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Abstract. The paper concerns with throughput of securing 
process, which cannot be described neither by a constant 
value of bits per second nor by a constant value of 
packets per second over the range of packet sizes. We 
propose general throughput model of IPsec process based 
on characteristic parameters that are independent on the 
packet size. These parameters might be used for a 
comprehensive definition of throughput on any security 
system. Further, a method for obtaining characteristic 
parameters is proposed. Usage of the method can 
significantly decrease count of throughput measurements 
required for modelling the system. 
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1. Introduction 

IPsec standard is one of widely deployed mechanisms for 
securing the network traffic – it is a suite of protocols, 
standards and rules ensuring data integrity, authenticity 
and confidentiality  [1],  [2]. Process of securing network 
communication is computationally intensive and being 
handled by a network device can bring degradation to 
qualitative parameters of the network, mainly increase of 
delay and decrease of throughput  [3],  [4]. It is also a big 
challenge to fulfil continuously heightening level of 
security when the amount of secured traffic is increasing 
concurrently. For this reason, it is important to examine 
the performance of security systems for various security 
configurations and types of traffic. 

 Specific property of securing process is that its 
throughput is dependent on size of the packet. The 
throughput cannot be expressed neither by a constant 
value of bits per second, nor by a constant value of 
packets per second over the whole range of packet sizes. 
On the contrary, over this range it will have non-constant 
and nonlinear trend, as is depicted in Fig. 1. This is in 
contrast with performance of other common processes in 

packet networks, like bit rate of link interfaces or packet 
rate of switching and routing. 

 This introduces difficulties into modelling 
performance parameters of security systems when the 
value of service rate needs to be known, e.g. 
dimensioning throughput of mixed traffic comprising of 
more packet sizes, modelling a queuing delay or packet 
loss. In these cases, we need to know values of 
throughput for every packet size that is present in the 
traffic. In doing so, performing a lot of measurements 
could be rather time-consuming and inconvenient. 

 Aim of this paper is to propose a model of 
throughput of securing based on parameters independent 
on the packet size. The model should be valid for a wide 
range of IPsec system implementations and should 
provide reliable results without the need for detailed 
knowledge of the system internal architecture. 

 Model synthesis is based on the analysis of 
software and hardware components of the system – 
determined are operations that create potential bottleneck 
process in the system and consequently these operations 
are joined into groups according to their dependency on 
the packet size. As a result, throughput of securing 
process will be expressed by characteristic parameters 
that are independent on the packet size. This formulation 
further allows calculation of throughput for any packet 
size – a method for obtaining characteristic parameters 
will be proposed. Lastly, the model verification will be 
performed for various implementations of IPsec systems. 

 Although the paper focuses on IPsec, presented 
principles and methods are general and therefore should 
be applicable for any other security protocol. 

2. Related Works and Motivation 

Significant amount of works focused on examination of 
security system performance is dealing with experimental 
evaluation of the system performance. Authors rarely 
research possibilities of modelling or mathematical 
formulation of performance of security system. Authors 
in  [5] present mathematical model of throughput of 
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symmetric algorithms, where input variables are a 
number of instructions needed to encrypt one block of 
data and number of instructions executed in one 
processor clock cycle. In  [6] authors study size overhead 
and processing overhead of IPsec, however, they consider 
only algorithmic time requirements, and not the time 
requirements of protocol processing that are constant for 
the packet of any size. 

 To our knowledge no literature provides analytical 
model of time requirements or throughput of entire IPsec 
process (or other security protocol) addressing its 
dependency on packet size, which is based on analysis of 
hardware and software components of the system. 

 In the field of security systems, many authors 
consider enhancing performance of the security system as 
one of the key tasks. The goal can be achieved either in a 
layer of hardware – especially working with configurable 
processors of type FPGA (Field-Programmable Gate 
Array), which can be programmed and optimized for 
execution of cryptographic algorithms, security protocol 
or both. Processors with configured logic provide higher 
performance than processors of general purpose  [3],  [7]. 
Increase of performance can be achieved also by 
lowering communication overhead and better cooperation 
between components in a layer of software, which are 
represented mainly by device drivers, protocol stacks and 
cryptographic framework. Different implementations of 
one security protocol on the same device usually provide 
different performance  [4]. 

 These are the main reasons of variability of 
different IPsec system solutions. A model proposed in this 
paper must therefore address this variability in order to be 
considered as general. 
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Fig. 1: Throughput of IPsec process over the range of packet sizes 

performed by Cisco 1841 ISR. 

3. IPsec System 

In this section, analysis of hardware and software 
components of IPsec system is performed. Essential 
questions are – which operations form the IPsec process, 
which are potential bottleneck in the system, i.e. which 

are executed in serial and which in parallel, and how is 
each operation dependent on size of the packet. 

