COMMUTATION PROCESSES IN MULTIRESONANT ZVS BRIDGE CONVERTER

M. Luft, E. Szychta
Faculty of Transport, Technical University of Radom, Poland, ul. Malczewskiego 29, 26-600 Radom, tel.: +48 4836170 10, mail: m.luft@pr.radom.pl, e.szychta@pr.radom.pl

Summary The analysis of the multiresonant ZVS DC/DC bridge converter is presented. The control system of the converter is based on the method of frequency control at the constant time of transistor turn-off with a phase shift. The operation of the circuit is given and the operating range of the converter is defined where ZVS switching operation is assured. Control characteristics are given and the converter's efficiency is defined. The circuit's operation is analysed on the basis of results of the converter simulation tests using Simplorer programme.

1. INTRODUCTION

The interest in multiresonant power converters DC/DC (MRCs), switched at high operating frequency is prompted by attempts to obtain great efficiency, minimize dimensions, and in effect to reduce cost of such circuits. Topologies of MRCs remain a widely studied issue, as demonstrated by numerous, though not exhaustive papers, published in periodicals and conference materials [2,4,5,6].

The reference [1] presents analytical study of an indirect DC/DC converter using a bridge series resonant inverter operating above the resonant frequency. ZVS mode is obtained in the inverter, when a phase shift is introduced between the controls of the two legs. For purposes of the analysis, ideal (i.e. without power losses and time delays) semiconductor elements were assumed.

This article discusses a multiresonant ZVS bridge converter (ZVS bridge MRC) comprising real semiconductor elements. The article presents an analysis of the circuit's operation on the basis of results of the converter simulation tests using Simplorer programme.

2. TOPOLOGY OF MULTIRESONANT ZVS BRIDGE CONVERTER

The structure of ZVS bridge MRC is shown in Figure 1 [3]. The circuit is supplied with DC voltage E. MOSFETs $T_{1} \div T_{4}$, at conductance resistances $R_{\mathrm{T} 1} \div R_{\mathrm{T} 4}=R_{\mathrm{T}}$ and output capacitances $C_{\mathrm{OS} 1} \div C_{\mathrm{OS} 4}=C_{\mathrm{OS}}$, are switched at frequency f. Diodes $D_{\mathrm{S} 1} \div D_{\mathrm{S} 4}$ are integral parts of the transistors and enable bi-directional conductance of currents $i_{S 1} \div i_{S 4}$. Snubber capacitors at $C_{\mathrm{S} 1} \div C_{\mathrm{S} 4}=C_{\mathrm{S}}$, in parallel with transistor output capacitances, assist switching processes in the resonant circuit.

Fig.1. ZVS bridge MRC

Capacitor at C_{D}, reactor at inductance L, and transformer TFR are elements of the series resonant circuit. The reactor's L quality factor is assumed to be very high, therefore, the impact of its resistance is negligible. TFR separates the load resistance R from the resonant circuit. The transformer's leakage and main inductances are parts of the resonant inductance. The output circuit, consisting of TFR, rectifier and capacitor at C_{F}, is in series with the capacitor C_{D}. The rectifier contains fast recovery diodes $D_{1} \div D_{4}$ of junction capacitances $C_{\mathrm{OD} 1} \div C_{\mathrm{OD} 4}=C_{\mathrm{OD}}$. Capacitor at C_{F} is a lowpass filter limiting ripples of the converter's output voltage.

3. CONTROL ALGORITHM OF THE MULTIRESONANT ZVS BRIDGE CONVERTER

The converter in Figure 1 is controlled using the control system based on the method of frequency control at the constant time of transistor turn-off $t_{\text {off }}$ with a phase shift. Within the full range of pulse width variation, the area of ZVS mode in the converter is limited. In this area, transistors begin to conduct when diodes, as integral parts of transistors, stop conducting. Transistors are turned off at approximately zero value of drain-source transistor voltage.

Fig.2. Control signals algorithm of the ZVS bridge MRC shown in Figure 1

Figure 2 shows control signals $u_{\mathrm{GS} 1} \div u_{\mathrm{GS} 4}$, supplied to $T_{1} \div T_{4}$ of the converter (Fig. 1). The control signals are divided in two groups:

- the first group, including $u_{\mathrm{GS} 1}, u_{\mathrm{GS} 3}$, controls the upper bridge transistors: T_{1}, T_{3},
- the second group, including $u_{\mathrm{GS} 2}, u_{\mathrm{GS} 4}$, controls the lower bridge transistors: T_{2}, T_{4}.
$u_{\mathrm{GS} 1}, \mathrm{u}_{\mathrm{GS} 3}$ are distributed centrally in the middle of the converter's operation period $\Delta t=T / 2 . T_{3}$ is turned on with a delay time Δt_{S} in relation to the initial moment $t=t_{0}$ of $T . T_{3}$ is turned off Δt_{S} prior to $t=T / 2$. Turn-on and turn-off of T_{1} are in the analogous manner in the second half of the converter's operation period. The delay time Δt_{S} is expressed:

$$
\begin{equation*}
\Delta t_{s}=\frac{\beta \cdot T}{2} \text { for } \beta \in(0 \div 0,5) \tag{1}
\end{equation*}
$$

where: T - period of the converter's operation; $T=1 / f$, Δt_{S} - delay time of the one group of transistors, β - modulation factor of delay time Δt_{S}.

The control signals $u_{\mathrm{GS} 2}$ and $u_{\mathrm{GS} 4}$ are turned on at the same instants as the corresponding $u_{\mathrm{GS} 3}$ and $u_{\mathrm{GS} 1}$ of the first group, with a time delay Δt_{s}. T_{2}, T_{4} are turned off with a delay Δt_{1} in relation to the time of turn off of T_{3}, T_{1}. The delay Δt_{1} is expressed:

$$
\begin{equation*}
\Delta t_{1}=(1-\gamma) \cdot \Delta t_{s} \text { for } \gamma \in\langle 0 ; 1\rangle \tag{2}
\end{equation*}
$$

where: Δt_{1} - delay of second group transistor turn-off in relation to the time of first group transistor turn-off, $\gamma-$ delay factor of control signals of second group transistors.

At $\gamma=1$, transistors in the same leg (e.g.: T_{1}, T_{4}) are turned off at the same moment. At $\gamma=0$, transistors T_{2}, T_{4} are turned off at: $t=T / 2$ and $t=T$, respectively.

Transistors are characterised by delay times of: turnoff $t_{\text {off }}$ and turn-on t_{on}, where $t_{\mathrm{off}}>t_{\mathrm{on}}$. To avoid shortcircuits in bridge legs $\left(T_{1}, T_{2}\right),\left(T_{3}, T_{4}\right)$ the criterion of minimum delay of control signals must be fulfilled, as expressed in:

$$
\begin{equation*}
\beta>\frac{2 \cdot\left(t_{o f f}-t_{o n}\right)}{(1+\gamma) \cdot T} \tag{3}
\end{equation*}
$$

4. OPERATION OF THE CIRCUIT

In respect of topology and control algorithm, a bridge converter is divided in two symmetrical circuits including the transistors T_{1}, T_{4} and T_{3}, T_{2}. Due to the symmetry, operation of only one leg will be discussed, containing T_{3}, T_{2}, for which the control signals are shown in Fig. 2, at $\gamma=0.5$. Values of β and γ are assumed, for which the ZVS criterion is met. Converter current and voltage waveforms, obtained in simulation testing, are presented in Figure 3. The resonant circuits for individual time intervals are shown in Figure 4.

Resonant circuit consists of C_{D}, L and $T F R$. Application of a transformer in series with a resonant circuit, causes junction capacitances of diodes $D_{1} \div D_{4}$,
inductances of the secondary circuit and load resistance R to become elements of the resonant circuit as well. The complex configuration of the connections among these elements poses significant difficulty for theoretical calculation of the resonant circuit frequency. The notation for the resonant frequencies during a full cycle of the converter operation are following:

- f_{01} - resonant frequency of the circuit whose topology is shown in Fig. 4a,
- f_{02} - resonant frequency of the circuit whose topology is shown in Fig. 4c,
- f_{03} - resonant frequency of the circuit whose topology is shown in Fig. 4d.

Resonant frequency f_{0} of the circuit including L, C_{D} is expressed:

$$
\begin{equation*}
f_{0}=\frac{1}{2 \pi \cdot \sqrt{L \cdot C_{D}}} \tag{4}
\end{equation*}
$$

At the instant $t=t_{1}$ (Fig. 3a), the control signals $u_{\text {GS3 }}$, $u_{\mathrm{GS} 2}$ are fed with a delay time Δt_{S} with respect to $t=t_{0}$ of the cycle origin. In the time interval ($t_{1} \leq t \leq t_{2}$), however, T_{3}, T_{2} do not begin to conduct since the direction of the resonant current i_{L} enforces current conductance by $D_{\mathrm{S} 3}, D_{\mathrm{S} 2}$. In the time interval ($t_{0} \leq t \leq$ $\left.t_{2}\right), i_{\mathrm{L}}$ of the frequency f_{01} occurs in the circuit: L, C_{D}, $T F R, D_{\mathrm{S} 3}, E, D_{\mathrm{S} 2}$ (Fig. 4a). At the instant $t=t_{2}$, the value of i_{L} is zero, changing the direction of conductance.

In the time interval ($t_{2} \leq t \leq t_{4}$) (Fig. 3a,b), T_{3}, T_{2} conduct i_{L} of f_{01} in the circuit: $R_{\mathrm{T} 2}, L, C_{\mathrm{D}}, T F R, R_{\mathrm{T} 3}, E$ (Fig. 4b). At the instant $t=t_{3}, u_{\mathrm{GS} 3}$ of T_{3} is turned off. Due to the delay in turn-off of T_{3}, related to $t_{\text {off }}$, the process of commutation of $i_{\mathrm{S} 3}$ with the currents: $i_{\mathrm{CS} 3}$, $i_{\mathrm{CS} 4}$ begins at the moment $t=t_{4}$ (Fig. 3b).

In the time interval ($t_{4} \leq t \leq t_{6}$) (Fig. 3b), $C_{\mathrm{S} 3}$ overloads in the circuit: $C_{\mathrm{S} 3}, E, R_{\mathrm{T} 2}, L, C_{\mathrm{D}}, T F R$ (Fig. 4c) The current of $C_{\mathrm{S} 3}$ commutes with $i_{\mathrm{S} 3}$ of T_{3}, at the growing $R_{\mathrm{T} 3}$. At the same time, the energy stored in L causes $C_{\mathrm{S} 4}$ to discharge in the circuit: $L, C_{\mathrm{D}}, T F R, C_{\mathrm{S} 4}$, $R_{\mathrm{T} 2}$. The output capacitance $C_{\mathrm{OS} 4}$, in parallel with $C_{\mathrm{S} 4}$, also discharges, as proven by the negative value of i_{54} in the time interval ($t_{4} \leq t \leq t_{6}$). The resonant frequency f_{02} of $C_{\mathrm{S} 3}, C_{\mathrm{S} 4}$ discharge is greater than f_{0} due to the series connection of $C_{\mathrm{S} 3}, C_{\mathrm{S} 4}$ with C_{D}. At the instant $t=t_{5}$, the control signal $u_{\mathrm{GS} 2}$ is turned off. Owing to the delay of $t_{\text {off }}$, the transistor T_{2} conducts current until $t=t_{6}$. At the instant $t=t_{6}, i_{\mathrm{S} 2}$ of T_{2} begins to commute with $i_{\mathrm{CS} 2}$ and $i_{\mathrm{CS} 1}$. At the same time, the process of discharging $C_{\mathrm{S} 1}$ and $C_{\mathrm{S} 2}$ begins.

Fig.3. Current and voltage waveforms in the ZVS bridge MRC shown in Fig. 1, a) during a half of the operation cycle $\Delta t=T / 2 \mathrm{~b}$) at switching between legs of T_{3}, T_{2} and T_{4}, T_{1}
In the time interval ($t_{6} \leq t \leq t_{7}$) (Fig. 3b), the energy stored in L enables discharge of all capacitors in parallel with transistors at f_{03} (Fig.4d). $C_{\mathrm{S} 2}$ discharges in the circuits: $L, C_{\mathrm{D}}, T F R, C_{\mathrm{S} 4} \| C_{\mathrm{OS} 4}, C_{\mathrm{S} 2}$, and $L, C_{\mathrm{D}}, T F R$, $C_{\mathrm{S} 3} \| C_{\mathrm{OS} 3}, E, C_{\mathrm{S} 2}$. In the course of this discharge, $i_{\mathrm{CS} 2}$ commutes with $i_{\mathrm{S} 2}$ of T_{2}, at the growing $R_{\mathrm{T} 2}$. In this time
interval, loading of $C_{\mathrm{S} 3}$ with $i_{\mathrm{CS} 3}$, and of the output capacitance $C_{\mathrm{OS} 3}$ with $i_{\mathrm{S} 3}$, come to the end. $C_{\mathrm{S} 1}$ discharges in the circuits: $L, C_{\mathrm{D}}, T F R, C_{\mathrm{S} 3} \| C_{\mathrm{OS} 3}$, $C_{\mathrm{S} 1} \| C_{\mathrm{OS} 1}$, and $L, C_{\mathrm{D}}, T F R, C_{\mathrm{S} 4}\left\|C_{\mathrm{OS} 4}, E, C_{\mathrm{S} 1}\right\| C_{\mathrm{OS} 1}$. The output capacitance $C_{\mathrm{OS} 1}$, which also discharges with $\mathrm{i}_{\mathrm{S} 1}$, is in parallel with $C_{\mathrm{S} 1}$. At the instant $t=t_{7}$, voltages: $u_{\mathrm{CS} 4}=-u_{\mathrm{DS}}$ and $u_{\mathrm{CS} 3}=E+u_{\mathrm{DS}}$. The process of commutation of $i_{\mathrm{CS} 4}, i_{\mathrm{S} 4}, i_{\mathrm{CS} 3}$ by $D_{\mathrm{S} 4}$ begins, and charging of: $C_{\mathrm{S} 4}\left\|C_{\mathrm{OS} 4}, C_{\mathrm{S} 3}\right\| C_{\mathrm{OS} 3}$ ends.

In the time interval ($t_{7} \leq t \leq t_{9}$) (Fig. 3b), $C_{\mathrm{S}_{2}} \| C_{\mathrm{OS} 2}$, $C_{\mathrm{S} 1} \| C_{\mathrm{OS} 1}$ continue to discharge at the frequency f_{02} owing to the energy stored in L in the circuits: L, $C_{\mathrm{S} 2} \| C_{\mathrm{OS} 2}, D_{\mathrm{S} 4}, T F R, C_{\mathrm{D}}$, and $L, C_{\mathrm{S} 1} \| C_{\mathrm{OS} 1}, E, D_{\mathrm{S} 4}, T F R$, C_{D} (Fig. 4e). At the instant $t=t_{9}$, voltages: $u_{\mathrm{CS} 1}=-u_{\mathrm{DS}}$ and $u_{\mathrm{CS} 2}=E+u_{\mathrm{DS}}$, and values of $i_{\mathrm{CS} 2}$ and $i_{\mathrm{S} 2}$ are zero. At the instant $t=t_{9}$, commutation of $i_{\mathrm{CS} 1}, i_{\mathrm{CS} 2}, i_{\mathrm{S} 2}$, by $i_{\mathrm{S} 1}$ of $D_{\mathrm{S} 1}$ begins.
a)

b)

c)

d)

e)

eso
$\left.t_{2}\right)$, b) for $\left(t_{2} \leq t \leq t_{4}\right)$, $\left.c\right)$ for $\left(t_{4} \leq t \leq t_{6}\right)$, d) for $\left(t_{6} \leq t \leq\right.$ $\left.t_{7}\right)$, e) for $\left.\left(t_{7} \leq t \leq t_{9}\right), f\right)\left(t_{9} \leq t \leq t_{10}\right)$

In the time interval ($t_{9} \leq t \leq t_{10}$), the energy stored in L maintains conductance of the resonant current i_{L} at f_{01} in the circuit: $L, C_{\mathrm{D}}, T F R, D_{\mathrm{S} 4}, E, D_{\mathrm{S} 1}$. At the instant $t=t_{10}$, the control signals $u_{\mathrm{GS} 1}, u_{\mathrm{GS} 4}$ initiate the second half of the converter's operation. Electromagnetic phenomena in this second half are analogous with those in the first half of the operation.

The analysis for $0<\gamma<1$ indicates, that three values of resonant frequency: f_{01}, f_{02}, f_{03} can occur as configuration of the resonant circuit changes. At $\gamma=1$, transistors of the same leg, e.g. T_{2}, T_{3}, turn off at the same moment. The resonant circuit operates at only two frequencies: f_{01} and f_{03}, then. If values of γ are small (at $\gamma=0$), the current of $C_{\mathrm{S} 2}$ may reach zero before $C_{\mathrm{S} 3}$ starts conducting. In the event, the resonant circuit operates at two frequencies: f_{01} and f_{02}.

ZVS MRC is characterized by conversion ratio M (output voltage in relative units), which is expressed:

$$
\begin{equation*}
M=\frac{U_{o}}{E} \tag{5}
\end{equation*}
$$

5. RESULTS OF SIMULATION TESTING OF THE ZVS BRIDGE MRC

Multiresonant ZVS bridge was subject to simulation testing with Simplorer programme. The model of simulation circuit shown in Figure 5 consists of MOSFET IRFP460 transistor (output capacitance $C_{\mathrm{OS}}=870 \mathrm{pF}$), HFA25TB60 fast recovery diode (junction capacitance $C_{\mathrm{OD}}=100 \mathrm{pF}$) made by International Rectifier, and SPIRO TFR1P2W2 transformer (leakage inductance $L_{\mathrm{S}}=0,58 \mu \mathrm{H}$, main inductance $L_{\mathrm{M}}=3,34 \mu \mathrm{H}$). Beside the transformer, the resonant circuit comprises: $L=3 \mu \mathrm{H}, \quad C_{\mathrm{S} 1}=C_{\mathrm{S} 2}=C_{\mathrm{S} 3}=C_{\mathrm{S} 4}=7 \mathrm{nF}, \quad C_{\mathrm{D}}=23 \mathrm{nF}, \quad C_{\mathrm{F}}=1 \mu \mathrm{~F}$, $R=30 \Omega$ or 60Ω. Resonant frequency $f_{0}=400 \mathrm{kHz}$. Supply voltage $E=20 \mathrm{~V}$ DC.

Fig.5. Simulation model of ZVS bridge MRC
On the basis of simulation testing, it was concluded that at f lower than the resonant frequency f_{0}, ZVS operation does not occur. In the vicinity of $f=f_{0}$, the system's operation meets ZVS criteria at high transistor currents of around 25 A . Due to the range of output power regulation, simulation testing was performed at f $\geq 440 \mathrm{kHz}$.

Based on results of simulation testing, the area of converter's operation were defined as $\beta=\mathrm{f}(f)$, where $R=30 \Omega, \gamma=1, \gamma=0.5, \gamma=0$ (Fig.6a) and $R=60 \Omega, \gamma=1, \gamma=0.5$
$\gamma=0$ (Fig.6b). The area determines the ranges of: f and β for which ZVS criteria are obtained at $\gamma=$ const. β reaches its minimum $\beta_{\text {min }}$ and maximum $\beta_{\max }$ at constant f. At $\mathrm{R}=$ const, $\gamma=$ const, $f=$ const, in the range $\beta_{\min } \leq \beta \leq$ $\beta_{\text {max }}$ selected values of: conversion ratio M, maximum voltage in semiconductor elements $U_{\text {SCmax }}, U_{\text {Dmax }}$, and maximum transistor currents $I_{\text {Smax }}$ vary only slightly. The efficiency η reduces by $1 \div 3 \%$ as β climbs, at $f=$ const. For $\gamma=v a r$, the frequency ranges of ZVS operation, $f_{\min } \leq f \leq f_{\max }$, are variable. The boundary frequency $f_{\text {max }}$ tends to decrease as γ reduces.

Fig.6. ZVS operation area of the bridge converter for a) $R=30 \Omega$, b) $R=60 \Omega$

Fig.7. Current and voltage waveforms in ZVS bridge MRC, $R=60 \Omega, f=500 \mathrm{kHz}, \beta=0.18, \gamma=0.5$

Figure 7 illustrates selected current and voltage waveforms in the state of operation at $f=500 \mathrm{kHz}$, $\beta=0.18$, and $\gamma=0.5$. Transistors are turned on when diodes D_{S} are conducting, at $u_{\mathrm{CS}}=u_{\mathrm{DS}}$. At turn-on and turn-off of the transistors, slight oscillations of transistor currents is $_{\text {o }}$ occur, due to capacitances C_{OS}.

Figure 8 presents selected control characteristics obtained in simulation testing: $M=\mathrm{f}_{1}(f), I_{\text {Smax }}=\mathrm{f}_{2}(f)$, $U_{\mathrm{CSmax}} / E=\mathrm{f}_{3}(f), U_{\mathrm{CDmax}} / E=\mathrm{f}_{4}(f)$ for the f and factors β, γ, at which ZVS operation of the converter is obtained. Growth of γ increases the frequency f range of the circuit's operation at $R=$ const, $\beta=$ const. Increase of R and γ causes growth of $M, U_{\mathrm{Dmax}}, I_{\mathrm{Smax}}$. Maximum voltage across the transistors U_{CSmax} is constant, $U_{\mathrm{CSmax}}=E+u_{\mathrm{DS}}$, which is an advantage of the converter under analysis.

b)

d)

Fig.8. Control characteristics of the ZVS bridge MRC, at $R=30 \Omega, R=60 \Omega, \gamma=1, \gamma=0,5, \gamma=0$ a) conversion ratio M, b) maximum transistor current $I_{S m a x}, c$) maximum diode voltage $\left.U_{D m a x} / E, d\right)$ maximum transistor voltage $U_{C S m a x} / E$

a)

Fig.9. Current and voltage waveforms during transistor switching, at; $\gamma=0.5, \beta=0.18, f=500 \mathrm{kHz}, R=60 \Omega$ a) control signals, b) transistor voltages, c) transistor currents, d) snubber capacitors currents

Figure 9 shows current and voltage waveforms in the converter at $\gamma=0.5$ when T_{3}, T_{2} are turned off and T_{1}, T_{4} are turned on. In the case under discussion, three resonant frequencies: f_{01}, f_{02}, f_{03} occur in the converter.

b)

c)

d)

Fig.10. Current and voltage waveforms during transistor switching; $\gamma=1, \beta=0.18, f=500 \mathrm{kHz}, R=60 \Omega$ a) control signals, b) transistor voltages, c) transistor currents, d) snubber capacitors currents

Figure 10 shows current and voltage waveforms in the converter at $\gamma=1$ when T_{3}, T_{2} are turned off and T_{1}, T_{4} are turned on. In transition processes, two resonant frequencies: f_{01}, f_{02}, occur in the converter.

Fig.11. Current and voltage waveforms during transistor switching; $\gamma=0, \beta=0.18, f=475 \mathrm{kHz}, R=60 \Omega$ a) control signals, b) transistor voltages, c) transistor currents, d) snubber capacitors currents

Figure 11 shows current and voltage waveforms in the converter at $\gamma=0$ when T_{3}, T_{2} are turned off and T_{1}, T_{4} are turned on. In transition processes, two resonant frequencies: f_{01}, f_{02}, occur in the converter.

Figure 12 illustrates total power losses $P_{\mathrm{T}}+P_{\mathrm{D}}$ in semiconductor elements of the converter. Simulation testing results indicate that $P_{\mathrm{T}}+P_{\mathrm{D}}$ equal conduction losses in semiconductor components. Switching losses in the transistors and the diodes are negligible. As f grows, transistors and diodes conduction losses reduce owing to lower current values in the circuit.

Fig.12. Total power losses in semiconductor elements of the ZVS bridge MRC

The converter's efficiency η is about 80% and slightly increases as γ and f climb. Growth of R causes η to decline (Fig.13).

Fig.13. Efficiency η of the ZVS bridge MRC
Figure 14 presents the converter's output power $P_{\text {out }}$ as a function of frequency f. Growth of: f and R, and reduction of γ cause a decrease in $P_{\text {out }}$.

Fig.14. Output power $P_{\text {out }}$ of the ZVS bridge MRC

6. CONCLUSION

The simulation testing of the bridge converter leads to the conclusions:

1. The ZVS operation of the converter is realized in the control area defined by: β (modulation factor of delay time Δt_{s}), