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Abstract. The frequency spectrum performs one of the 
main characteristics of a process. The aim of the paper is 
to show the coherence between the process and its own 
spectrum and how the behaviour and properties of a 
process itself can be deduced from its spectrum. 
Processes are categorized, and general principles of their 
spectra calculation and recognition are given. The main 
stress is put on signal power spectra, as they also 
perform a kind of processes. These spectra can be directly 
measured, observed and examined by means of spectral 
analysers and they are very important characteristics 
which cannot be omitted at transmission techniques in 
telecommunication technologies. Further, the paper also 
deals with non-electric processes, mainly with processes 
and spectra at mass servicing and how these spectra can 
be utilised in praxis. All processes analysed in this paper 
are supposed to be in a stable state and ergodic. 
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1. Introduction 

In general, a process is events (actions) running in the 
course of time. It can be represented by a time depending 
deterministic or random function. The harmonic signal, 
clock pulses, a trajectory of a flying airplane, electric or 
optic signals conveying information (physical processes), 
values of shares on a stock exchange, financial flows in a 
company (economic processes), meteorological 
temperature or wind observations, or a number of service 
(communication) channels occupied are the typical 
examples of processes. 

 Processes can be categorised from various points 
of view. The next categorisation appears the most 
important for the purpose of mathematical description: 

 deterministic processes (Section 2), 

 stochastic processes (Section 3), 

 random processes (Section 4). 

 The stochastic processes can further be 
categorised as follows: 

A. Baseband stochastic processes (Section 3.1): 

a) Almost periodic (Section 3.1.1): 

 with uncorrelated periods (Section 3.1.1.1), 

 with correlated periods (Section 3.1.1.2); 

b) Non-periodic (Section 3.1.2): 

 with discrete amplitude changes in certain random 
time instants (Section 3.1.2.1), 

 with continuous amplitude changes in any time 
(Section 3.1.2.2). 

B. Bandpass stochastic processes (Section 3.2). 

2. Deterministic Processes 

Non modulated and un-coded signals as a pilot frequency, 
a clock synchronization signal or transient events in 
linear electric circuits are the good examples of 
deterministic (non-random) processes. They can be 
anticipated with certainty at any past or future time 
instant and therefore, they cannot convey any piece of 
information. If these signals are periodic, they have 
discrete spectra composed of one or more sharp 
demarcated spectral lines. Spectral components of 
deterministic processes can be calculated using the 
Fourier analysis or the Fourier transform. These tools are 
well known and thus it is not further necessary to discuss 
them. The main concern will be put on stochastic and 
random processes. 

3. Stochastic Processes 

The word “stochastic” was introduced to express the 
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knowledge that even a chance has also its rules, so the 
whole scale of dynamic events and changes can be a 
consequence of a unique hidden deterministic rule  [1]. 
Unlike of deterministic processes, future values of 
stochastic processes can be anticipated only with a certain 
probability 0 < p < 1 acceptable for a shorter time which 
is the consequence of good defined statistical laws and 
hidden deterministic parameters. 

 As the values of a stochastic process are random 
variables, the spectral lines cannot be sharp demarcated 
as it is at a deterministic process. The sharp spectral lines 
become uncertain, get blurred, and they will be spread in 
a continuous curve. 

 Due to the uncertain behaviour, a stochastic 
process can only be described by parameters that have the 
statistical character and have not only a numeric but also 
a physical meaning which is useful at physical processes. 
The statistical parameters describing a stochastic process 
are: the mean value, the dispersion, the power and the 
more complex characteristics – the auto correlation 
function and the power spectral density (shortly power 
spectrum). 

 The power spectrum as a very important 
characteristic of a process (deterministic or non-
deterministic) can always be calculated by means of the 
auto correlation function. However, the utilisation of the 
auto correlation function for this purpose is not necessary 
at stochastic processes with uncorrelated periods. 

3.1. Baseband Stochastic Processes 

As it has already been mentioned, stochastic processes 
are characterised by the fact they always contain: 

 an apparent or hidden deterministic component, 

 a correlation coupling among various time values, 

 the both above features. 

