. The most used wavelengths
are 850 nm, 950 nm, 1300 nm, 1480 nm and 1550 nm
[2].

The indoor FSO networks also use a visible light for
communication, most often white LED diodes. The
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data are transmitted by modulation of LED diodes,
the On-Off Keying modulation is used [3]. The LED
diodes emitting white light include a blue light emit-
ting chip and yellow luminophore from YAG (Yttrium,
Aluminum, and Garnet) [4]. The white light originates
by a chemical reaction between the blue light and the
luminophore. This chemical reaction cannot be faster
and that is why the modulation of white LED diodes
has its impassable limits. The LED diodes emitting
white light are also made out of three luminous sources,
which emit the basic colors, blue, green and red. If the
white LED diodes are to be used for communication
in the indoor FSO, then the power LED diodes are
needed. The white power LED diodes are supplied by
forward current of up to 700 mA [5]. The construction
of such a circuit closer that would be able to switch
on and off such a high level of forward current very
quickly, is difficult. Therefore these LED diodes have
limits of modulation as well.

For the indoor FSO networks ultraviolet radiation is
also used. The advantage is that the ultraviolet light is
not so dangerous for the human eye, and hence higher
power can be used. Light bulbs, fluorescent lamps and
the Sun do not almost emit in a nearby ultraviolet re-
gion and that is why these sources do not cause so much
noise in communication [6].

The objective of the research team is to construct
such an optical transmitter that would provide lighting
and communication at the same time. A white power
LED diode will be used as an illuminative source, but
it has its own modulation limits. Therefore some part
of the emitted spectrum will be suppressed by a narrow
optical filter and the suppressed part will be replaced
by a suitable LED diode or a laser diode. The aim
is to restore the original spectrum of a white power
LED diode as accurately as possible. The communica-
tion data will be transmitted by a communication LED
diode, whereby the limitation of a white LED diode
will be avoided. The aim is to use visible light only for
the transmitter to provide both illumination and com-
munication at the same time. Using of other luminous
sources, e.g. the sources from the infrared optical spec-
trum, would not meet the requirements necessary for
visible light. Using of other visible luminous sources
emitting in an area in which white power LED diodes
emit a relatively small amount of light (470 nm), might
cause shifting of the originally emitted spectrum, the
white light would not then be originally white, which
the human eye can recognize.

3. White Power LED Diode

For illumination the white power LED diode Luxeon
5W Star by the Philips Company was chosen. The
marking of this LED diode is LXHL-LW6C. All impor-

tant parameters are given in the datasheet [5]. This
power LED diode is optimally supplied by the current
of 700 mA. The luminous flux is 120 lm, the color tem-
perature is 5500 K and the viewing angle is 120 ◦.

The spectral characteristic of this power LED diode
was measured in a laboratory by spectrometer USB650
by the Ocean Optics Company. The ambient noise
was taken off from the measured data. The spectral
characteristic of the white power LED diode supplied
by the forward current of If = 700 mA is in Fig. 2.
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Fig. 2: Spectral characteristic of white power LED diode.

The optical filter is used for suppression of spectral
part emitted by a white power LED diode. The filter
that was chosen was the notch filter [7], the supplier
was Edmund Optics. The features of this notch filter,
which the supplier provides, are in Tab. 1.

Tab. 1: The features of notch filter.

Feature Value
Diameter 25 mm
Central Wavelength λc 532 nm
Full Width at Half Maximum (FWHM) 26, 6 nm
FWHM Tolerance ±2, 7 nm
Transmission Wavelength 400− 700 nm
Transmission 90 %
Reflection at Central Wavelength 99 %
Optical Density 4

The spectral transmission of this notch filter was
measured in a laboratory. The application to the spec-
trometer measures and stores the original spectrum
uninfluenced by the notch filter in its memory. Af-
terwards, it measures and stores the dark spectrum.
Now, the application measures the spectrum with a
notch filter inserted between the light source and the
spectrometer and it calculates the spectral transmis-
sion according to the following Eq. (1):

Tλ =
Sλ −Dλ

Rλ −Dλ
, (1)
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where Sλ is sample intensity at a wavelength λ, Rλ is
reference intensity at a wavelength λ and Dλ is dark
intensity at a wavelength λ. Spectrometer USB650 was
used again. The diagram of spectral transmission mea-
surement is in Fig. 3. The spectral transmission of the
notch filter is in Fig. 4.