3.1. Hardware Architecture 

In Fig. 2 is shown general hardware architecture of IPsec 
system  [8],  [9],  [10],  [11]. Most important components 
are: main processor (CPU), security processor, which is 
optional, main memory (also called system or kernel 
memory), L2 caches, network adapters, buses and direct 
communication channels. 

 In modern systems each processing unit access to 
the main memory through a direct communication 
channel called DMA (Direct Memory Access) when no 
control and management is required from the main 
processor. For instance, a network adapter moves the 
packet after its receiving on the interface “silently” to the 
main memory, in parallel to operations executed by the 
main processor, and then sends information to the main 
processor (interrupt request). Similarly, security 
processor reads and writes data to the main memory 
through its direct memory access without assistance of 
the main processor. 

 
Fig. 2: Hardware architecture of IPsec system. 

 Interrupt requests (IRQ) are asking the processor 
to interrupt current operation and execute operation of a 
higher priority. They are a common method to provide 
communication between independent processors 
operating in parallel, asynchronously. Information about 
finishing an operation or a request for a new operation is 
sent immediately without waiting. This approach lowers 
packet sojourn time in the system, but on the contrary it 
increases processing overhead by storing and restoring 
data from the interrupted process (context-switching). 

 Because the process of securing is 
computationally intensive, a separate security processor 
can be added to the system to increase performance of the 
system and to offload the main processor. Security 
processor is optimized for executing special operations, 
commonly for acceleration of cryptographic algorithms 
(in this case it is called cryptographic accelerator, which 
operates in look-aside mode), but also the whole protocol 
processing can be accelerated (then it is called security 
unit, which is more complex than accelerator and 
operates in flow-through mode). Usually, FPGA 
processors are employed as security processors because 
of their configurability and ease of optimization. 
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 Placement of security processor within the device 
can be done either as a separate card connected via PCI 
bus, or as a processor embedded on the board, or as a part 
of SoC (System-on-a-chip), which composes of more 
processing cores. 

3.2. Software Architecture 

Software equipment is represented by an operating 
system, which includes implementation of the IPsec 
standard as well. Software determines how effectively 
will be resources provided by the hardware utilized. In 
Fig. 3 is shown general software architecture of a security 
system. This architecture follows the main concepts 
native for operating systems Linux 12 and BSD  [13],  [14] 
and which consider also leading producers of security 
hardware and software (Intel  [11], Cavium  [15], 
Freescale  [8]). 

 
Fig. 3: Software architecture of IPsec system. 

 When speaking particularly of IPsec system, 
significant part of operations is executed in kernel-space. 
Only protocol IKE (Internet Key Exchange) is processed 
in user-space, however, it is executed only in a set-up 
phase of the connection and therefore it has no influence 
on the throughput. On the contrary, execution of other 
security protocols, e.g. SSL/TLS (Secure Socket 
Layer/Transport Layer Security) and SRTP (Secure Real-
time Transport Protocol) is performed in user-space. 

1) IPsec Stack 

In kernel-space are executed all protocol operations 
defined by IPsec standard for securing the traffic. The 
protocols are AH (Authentication Header) and ESP 
(Encapsulating Security Payload), i.e. the operations 
include a creation of protocol headers and entries and 
look-ups in databases SPD (Security Policy Database) 
and SAD (Security Association Database). Database SPD 
is used for determining whether the packet is IPsec or 
not, and if so, security configuration for the packet is 
looked-up in the SAD database. Both databases are part 
of the main memory. 

 Most important fact is that mentioned AH and ESP 
protocol operations do not work with packet payload at 
all. This means that time requirements of these operations 
are independent on the packet size. 

2) Cryptographic Framework 

Cryptographic framework makes cryptographic 
operations performed by cryptographic engine (either 
software or hardware) available to all components of the 
kernel-space, including IPsec stack. It defines two 
interfaces – first for access of the components to 
framework, second for access of the framework to 
cryptographic algorithms (Transform API and Algorithm 
API in Linux systems, Consumer API and Producers API 
in BSD systems). It further builds up the transformation 
configuration (fetches requests and creates their 
descriptors, creates pointers for payload, keys and 
configuration data) and calls driver of cryptographic 
engine. 

 In case the system is not equipped by separate 
hardware cryptographic engine (cryptographic 
accelerator), framework calls the algorithm from its own 
library using pseudo-driver cryptosoft. Comparing to 
driver of hardware engine pseudo-driver is very trivial 
and introduces low or even negligible processing 
overhead. In case that hardware cryptographic engine is 
present, the cryptographic operations are moved to the 
layer of hardware. 

 Based on description of operations of 
cryptographic framework we can conclude that they are 
independent on the size of the packet – they are not 
working with packet payload as was also the case of 
protocol operations. 

3) Cryptographic Algorithms 

Cryptographic algorithms transform plain-text payload to 
a cipher-text. They can either encrypt the payload to 
ensure data confidentiality, e.g. symmetric encryption 
algorithms 3DES or AES, or they can compute 
authenticated hash to ensure data integrity and 
authenticity, e.g. authentication algorithms MD5-HMAC 
or SHA-1-HMAC. 