 Therefore, they cannot be random in any case 
from these reasons. 

1) Baseband Almost Stochastic Processes 

Almost periodic stochastic processes can be: 

 discrete both in time and in amplitude or, 

 discrete in time but continuous in amplitude. 

 The discrete time indicates the exact instants at 
which the same deterministic process course, the am-
amplitude or the phase of which is a random variable, 
regularly starts to repeat. These discrete time instants 
performing periods are the non-random variables. Dis-
continuities or sudden changes usually happen in the time 
course of a stochastic process at these time instants. 

 Except of the almost periodic stochastic process it 
is always discrete in time, it can be discrete or continuous 
in amplitude. The amplitude is always a random variable 
that can be discrete when it only gains certain discrete 

values, or continuous when it gains any value from its 
possible range. 

 Digitally encoded and digitally modulated signals 
conveying information are the typical representatives of 
almost periodic stochastic processes. The periods are 
represented by a train of pulses of a certain shape the 
height of which is a random variable A that gains discrete 
or continuous values from a certain range. Periodically 
repeating symbols of the same shape and a non-zero 
mean value performs the apparent deterministic 
component. A correlation coupling among particular 
symbols performs the hidden deterministic component. 

 Uncorrelated Periods 

When there is no correlation among periods, the power 
spectrum can be calculated without the necessity to know 
the autocorrelation function as  [2],  [3]: 
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Here are: 

 G(f) – the Fourier transform of the unit pulse 
shape (with the amplitude A = 1), 

 cn – complex Fourier coefficients, 

 δ(nfo) – the pulse function, 

 To = 1/fo – the repeating period, 

 σα
2 – the amplitude dispersion of the process, 

 m - the mean level of the process. 
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where: 

 ma - the amplitude mean value, 

 g(t) - the shape of the unit pulse, 

 ν - the width of the unit pulse within the period T0. 

 When the process is discrete in amplitude, the 
amplitude mean, ma and the amplitude dispersion, a

2 
are calculated as: 
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where aj are amplitudes which the random variable, A 
gains with probabilities pj, j = 0, 1, 2,…,N. It is desirable 
at the almost periodic stochastic signal that the 
probabilities pj are equipment’s probable, e.g. pj = p for 
all j. 

 When the process is continuous in amplitude, the 
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amplitude mean, ma and the amplitude dispersion, a
2 are 

calculated as: 
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where x is a value which the stochastic process x(t) can 
gain in a time t and f(x) is the probability distribution of 
values x. It is the Gaussian distribution in most cases. No 
matter of the stochastic process is discrete or continuous 
in amplitude; this has no influence on the spectrum shape 
of the process. 

 
(a) 

 
(b) 

 
(c) 

Fig. 1: Unipolar stochastic digital signal (M = 2, To = 4) (a) and its 
spectrum in the linear (b) and in the logarithmic (c) scales. 

 In the case when the mean level of the process, 
m = 0, the power spectrum can be easily calculated as: 
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 The spectrum of a train of randomly occurring 
rectangular pulses creating a digital stochastic signal can 
be taken as the template of the almost stochastic process 
with uncorrelated periods. The continuous power 
spectrum is shaped according to the function sinc2 x. 
Generally, the spectrum of the unipolar digital stochastic 
signal can be mathematically written as  [3]: 
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and that of the bipolar digital stochastic signal [3]: 
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where M denotes the number of the discrete amplitude 
states. 

 There is an example of the almost periodic 
stochastic process in Fig. 1 – the unipolar two-state 
stochastic digital signal. In comparison to the non-
periodic stochastic processes (see Chapter 3.1.2), the 
curve of the power spectrum does not decrease 
monotonically to 0 at the infinite frequency, on the 
contrary, it has zero values at frequencies f = n/, 
n = 1, 2, 3,… The presence of lobes and zero values are 
the main features how the periodicity manifests as the 
apparent deterministic component. The occurrence of 
peaks indicates the existence of a deterministic 
component which can be for example a non-zero mean 
level in the case when the peak also occurs at zero 
frequency.  

 
Fig. 2: Bipolar stochastic digital signal (M = 2, To = 4). 

 There is the bipolar two-state stochastic digital 
signal in Fig. 2. Its spectrum is the same as that in 
Fig. 1b, 1c, but without the spectral lines because the 
signal does not have any mean level as a deterministic 
component. 

 Further, there are 3 examples of the spectra of the 
bipolar stochastic digital signal with the pulse shaping as 
in Fig. 3. Figure 3a presents 3 particular pulse shapes 
with the same two-state (M = 2) random amplitude A, the 
repeating period To and the same pulse width  = To/2. 
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The first pulse type (A) is the referencing rectangular 
pulse with the real power spectrum  [3]: 

 
(a) 

 
(b) 

 
(c) 

Fig. 3: Spectral comparison of the almost periodic stochastic digital 
signals composed of the rectangular, the triangular and the 
raised cosine pulse shapes. 
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 The second pulse type (B) is the triangular pulse 
with the real power spectrum: 
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 And the third pulse type (C) is the raised cosine 
pulse with the real power spectrum: 
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 The power spectra corresponding to the given 
formulae are plotted in Fig. 3b and 3c in the linear and in 
the logarithmic scales, respectively. As it can be seen 
from these figures, when comparing the template power 
spectrum (A) with the others two (B) and (C), the pulse 
shaping may shift the zero points out of the frequencies 
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where k denotes the ratio of the repeating period, To, to  
the pulse width,  (see the horizontal axis in Fig. 3b, 3c). 
Hereby, the power spectrum may get wider [see (B) and 
(C)] or get “distorted” [see (C)]. Such distortion may 
sometimes look like a doubled number of the lobes in the 
logarithmic scale. Also, the peaks indicating the existence 
of a hidden deterministic component, Fig. 2c, are hardly 
visible in the logarithmic scale that is exclusively used in 
power spectra analyzers. This can cause false conclusions 
at the stochastic signal evaluation. 

 Correlated Periods 

When a correlation exists among periods, first it is 
necessary to find the auto correlation series and only after 
that the power spectrum can be derived. In case of a 
stochastic process with correlated periods, the auto 
correlation series may be derived as  [4]: 
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for n = 0, 1, 2,…,N – 1, where pk,ij is the occurrence 
probability of a j-th amplitude in a (k + n)-th pulse, α(k+n),j 
on condition that an i-th amplitude, αk,i has occurred in a 
k-th pulse: 

 
 , , ,k ij k j k n ip p p  . (15) 

 The N denotes the correlation range, i.e. the 
number of pulses that may have a correlation coupling 
among each other within the correlation range: 

 
0T NT . (16) 
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 Then the power spectrum will be calculated as  [2]: 
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 Again, no matter of the correlated almost periodic 
stochastic process is discrete or continuous in amplitude, 
this has no influence on the spectrum shape of the 
process. 

 
(a) 

 
(b) 

Fig. 4: Spectral comparison of the stochastic digital signals with 
correlated periods (B), (C), (D) with the reference stochastic 
digital signal with the uncorrelated periods (A) in the linear (a) 
and the logarithmic (b) scales. 

 Let´s consider 4 almost periodic stochastic signals, 
all with the rectangular shapes of the random pulses 
filling the whole repeating period ( = To): the basic 
bipolar digital stochastic signal with uncorrelated periods 
(A) as a template one and 3 other signals with correlated 
periods – the AMI-NRZ code (Alternate Mark Inversion 
– Non Return to Zero) (B), the MLT-3 code (Multilevel 
Threshold with 3 levels) (C) and a convolution coded 
signal (D). Their real power spectra are, respectively  [4]: 
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 Figure 4 shows the power spectra of these signals 
in the linear (a) and in the logarithmic (b) scales. As it is 
evident, the correlation among periods also changes the 
power spectral curve like pulse shaping. The power 
spectrum may get narrower [see (C)] or get “distorted” 
[see (D)]. 