LED diode
Filter

Optical fiber

Spectrometer

Fig. 3: Diagram of spectral transmission measurement of the
notch filter.
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Fig. 4: Spectral transmission of notch filter.

It was read from the spectral transmission in Fig. 4
that the central wavelength was 532,5 nm. FWHM was
27,5 nm. The measured data correspond to the data
written in the datasheet.

Inserting the optical filter between a white power
LED diode and a spectrometer causes suppression of
the original spectrum, which is shown in Fig. 5.

4. Optical Spectrum Restora-
tion of White Power LED
Diode

For the optical spectrum restoration of the white power
LED diode a LED diode and a laser diode with suitable
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Fig. 5: Suppression of spectral characteristic of a white power
LED diode.

wavelengths were chosen to compensate the suppressed
spectrum.

4.1. LED Diode LED535-01

The features of this LED diode given by the manufac-
turer are in Tab. 2 [8].

Tab. 2: Features of LED diode LED535-01.

Feature Value
Central Wavelength λc 535 nm
FWHM 35 nm
Optical Power 4 mW
Typical Forward Voltage 3, 2 V

Figure 6 shows the measured spectral characteris-
tic of LED diode LED535-01. According to the mea-
sured values the central wavelength is at 533,0 nm and
FWHM is 43,7 nm.
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Fig. 6: Spectral characteristic of LED diode LED535-01.
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4.2. Laser Diode L10H532

The features of this laser diode given by the manufac-
turer are in Tab. 3 [9].

Tab. 3: Features of LED diode LED535-01.

Feature Value
Central Wavelength λc 532 nm
FWHM 1, 5 nm
Optical Power 10 mW
Typical Forward Voltage 3, 0 V

Figure 7 shows the measured spectrum emitted by
the laser diode. According to the measured values
the central wavelength is at 532,2 nm and FWHM is
1,8 nm.
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Fig. 7: Spectral characteristic of laser diode L10H532.

5. Merging of Spectra

Merging of the spectra was measured in a laboratory by
spectrometer USB650. The evaluative criterion of the
optical spectrum restoration was the Correlated Color
Temperature (CCT). The CCT of the white power
LED diode was measured first and then the CCT after
the restoration. Both values were compared with each
other. The spectrum of the white power LED diode
is a reference since the aim is to approach the original
spectrum as much as possible so that the human eye
cannot recognize the suppression and the restoration
of the spectrum.

The correlated color temperature CCT of a white
light source is defined as the temperature of a planckian
black body radiator, the color of which is closest to
the color of a white light source. The correlated color
temperature is used if the color of a white light source
does not fall on the planckian locus [10].

5.1. Restoration by LED Diode
LED535-01

The Correlated Color Temperature CCT was measured
three times in all and the measured values are written
in Tab. 4. Merging of the spectra is in Fig. 8.

Tab. 4: Restoration by LED diode LED535-01.

LXHL-LW6C Restoration Deviation
CCTorg [K] CCTres [K] δ [%]

5127 5205 1, 52
5190 5159 −0, 60
5150 4861 −5, 61

Deviation δ was calculated according the Eq. (2)

δ [%] =
CCTres − CCTorg

CCTorg
· 100, (2)

where CCTorg is CCT value of original spectrum and
CCTres is CCT value of restoration of spectrum.
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Fig. 8: Restoration by LED diode LED535-01.

5.2. Restoration by Laser Diode
L10H532

The CCT was repeatedly measured three times and the
measured values are in Tab. 5. Merging of the spectra
is displayed in Fig. 9.

Tab. 5: Restoration by LED diode LED535-01.

LXHL-LW6C Restoration Deviation
CCTorg [K] CCTres [K] δ [%]

5035 4119 −18, 19
5103 4265 −16, 42
5149 4415 −14, 26
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Fig. 9: Restoration by laser diode L10H532.