 Most of the algorithms process the data in blocks 
of fixed size – padding is added if payload size is not a 
multiple integer of the block size. Encryption algorithms 
may work in various modes – either without feedback 
(ECB – Electronic Codebook), or with feedback between 
consecutive blocks (e.g. CBC – Cipher-Block Chaining, 
CFB – Cipher Feedback Mode). Most important note is 
that in every mode the data are processed without a 
nonlinear feedback, i.e. feedback modes reflect only 
preceding block of data. This means that time 
requirements of raw cryptographic operations are 
dependent on packet size and are directly proportional to 
number of blocks in the packet. 

 Another note is that entire algorithmic processing 
composes besides mentioned cryptographic operations 
also from a small overhead introduced by algorithm 

© 2012 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 164 



INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 10 | NUMBER: 3 | 2012 | SEPTEMBER 

initialization – mainly derivation of round keys from the 
main key. Time requirement of this overhead is for every 
packet the same – it does not depend on the number of 
blocks in the packet. 

4) Modes of Operation 

The main processor and cryptographic engine cooperate 
in one of two modes. Mode of operation has a decisive 
impact for defining operations which create the 
bottleneck process. The mode indicates whether 
cryptographic engine operates towards the main 
processor in serial (synchronous mode) or in parallel 
(asynchronous mode). 

 Synchronous mode of operation – in this mode 
the main processor has to wait until algorithm is finished. 
In case that cryptographic engine is only software 
implementation, i.e. algorithm is executed by the main 
processor, synchronous mode is the only possible mode. 
If cryptographic engine is a separate hardware processor, 
this mode may, however, lower potential performance of 
the system. The main processor waits idly until algorithm 
is finished and is blocked for any other process. On the 
other hand, synchronous mode of operation introduces 
lower communication overhead between processing units, 
i.e. driver of cryptographic engine is simpler and interrupt 
requests are not raised. Synchronous mode of operation is 
more likely to be found in the security system 
implementations  [4] – it is employed if: 

 the device is not equipped by hardware 
cryptographic engine (cryptographic operations 
are executed by the main processor), 

 hardware cryptographic engine is incapable of the 
asynchronous operation (lower-end devices), 

 cryptographic framework is not capable of the 
asynchronous operation (native cryptographic 
framework in Linux, called Cryptographic API), 

 hardware cryptographic engine is not supported by 
the cryptographic framework (driver is missing), 

 synchronous mode is chosen administratively (if 
communication overhead is greater than benefits 
introduced by asynchronous mode). 

 Asynchronous mode of operation – this mode is 
suitable only for a system equipped by a hardware 
cryptographic engine. The main processor requests 
engine to perform cryptographic operations. Employing 
call-back function it does not wait for their finishing, 
however, it returns for executing its own protocol 
operations. Cryptographic engine and the main processor 
are able to operate in parallel, then. The bottleneck 
process will be one of two separate processes. As this 
form of communication is more complex, communication 
overhead is also higher than in synchronous mode 
(interrupt requests are present). Asynchronous mode of 
operation is employed only if both cryptographic 
framework and cryptographic engine support it and if 
choice of this mode is advantageous. 

3.3. Summary 

Based on the preceding analysis of hardware and 
software components of IPsec system, we can deduce that 
the only determinant factor in formulating throughput of 
IPsec system will be the mode of operation. All other 
possibilities for enhancing the system performance will 
be in lowering communication overhead, i.e. lowering 
amount of transferred control and configuration data, in 
efficient entries into memories and in acceleration of 
cryptographic algorithms. The enhancements would lead 
into lower time requirements of the particular operation, 
but would not eliminate the operation entirely. 

4. Model of IPsec Process 
Throughput 

In order to delimit the operations that cause the 
bottleneck process we take a look at a chain of operations 
that packet undergoes when it passes through the system. 
Presented operation chain follows principles of operation 
systems Linux and BSD, and also principles presented by 
several vendors, e.g. Freescale  [16], Intel  [17], Elliptic 
 [18], Cisco  [19] and Mikrotik  [20]. 

4.1. Synchronous Mode of Operation 

In Fig. 4 is shown chain of operations for synchronous 
mode of operation. Description of these operations is 
following: 

1. Processing begins after receiving a frame on the 
network interface. Network adapter, which 
operates towards the main processor 
asynchronously as a separate processing unit, 
checks the frame for errors, executes operations of 
the data link layer, removes the frame header and 
transfers a packet to the main memory (RX Ring 
Buffer) via DMA. All these operations are 
performed independently on the main processor 
(i.e. in parallel), so they do not participate on the 
potential bottleneck process. 