2) Baseband Non Periodic Stochastic Processes 

There is always a correlation coupling among values 
which processes of this type gain in a time. To obtain the 
power spectrum, the auto correlation function must be 
determined as the first step. Unlike of the correlation 
series (1), the auto correlation function is moreover time 
dependent. The auto correlation function may be 
determined similarly as in equation (1): 
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Here, pij denotes the probability that a discrete amplitude 
state, aj occurs in a time t +  when a discrete amplitude 
state, ai has occurred before in a time t, where  is a time 
difference between these two events; M is the number of 
possible discrete amplitude states. 

 When continuous amplitude changes happen in 
any time, the general formula for calculation of the auto 
correlation function is only applicable  [5]: 
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where T denotes the correlation range. 

 As the correlation coupling is getting weak when 
the time difference,  increases, the auto correlation 
function exponentially decreases, in general. 
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 The power spectrum can be determined by the 
Fourier transform of the auto correlation function 
(Wiener-Kchintchin transform): 
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 Due to the exponential decrease of the auto 
correlation function, Fig. 5a, the real power spectrum will 
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have the power spectrum as on Fig. 5b which is given by 
the Fourier transform of the exponentially decreasing 
auto correlation function  [3]: 
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 The constant c defines a measure of the correlation 
coupling that shall be either explicitly derived or 
empirically determined. 

 
(a) 

 
(b) 

Fig. 5: Auto correlation function (a) and belonging power spectrum 
(b) without mean level component (c1 < c2). 

 As there is no periodicity at this type of process, 
its power spectrum perishes monotonically (Fig. 5). The 
repeating period, To can be considered to be infinite 
(To  ). Therefore, no zeros in the power spectrum 
curve indicating the presence of periods in a stochastic 
process can occur (as if they were shifted to infinite 
frequencies). 

 Cases with Discrete Amplitudes 

There are two types of the non-periodic stochastic 
process: 

 the two-state one and, 

 the multi-state one. 

Two-State Non Periodic Stochastic Process 

 This type of the process can be explained on these 
practical examples: Data communication in wideband 

packet networks realizes by means of transmission of 
data bursts. Similarly, when optic network terminations of 
gigabit passive optic network subscriber’s communicate 
with their optic network node, they send transmission 
containers  [6] that are data bursts, too. Their lengths and 
their positions on the time axis on the shared 
communication channel (the optic fiber) are random. 
These communication types perform the non-periodic 
stochastic process with 2 states – 0 or 1 when a data burst 
is or is not present as it is depicted in Fig. 6. 

 
Fig. 6: Two-state non periodic stochastic process. 

 The dispersion 2 and the constant c necessary for 
spectrum calculation, S(f) as in equation (2) were derived 
in  [7]: 
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Here, p denotes the probability a data burst occurs on the 
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and m is the mean duration of data bursts. Supposing the 
stochastic process has the Markov´s properties, the value 
m also means the occurrence frequency of data bursts. If 
the data bursts durations are the same, then m = . 

 The real power spectrum of this process is: 
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To make a practical use of this power spectrum, let´s only 
take the continuous part of the spectrum that represents 
variable random changes in the process without the 
deterministic constant component p2.(0) and let´s 
transform it into the probability distribution f() [7]: 
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 2s sf   , (32) 

the sampling frequency, fs can be determined: 
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 This result tells us how often the communication 
channel shall be scanned in order to catch-up each 
channel occupation by a data burst with a given 
probability P. This is the practical issue how to utilize the 
spectral theory and thus save the working capacity of 
control processors in digital devices  [7]. 

Multi-State Non-Periodic Stochastic Process 

 When there are M communication channels that 
are occupied by statistically independent traffic streams 
which can be data burst trains or telephone calls or, in 
general, various service lines, we get multi-state non 
periodic stochastic process with M + 1 state (Fig. 7). It 
can be shown using  [5],  [8],  [9] that the power spectrum 
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and the necessary scanning frequency shall be M-times 
higher as before: 
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Fig. 7: Multi-state non periodic stochastic process. 

 Remark: Only 1 step up or 1 step down or no 
change is allowed in the multi-state non-periodic 
stochastic process with Markov´s properties.The power 
spectra corresponding to the two-state and the multi-state 
non periodic stochastic process with discrete amplitudes 
are plotted in Fig. 8a and 8b in the linear and in the 
logarithmic scales (without their mean level 
components). As the processes are non-periodic, their 
spectra do not have any lobes as it is evident from 
Fig. 8a, 8b. Also, the difference be-tween the linear and 
the logarithmic presentation of the spectral curves is 
insignificant. 

 
(a) 

 
(b) 

Fig. 8: Spectra of the two-state (A) and the multi-state (B) non 
periodic stochastic process in the linear (a) and in the 
logarithmic (b) scales. 

 Case with Continuous Amplitudes 

This type of processes are the most uncertain among 
stochastic ones (Fig. 9a) as the auto correlation function 
needed for spectra calculation cannot be derived 
explicitly and thus the spectrum cannot be  determined 
explicitly, too. The only way how to determine the auto 
correlation function is to find it statistically by periodic 
sampling the process in regular time intervals 

 
0 1 0,1, 2, ...,i i

T
t T t t i N

N        , (36) 

where N is the number of samples taken within the 
observation time, T. In this way, a statistical file of N 
amplitude values x(ti) = ai will be collected. The 
correlation range, N can be considered for a discrete 
range period. The continuous auto correlation function, 
R() (3) will be replaced approximately by the series of 
correlation coefficients: 

  
0

1

1

N n

n
i

i i nR R
N n







 
   a a , (37) 

for n = 0, 1, 2,…,K where K is the number of correlation 
coefficients calculated. The correlation range, N shall be 
as large as possible in order to collect as many of 
correlation coefficients, Rn as possible, whereby 

N ˗ K ≫ 0 in order to achieve reliable values Rn, 

0 ti t  i t i 

M.p 

0 

t ,   – random values i i

M.p – mean level of the process 
M  0, ) 

© 2012 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 158 



INFORMATION AND COMMUNICATION TECHNOLOGIES AND SERVICES VOLUME: 10 | NUMBER: 3 | 2012 | SEPTEMBER 

calculated from a sufficient number of the summations 
through i  0, N - n. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 9: Stochastic process with continuous amplitude (full line) and its 
sampled PAM equivalent (dashed lines) (a); spectrum of the 
original process in the linear scale (b); spectrum of the sampled 
process in the linear (c) and the logarithmic (d) scales (without 
the mean level component). 

 The length of time intervals t shall be chosen 
according to the frequency of changes of the stochastic 
process. When these changes are relatively slow, the 
interval t can be longer, in opposite to the short interval 
when the stochastic process changes often and quickly. 
The more the waves creating the stochastic process have 
high frequency components, the more often the sampling 
of the stochastic process shall be. The Shannon theorem 
may be used as a guideline for the time interval t: 

 
0

1

2 m

t T
f

   , (38) 

where fm denotes the highest assumed frequency 
component occurring in a stochastic process. 

 On the other hand, the sampling frequency does 
not often depend on an observer. It can be governed by 
the timing of an observation instrument, or it directly 
yields from the stochastic process nature when it 
performs a time series. 

 There are two ways how to obtain the spectrum 
for this stochastic process type: 

 The first way is to explicitly presuppose the auto 
correlation function exponentially decreases. 
Approximating the calculated correlation series 
consisting of coefficients Rn by the exponential function, 
the constant c can be determined which is necessary for 
the spectrum calculation through Wiener Kchintchin 
transform. 

 The second way is to apply the discrete Fourier 
transform on the before calculated correlation series: 
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 This term can be rewritten as  [10]: 

     222 2 1 2
1 2 ... K

z z z KzS k A z a a a a          ,(40) 

for k = 0, 1, 2,…, N where 

 
2

0,1, 2, ...,
j k

Nz e k N


   . (41) 

 This method is more complicated than the first 
one. It requires many computation operations. The fast 
Fourier transform could be used  [11]. 

 If a sampled value is held-on until the next 
sample, the spectrum of the almost periodic stochastic 
process with correlated periods and continuous in 
amplitude (PAM signal) will be obtained. 

 The discussed stochastic processes and their 
spectra are depicted in Fig. 9. The full line on Fig. 9a 
represents the stochastic process itself and the dashed 
lines represent its sampled variant. Figure 9b shows the 
spectrum of the original process (in the linear scale) 
which is truncated by frequency fm. The amplitude 
spectrum of a continuous process sampled with sampling 
pulses with width  and with repeating frequency 
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fo = 1/To is known as the sampling of the 2nd type and it 
is generally given as [12]: 
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.(42) 

 For this case when  = To = 1/fo and fo = 2fm the 
real power spectrum will be: 
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 The spectrum of the sampled process contains the 
basic spectral component which is almost the same as the 
spectrum of the original continuous process. Moreover, 
the basic spectral component is augmented in other 
spectral components that are regularly spread around the 
multiplies of sampling frequency fo which can be defined 
by means of the Shannon theorem. The height of these 
components is determined by the sinc2x function (see Fig. 
9c and 9d).  The sampling introduces a non-random 
component (originally non periodic stochastic process 
becomes almost periodic one). Therefore, the original 
smooth spectral curve becomes undulated 

3.2. Band Pass Stochastic Processes 

 
(a) 

 
(b) 

Fig. 10:  Spectrum of a band pass modulated analogue signal (A) and a 
digital modulated signal (B) in the linear (a) and in the 
logarithmic (b) scales. 

This type of processes is exclusively represented by 

keyed (periodic) or analogue (non-periodic) signals 
modulated on a carrier frequency f0. It can be shown  [2], 
 [3] that a spectrum of a band pass signal is the shifted 
version of the equivalent baseband signal (Fig. 10). 

4. Random Processes 

Real random processes do not show any deterministic or 
statistical laws. Such process is the white noise. The 
white noise is an example of the process that has the right 
to be called the random process because it does not 
contain any apparent or hidden deterministic component 
and it has no correlation among its values in various time 
instants, even between closest ones. The future behaviour 
of such process is absolutely unpredictable. The spectrum 
is smooth and constant in the whole frequency range in a 
given bandwidth. 

X(t)

 

t 

(a) 

 
(b) 

Fig. 11: White noise (a) and its spectrum (b). 

5. Summary 

The next general conclusions can be formulated for 
spectra recognition, estimation and evaluation: 

 The random process without any correlation and 
without any non-random (deterministic) component has 
the smooth, constant spectrum in the whole frequency 
range (white noise). The more the spectrum of a process 
approaches this, the less stochastic and the more random 
a process is. 

 The stochastic process with correlation and 
without any non-random (deterministic) component has 
the smooth, to zero continuously decreasing spectrum 
like in Fig. 8. 

 The stochastic process with a non-random 
(deterministic) component may have an undulated 
(waving) spectrum. 

 Whatever type of a stochastic process would be, 
the presence of spectral lobes points on its periodicity. 
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 The presence of the mean value component in a 
process may manifest as periodically repeating peaks. 
However, there is always the peak at the zero spectral 
frequency. 

 When the process contains a periodic component, 
the peaks may also occur at certain discrete spectral 
frequencies. 

 All random and stochastic processes have the 
continuous spectra on which peaks can be superposed 
when they have the mean level and/or they contain a 
deterministic periodic component. 

 Deterministic periodic processes have discrete 
spectra. When a deterministic process is not periodic, its 
energetic spectrum is continuous. 

 The presence of a hidden or apparent deterministic 
component in a stochastic process, or no correlation 
coupling among periods in an almost periodic stochastic 
process makes the spectrum calculation easier. 

 Knowledge of spectra in theory of mass servicing 
makes possible to find out how often service 
(communication) channels shall be scanned in order to 
catch-up each channel occupation with a given 
probability. This may be utilized when saving the 
working capacity of control processors in digital devices. 

 The correlation function is useful for estimation of 
features of such stochastic processes at which the 
spectrum cannot be physically observed (all non-physical 
processes). 

 Knowledge of signal spectra is very important in 
telecommunication at spectral compatibility assessment 
of various transmission technologies used for signal 
transmissions through metallic cable networks and for 
identification of disturbing sources in radio 
communication environment. 

REFERENCES 

[1] STEWART, Ian. Hraje Buh kostky?: Nova matematika chaosu. 
Praha: Argo, 2009. ISBN 978-80-257-0024-2. 

[2] XIONG, Fuqin. Digital Modulation Techniques. Norwood: 
Artech House Print on Demand, 2006. ISBN 978-1580538633. 

[3] CEPCIANSKY, Gustav and Martin VACULIK. Spektralna 
analyza digitalnych signalov. Zilina: EDIS - vydavatelstvo ZU, 
2005. ISBN 80-8070-406-6. 

[4] CEPCIANSKY, Gustav and Ladislav SCHWARTZ. Methods 
of Calculation of Digital Signals Spectra. Advances in 
Electrical and Electronic Engineering. 2011, vol. 9, no. 3, pp. 
118-126. ISSN 1336-1376. 

[5] VENTCEL, Jelena Sergejevna. Teoria pravdepodobnosti. 
Bratislava: Alfa, 1973. 

[6] CEPCIANSKY, Gustav and Ladislav SCHWARTZ. 
Technologia GPON. Zilina: EDIS, 2011. ISBN 978-80-554-
0323-6. 

[7] CEPCIANSKY, Gustav and Ladislav SCHWARTZ. Sampling 
of Random Data Streams. Advances in Electrical and 
Electronic Engineering. 2011, vol. 9, no. 1, pp. 1-6. 
ISSN 1336-1376. 

[8] SKRASEK, J. and Z. TICHY. Zaklady aplikovane matematiky. 
Praha: SNTL, 1986. ISBN 0451386. 

[9] GRESAK, Pavol and Pavol MARUSIAK. Matematika III: 
zaklady funkcie komplexnej premenej, integralne 
transformacie. Bratislava: Alfa, 1987. 

[10] BOX, G. E. P., and G. M. JENKINS. Time Series Analysis: 
Forecasting and Control. San Francisco, CA: Holden-Day, 
1970. ISBN 978-0470272848. 

[11] KOTULIAKOVA, Jana and Gregor ROZINAJ. Cislicove 
spracovanie signalov. Bratislava: FABER, 1996. ISBN 80-
967503-2-1. 

[12] SKOP, Miroslav. Prenosove systemy s casovym sdruzovanim 
kanalu. Praha: Nakladatelstvi dopravy a spoju, 1980. 

[13] LEVIN, B. R.: Teorie nahodnych procesu a jeji aplikace v 
radiotechnice. Praha: SNTL, 1965. 

About Authors 

Gustav CEPCIANSKY was born on 1947. 1971 – 
Master of sciences (M.Sc.) in telecommunications on 
University of Zilina. 1971 – 1976 – employed at Slovak 
Telecom as a technical development specialist. 1976 – 
2002 – employed at Slovak Telecom as the head of the 
operational research center. Actually as an external 
lecturer on the Telecommunication and Multimedia 
Department of the Electrical Faculty, University of Zilina. 
Next formation: 1984 – the 1st doctor degree (CSc). 1995 
– the study stay at Technical University Supelec in Paris. 
1998 – the 2nd doctor degree (Ph.D.). In 2005 – the 
associated professor of Electrical Faculty, University of 
Zilina. 

Ladislav SCHWARTZ was born on 1950 in Zilina. In 
1974 graduated on the University of Zilina, Department 
of Telecommunications with the Master’s degree (MSc). 
From 1974 to 1991, he worked in the Research Institute 
of Computer Techniques in Zilina as the head of the 
Department of Data Communications. In 1986, he was 
awarded the title Ph.D. and in 1991, he became a full 
time teacher and research worker of the University of 
Zilina. In 1999, he was appointed an associate professor. 
His main activities are focused on operation, reliability, 
and security telecommunication and computer networks 
and data communication.

 