6. Simulation in LightTools

The restoration was simulated in software LightTools.
This software enables modeling of optical systems [11].
Its unique design and analyzing features combined with
its simple way of operation, its support of a quick de-
sign and optimization make obtaining the results ac-
cording to the predefined conditions possible. This
software includes a component library, in which there
are light sources, optical elements, lenses, etc. It is pos-
sible to change the selected parameters, optical prop-
erties, to import spectral characteristics, etc. In this
software the simulation of merging of the spectra was
carried out.

Fig. 10: Original spectrum of power LED diode inserted from
library.

The component library of LightTools includes a
plenty of LED diodes. From this library a power LED
diode was chosen. It has the same parameters as white
power LED diode LXHL-LW6C. Unfortunately, the

spectral characteristic of this power LED diode does
not answer the spectral characteristic of real LED diode
LXHL-LW6C. However, the software enables to import
the spectral characteristic that had been done before.
Figure 10 shows the original spectral characteristic of
a white power LED diode from the component library,
Fig. 11 shows the spectral characteristic imported from
the real measurement.

Fig. 11: Modified spectrum of power LED diode according real
measurement.

The optical filter was applied on the white power
LED diode in the same way as in the real measure-
ment. The suppressed spectrum that was simulated in
software LightTools is in Fig. 12.

Fig. 12: Suppression of spectral characteristic of the white
power LED diode in LightTools.
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6.1. Restoration by LED Diode
LED535-01 in LightTools

The evaluative criterion was again the correlated color
temperature CCT. Software LightTools makes the
measurement of this parameter possible. The simu-
lated values of the CCT before the suppression and
after the restoration are written in Tab. 6. Figure 13
shows the restoration simulated in the software.

Tab. 6: Restoration by LED diode LED535-01 in LightTools.

LXHL-LW6C Restoration Deviation
CCTorg [K] CCTres [K] δ [%]

5115, 6 4939, 9 −3, 43

Fig. 13: Restoration by LED diode LED535-01 in LightTools.

6.2. Restoration by Laser Diode
L10H532 in LightTools

The values of the CCT simulated in LightTools are
in Tab. 7. The restoration by means of laser diode
L10H532 is shown in Fig. 14.

Tab. 7: Restoration by laser diode L10H532 in LightTools.

LXHL-LW6C Restoration Deviation
CCTorg [K] CCTres [K] δ [%]

5115, 6 4230, 1 17, 31

7. Conclusion

This article describes the suppression of part of the
spectrum emitted by a white power LED diode and
the restoration of the suppressed spectrum. Part of

Fig. 14: Restoration by laser diode L10H532 in LightTools.

the spectrum was suppressed by a notch filter. In the
first case the restoration of the original spectrum was
carried out by means of a LED diode, in the other case
by a laser diode. The optical filter showed the features
identical with the parameters in the datasheet.

The restoration of the original spectrum by means of
a LED diode was very successful. The Correlated Color
Temperature CCT served for comparing the results.
At first, the CCTorg of the white power LED diode
was measured; afterwards the CCTres measurement of
the spectra merging was carried out. These two values
were then compared. In the first two measurements
the restoration was very successful; the differences in
the CCT values were very small, they were up to 2 %.
In the third measurement a higher deviation occurred,
it was less than 6 %.

The restoration of the original spectrum by means of
the laser diode was not that successful as the restora-
tion by means of the LED diode, which is obvious from
the measured values of the CCT. The smallest devia-
tion was greater than 14 %.

The restoration of the original spectrum was also
simulated in software LightTools. Because of the sim-
ulation the spectral characteristics of both the power
LED diode and the laser diode had to be changed ac-
cording to the real measurements in the laboratory.
The results obtained from the simulation are very sim-
ilar to those measured in the laboratory.

It is therefore suitable to deal with the spectrum
restoration by means of the LED diode. The laser
diode is inapplicable for this case. It is possible to
change the forward current of the LED diode. Due to
this, the central wavelength could be slightly shifted
and in this way the Correlated Color Temperature af-
ter the restoration could be improved. The aim of this
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research is to maximally approach the CCT value of
the white power LED diode. Further intention of the
research team is to test other LED diodes, which could
replace the original spectrum. The same measurements
will be repeated with the new LED diodes.
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