2. When the transfer of the packet to memory is 
finished, network adapter sends to the main 
processor interrupt request (IRQ), which must be 
served immediately. Processor launches interrupt 
handler or interrupt service routine (ISR), which 
is actually a network adapter driver that fetches 
information about received packet. It schedules 
also SoftIRQ program in which protocol 
operations are executed. 

3. Packet header may be stored in L2 cache of the 
main processor what speeds up its processing. It is 
checked for errors and against the SPD to 
determine whether the packet falls into IPsec 
policy. 
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4. If packet falls into IPsec policy, security 
configuration in SAD is looked up. 

5. If ESP protocol is used, ESP trailer containing 
padding bits is added to the packet. 

6. Cryptographic framework is launched. It is 
responsible for building up transformation 
configuration, i.e. fetching requests, creating their 
descriptors and creating pointers for payload, keys 
and configuration data. 

7. This information is sent to cryptographic engine 
using the driver. If cryptographic engine is a 
software implementation, the driver is very trivial. 

8. Cryptographic engine reads transformation 
configuration from the main memory. If round 
cryptographic algorithm is used, round keys are 
derived from the main key. 

9. Cryptographic engine reads plain-text data 
assigned for securing from the main memory. 

10. Cryptographic operations are performed. 

11. Cipher-text is written to the main memory. 

12. The main processor finishes protocol processing 
of the packet, i.e. adds AH and/or ESP header. 

13. In case of IPsec tunnel mode, a new IP header is 
created. 

14. The rest of operations of the network layer is 
performed, e.g. routing, QoS policy, etc. 

15. Information about placement of the packet in 
memory and request for its transmission is sent do 
the network adapter. 

16. Network adapter creates frame header and 
transmits the frame. 

 When speaking of process as a set of operations 
executed by one or more processors in a synchronous 
manner it is evident that process of securing consists of 
all operations described above except from the ones 
executed by the network adapter. We can divide these 
operations of securing process according to their 
dependency on the packet size into two groups: 

1. Time requirements of operations of the first type 
are independent on the packet size. In Fig. 4, these 
are operations with orange background. They are 
aforementioned operations of protocol stacks, i.e. 
manipulation with headers and databases look-ups, 
building up transformation configurations, 
executing drivers and deriving round keys. These 
operations do not work with packet payload at all. 
Computational rate of these operations could be 
expressed in packets per second independently on 
the packet size. 

Now, we join these operations into one sub-
process. Its time requirements will be expressed as 

 secfix IP IP com keyt t t t t    , (1) 

where  are the time requirements of IP protocol 

stack,  are the time requirements of IPsec 

protocol stack and cryptographic framework,  

is communication overhead (mainly execution of 
drivers) and  is the algorithm overhead 

(mainly derivation of round keys). 

IPt

seIPt c

comt

keyt

2. On the contrary, time requirements of the second 
type operations are dependent on the packet size – 
they are directly proportional to the number of 
algorithmic data blocks in the packet. In Fig. 4, 
they are the ones with purple background. Except 
from the raw cryptographic operations also 
read/write operations of plain-text/cipher-text 
from and to the main memory belong here. 
Computational rate of these operations can be 
expressed by a constant bit rate independent on the 
packet size. We join these operations in one sub-
process. Its time requirements will be expressed as 

 
*

alg alg alg

alg rwalg

L L L

R RR
  , (2) 

where  is the size of secured data,  is bit 

rate of the sub-process,  is bit rate of raw 

cryptographic operations and  is bit rate of 

read/write operations of plain-text/cipher-text. 

algL algR

*
algR

rwR

 
Fig. 4: Chain of operations in IPsec processing for synchronous mode 

of operation. 

© 2012 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 166 



INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 10 | NUMBER: 3 | 2012 | SEPTEMBER 

 Since both sub-processes are synchronous, time 
requirements of the whole process of securing will be the 
sum of time requirements of individual sub-processes, i.e. 

 
alg

S fix
alg

L
t t

R
  . (3) 

 Throughput of securing process will be inversed 
value of its time requirements, i.e. 1/s SR  t  packets per 

second. 

 From aforementioned relation, it is evident why 
throughput of securing cannot be expressed neither by a 
constant bit rate, nor a constant packet rate over the 
whole range of packet sizes. However, parameters fixt  

and  describe the process of securing 

comprehensively over the whole range of packet sizes 
independently from the packet size, and therefore we 
name them characteristic parameters of securing 
process. 

algR

4.2.  Asynchronous Mode of Operation 

In Fig. 5 is shown chain of operations for asynchronous 
mode of operation. Description of these operations is the 
same as in the previous case. The difference is in 
parallelism of operation of the main processor and the 
cryptographic engine. As a consequence, bottleneck 
process may arise from one of two processes – either 
protocol, framework and driver operations executed by 
the main processor, or communication and algorithmic 
operations executed by the cryptographic engine, 
depending on which one has the higher time 
requirements. 

 
Fig. 5: Chain of operations in IPsec processing for asynchronous mode 

of operation. 

 Time requirements of securing process in the 
system with asynchronous mode of operation will be then 

 max ,
alg

S fix oh
alg

L
t t t

R

 
 

 
 , (4) 

where fixt  are the time requirements of operations 

executed by the main processor,  is communication 

and key derivation overhead performed by cryptographic 
engine (operations 8 and 12 in Fig. 5), and  are 

the time requirements of algorithmic operations including 
read/write operations. Securing process in asynchronous 
mode of operation will be described by three 
characteristic parameters: 

oht

/alg algL R

fixt ,  and . oht alR g

4.3. Size of Secured Data 

IPsec in tunnel mode secures entire original IP packet 

 [21],  [22]. In rough calculations  can be considered 

as size of the original IP packet. In precise calculations 

 will be calculated using following formulas. Size of 

secured data for AH authentication will be 

galL

galL

 AH IP AH
alg alg

alg

L L L
L

B

  
 
  

B , (5) 

where L is the size of the original IP packet,  is the 

size of AH header,  is the size of authenticated fields 

in new IP header (non-mutable fields) and  is a block 

size of the algorithm. In case of IPv4,  equals 12 

bytes, in case of algorithms MD5-96 a SHA-1-96  

equals 24 bytes (12 bytes for fixed fields and 12 bytes for 
a hash) and  equals 64 bytes. 

AHL

g

IPL

alB

IPL

AHL

algB

 Size of secured data for ESP encryption will be 
following: 

 
2ESP

alg alg
alg

L
L

B

 
  
  

B , (6) 

where L is the size of the original IP packet and  is 

the block size of the algorithm. Addition of “+2” in the 
numerator is because ESP trailer contains mandatory 
fields Next Header and Pad Length of size 2 bytes.  

equals 8 and 16 bytes in case of algorithms 3DES and 
AES, respectively. 

algB

alB g

4.4. Summary 

Based on performed analysis, we can suppose that 
various implementations of IPsec system introduce only 
variability in relative significance of proposed 
characteristic parameters, and do not mean elimination or 
addition of a new parameter. The only determinant factor 
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in formulating throughput will be the mode of operation. 
Proposed model shall be then valid for any 
implementation of IPsec system. The validation for 
various implementations is presented in the Section 7 of 
this paper. 

5. A Method for Obtaining 
Characteristic Parameters 

In this section, a method for obtaining characteristic 
parameters will be presented. The method presumes that 
securing process is the bottleneck process in the system. 
In such case throughput of securing process   will be 

also an end-to-end throughput 
SR

MR . And vice versa, if 

we measure end-to-end throughput, we obtain throughput 
of the securing process. Thus, we can state: S MRR  . 

This will transform to the time domain as 

 M M
S M

S M

L L
t t

R R
   , (7) 

what is the time required to process one packet of size LM 
by the bottleneck process  St  as well as the time 

interval between arrivals of two packets at the recipient’s 
site  Mt . We assume that no packet loss is caused by a 

random overflow of the packet buffer. 

 Aforementioned relation means that characteristics 
of securing process given by parameters fixt  and  

(3), eventually also by  (4), will be “mirrored” into the 

measured throughput. Measured throughput will therefore 
provide enough information to evaluate the characteristic 
parameters. 

algR

oht

5.1. Synchronous Mode of Operation 

If we have two unknowns ( fixt  and ) we can use 

system of two equations to evaluate them. Known 
variables in the first equation will be the throughput 

algR

1MR  

measured for packet size 1ML , size of secured data  

in this packet, and in analogue, values for another packet 
size in the second equation. The system of two equations 
in two unknowns will be then 

1algL

 
11

1

algM
fix

M alg

LL
t

R R
  , (8) 

 
22

2

algM
fix

M alg

LL
t

R R
  . (9) 

 Solving the system we get expressions of the 
characteristic parameters: 

 
2 1 1

2 1 1 2

( )alg alg M M
alg

M M M M

L L R R
R

L R L R
2




. (10) 

 
11

1

algM
fix

M alg

LL
t

R R
  . (11) 

 Thereafter we are able to calculate estimated 
throughput  for any size of packet  by a 

relation 
calcR calcL

 calc
calc

alg
fix

alg

L
R

L
t

R




, (12) 

where  is size of secured data in this packet.  algL

 As can be seen, besides the possibility of 
estimating throughput we get also information about two 
sub-process in the securing process that are described by 

values fix algRt 	and	 . 

5.2. Asynchronous Mode of Operation 

Similar assumptions and principles as in the previous 
case are standing also for asynchronous mode. The 
difference is that securing process is divided into two 
separate independent processes whereas only one of them 
becomes a bottleneck process for a particular packet size. 

 If time requirements of operations executed by the 
main processor are higher than requirements of 
operations executed by the cryptographic engine, then 
throughput of the system will be given by a relation 

 calc
calcA

fix

L
R

t
 , (13) 

where  is the packet size, which is the throughput 

calculated for and 
calcL

fixt  are the time requirements 

independent on the packet size. 

 Contrary, if time requirements of operations 
executed by the cryptographic engine are higher, then 
throughput of the system will be given by a relation 

 calc
calcB

alg
oh

alg

L
R

L
t

R




, (14) 

which is derived from the system of two equations in two 
unknowns in the same manner as it being in case of 
synchronous operations, but instead parameter fixt  here 

appears parameter  (see Fig. 5). oht

 We will suppose that throughput of securing 
process will be given by (13) for the small packets and by 
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(14) for the large packets. In such case, three 
measurements of throughput are necessary. First 
measurement will be performed for a small packet to 
obtain parameter fixt , two other measurements will be 

performed for the large packets to obtain parameters  

and . Correctness of the last two measurements will 

be verified so that these values have to be different from 
values calculated by (13). 

oht

algR

 Throughput breakpoint, i.e. packet size  when 

both processes require the same amount of time, can be 
derived from equality of (13) and (14), i.e.: 

bpL

 . (15) bp alg fix ohL R t t  
 Compacted expression of throughput of securing 
process over the whole range of packet sizes for 
asynchronous mode of operation will be then 

 
calcA min alg bp

calc
calcB bp alg max

R for L L L
R

R for L L L

 


 
, (16) 

where  is the smallest possible size of secured data 

and  is the highest possible size of secured data in 

the packet. 

minL

maxL

5.3. Usage of the Method 

Usage of the method eliminates the need for performing a 
lot of measurements in order to create throughput profile 
for the whole range of packet sizes. For instance, 
document RFC 2544 recommends performing 
measurements for packet sizes of 64, 128, 256, 512, 
1024, 1280 and 1420 bytes. Moreover, in modelling 
performance of security system we need to know 
throughput values for each packet size that is present in 
the traffic. The measurements can be rather time-
consuming as one measurement can last several minutes 
using UDP iterative search technique recommended in 
RFC 2889. Proposed method can be used also in a 
situation when we cannot perform any measurement, but 
we know throughput values for two different packet sizes, 
for instance from a technical specification of the device. 
For these reasons, characteristic parameters could be 
practically used for comprehensive and convenient 
definition of securing process throughput on any security 
system. 

6. Experimental Verification 

Experimental verification was performed on a test-bed 
illustrated in Fig. 6. Two routers Cisco 1841 ISR with 
synchronous mode of operation acted as IPsec gateways. 
Other parameters of the test were following: 

 IPsec in tunnel mode, 

 Iperf measuring tool, 

 UDP transport protocol, iterative search algorithm 
recommended in RFC 2889, 

 20 second duration of each iteration, 

 5 repetitions of each test to calculate the average. 

 
Fig. 6: Experimental environment setup. 

 In Tab. 1 are listed calculated values of fixt  

and  for various security combinations using (10) 

and (11) with throughput measured for packet sizes 
128 bytes and 1280 bytes. Bit rate  represents 

theoretical limit of the throughput for very large packets 
and inversed value of time 

algR

algR

fixt  represents the limit of the 

throughput for very small packets. It can be noted that 
value fixt  varies a little between encryption or 

authentication algorithms what is caused by the different 
algorithm overheads – round key derivations. For 
instance, in case of algorithm AES the value increases by 
about 0,02 ms with every increase of the key by 64 bits. 

 In Tab. 2 are confronted measured and calculated 
values of throughput using (12) for packet sizes 64, 512 
and 1420 bytes. The difference is expressed as 

100M calc

M

R R
R
    [%]. In all cases, it keeps below 2 %. 

Tab.1: Calculated characteristic values t fix and Ralg . 

PROTOCOL
-algorithm 

Measured 
throughput 

(RM1  = 128 B) 
[Mbps] 

Measured 
throughput 

(RM2 = 1280 B) 
[Mbps] 

t fix 
[ms] 

Ralg 
[Mbps] 

AH-sha1 2,003 12,919 0,4761 32,749 

AH-md5 2,152 14,838 0,4489 42,986 

ESP-des 2,233 8,965 0,3778 13,483 

ESP-3des 1,712 4,399 0,3939 5,323 

ESP-aes128 2,204 11,382 0,4098 21,179 

ESP-aes192 2,079 10,285 0,4296 18,316 

ESP-aes265 1,987 9,576 0,4472 16,630 
 

Tab.2: Comparison of measured and calculated throughput for 
different packet sizes and security configurations. 

PROTOCOL-
algorithm 

Packet 
size 

[bytes] 

Measured 
throughput 

RM 
[Mbps] 

Calculated 
throughput 

Rcalc 
[Mbps] 

Difference 
∆ 

AH-sha1 64 
512 
1420 

1,021 
6,870 

13,691 

1,033 
6,769 

13,788 

0,9 % 
1,6 % 
0,6 % 
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AH-md5 64 
512 
1420 

1,086 
7,618 

15,800 

1,103 
7,484 

15,912 

1,5 % 
1,8 % 
0,7 % 

ESP-des 64 
512 
1420 

1,235 
6,021 
9,233 

1,217 
5,967 
9,289 

1,4 % 
1,1 % 
0,6 % 

ESP-3des 64 
512 
1420 

1,002 
3,534 
4,485 

1,019 
3,489 
4,508 

1,2 % 
1,3 % 
0,5 % 

ESP-aes128 64 
512 
1420 

1,613 
6,771 
11,959 

1,625 
6,718 
11,983 

0,7 % 
0,8 % 
0,2 % 

ESP-aes192 64 
512 
1420 

1,097 
6,222 

10,738 

1,102 
6,204 

10,803 

0,5 % 
1,1 % 
0,6 % 

ESP-aes256 64 
512 
1420 

1,053 
5,921 
9,904 

1,056 
5,851 

10,004 

0,3 % 
1,2 % 
1,0 % 
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Fig. 7: Calculated throughput over the whole range of packet sizes. 

Symbol “x” denotes control measurements. Saw-tooth pattern 
in case of authentication algorithms is caused by alignment of 
data on a multiple integer of block size, which is 512 bits. In 
case of encryption algorithms the block size is smaller, usually 
64 or 128 bits. 

7. Model Verification Using 
Available Data from Other 
System Implementations  

In this section, the model and method for throughput 
calculation for any packet size is verified using available 
data from other IPsec systems. This set of data represents 
certain variability between the system implementations.  

 In Tab. 3 – Tab. 8 are confronted measured 
(referenced) and calculated values of the throughput. 
Values that are input to the calculations are denoted with 
an asterisk. Besides presented examples, data from other 
implementations can be found in  [26],  [27],  [28]. 

 Verification has shown that proposed model and 
method are valid for a wide spectrum of security system 
implementations. The inaccuracy of calculation is 

keeping below 2 % in most cases. 

7.1. Implementation 1 

Intel corporation in  [11] presents performance of 
cryptographic accelerator Intel EP80579 Integrated 
Processor with synchronous mode of operation. 
Operation system is Linux with IPsec implementation 
OpenS/WAN 2.4.9 and cryptographic framework Linux-
OCF (port of native OpenBSD cryptographic framework 
to Linux). Security configuration is ESP-3des/AH-sha1. 
Comparison of referenced and calculated values is 
presented in Tab. 3. 

7.2. Implementation 2 

Authors in  [24] tested performance of IPsec with 
encryption algorithm AES in GCM mode (Galois Counter 
Mode), which data first encrypts and then authenticates. 
Algorithm is based on AES-NI (AES New Instruction 
set), which was introduced in 2010 by Intel. System is 
without hardware accelerator, operation system is Linux 
with kernel 2.6.31, security configuration is ESP-
aes_ni_gcm. Comparison of referenced and calculated 
values is presented in Tab. 4. 

7.3. Implementation 3 

Authors in  [3] proposed a new IPsec implementation for 
processor Cavium Oceton CN58XX. They achieved 
throughput of 20 Gbps for packet size 1024 bytes what 
was in year 2010 the record-breaking achievement in 
academic and industrial research. Security configuration 
is ESP-aes128. Comparison of referenced and calculated 
values is presented in Tab 5. 

7.4. Implementation 4 

Authors in  [23] tested performance of IPsec on a multi-
core system using pcrypt IPsec for Linux, which utilizes 
the cores in parallel. Security configuration is ESP-
aes192/ESP-sha1. Comparison of referenced and 
calculated values is presented in Tab. 6. 

7.5. Implementation 5 

Freescale in  [4] tests performance of cryptographic 
accelerator PowerQUICC II MPC8360E with 
asynchronous mode of operation. Operating system is 
Linux with proprietary IPsec implementation Mocana. 
Security configuration is ESP-3des/ESP-sha1. 
Comparison of referenced and calculated values is 
presented in Tab. 7. 

7.6. Implementation 6 

As was mentioned in the beginning of the paper, analysis 
and principles presented for IPsec should hold 
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analogically also for the other security protocols. 

Author in  [25] tested performance of securing using SSL 
protocol. Protocol is implemented as OpenSSL on 
operating system Linux with cryptographic framework 
OCF-Linux. The main processor is Intel Xcale 533 MHz, 
cryptographic accelerator is PCI Hifn7956 with 
synchronous mode of operation. Security configuration is 
SSL-aes128. Comparison of referenced and calculated 
values is presented in Tab. 8. 

Tab.3: Comparison of measured (referenced) and calculated values of 
throughput for different packet sizes. Implementation 1. 
Calculated characteristic parameters: tfix = 0,01357 ms, 
Ralg  = 778 Mbps. 

Packet 
size 

[bytes] 

Referenced 
throughput 

[Mbps] 

Calculated 
throughput 

[Mbps] 

Difference 
∆ 

64 37 37,5 1,3 % 

128 74 74,7 0,9 % 

256 148 * - - 

512 291 290,5 0,2 % 

1024 563 560,1 0,5 % 

1400 746 * - - 

Average difference 0,8 % 
 

Tab.4: Comparison of measured (referenced) and calculated values of 
throughput for different packet sizes. Implementation 2. 
Calculated characteristic parameters: tfix = 0,00517 ms, 
Ralg  = 1993 Mbps. 

Packet 
size 

[bytes] 

Referenced 
throughput 

[Mbps] 

Calculated 
throughput 

[Mbps] 

Difference 
∆ 

64 98* - - 

128 184 184,6 0,3 % 

256 332 336,8 1,4 % 

512 552 572,9 3,7 % 

768 745 747,5 0,3 % 

1024 882* - - 

1280 945 993 

1454 953 1056 

Limiting is 
bandwidth of 

network 
adapter 

Average difference 1,4 % 
 

Tab.5: Comparison of measured (referenced) and calculated values of 
throughput for different packet sizes. Implementation 3. 
Calculated characteristic parameters: tfix = 0,0000916 ms, 
Ralg = 25,8 Gbit·s-1. 

Packet 
size 

[bytes] 

Referenced 
throughput 

 [Gbps] 

Calculated 
throughput 

[Gbps] 

Difference 
∆ 

64 4,5 4,54 0,8 % 

128 7,6 7,72 1,5 % 

256 11,9* - - 

512 16,6 16,31 1,7 % 

1024 20,0* - - 

Average difference 1,3 % 
 

Tab.6: Comparison of measured (referenced) and calculated values of 
throughput for different packet sizes. Implementation 4. 
Calculated characteristic parameters: tfix = 0,00352 ms, 
Ralg = 2607 Mbps. 

Packet 
size 

[bytes] 

Referenced 
throughput 

[Mbps] 

Calculated 
throughput 

[Mbps] 

Difference 
∆ 

46 100* - - 

110 228 229,7 0,7 % 

238 446* - - 

1006 915 1214 

1404 945 1430 

Limiting is 
bandwidth of 

network adapter 
 

Tab.7: Comparison of measured (referenced) and calculated values of 
throughput for different packet sizes. Implementation 5. 
Calculated characteristic parameters: tfix = 0,02076 ms, 
toh = 0,00826 ms, Ralg = 626 Mbps, Lbp  = 915 bytes. 

Packet size 
[bytes] 

Referenced 
throughput 

[Mbps] 

Calculated 
throughput 

[Mbps] 

Difference 
∆ 

64 24 24,7 2,9 % 

128 49 49,6 1,1 % 

256 99* for calculation tfix 

390 153 150,7 1,9 % 

512 202 198,1 1,9 % 

1024 382* for calculation toh  and Ralg 

1280 414 414,3 0,01 % 

1456 432* for calculation toh  and Ralg 

Average difference 1,5 % 
 

Tab.8: Comparison of measured (referenced) and calculated values of 
throughput for different packet sizes. Implementation 6. 
Calculated characteristic parameters: tfix = 0,4146 ms, 
Ralg  = 23,517 Mbps. 

Packet 
size 

[bytes] 

Referenced 
throughput 

[Mbps] 

Calculated 
throughput 

[Mbps] 

Difference 
∆ 

64 1,166* - - 

256 3,992 4,061 1,6 % 

1024 10,735 10,699 0,3 % 

2048 14,707* - - 

Average difference 0,9 % 

8. Conclusion 

The paper was focused on throughput of securing 
process, which cannot be described neither by a constant 
value of bits per second nor by a constant value of 
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packets per second over the whole range of packet sizes. 
Based on analysis of hardware and software components 
of IPsec system a general throughput model of IPsec 
process was proposed. It comprises of characteristic 
parameters fixt  and for synchronous mode of 

operation and 

algR

fixt ,  and  for the asynchronous 

mode of operation. These parameters are constant for any 
packet size. 

oht algR

 A method for obtaining characteristic parameters 
was derived from the general throughput model. Usage of 
the method eliminates the need for performing many 
measurements for building the throughput profile over 
the whole range of packet sizes. The measurements can 
be rather time-consuming as one measurement can last 
several minutes using UDP iterative search technique. 
Characteristic parameters therefore might be practically 
used for comprehensive and convenient definition of 
securing process throughput on any security system. 

 Validation of the model was performed using data 
from various security system implementations – it 
provides results with an error below 2 % from the actual 
measured value in most cases. 

 The model and the method might be further used 
for a throughput calculation when more packet sizes are 
present in a mixed traffic and might be used as an input to 
a queuing model describing the security gateway where 
the service rate needs to be known. 
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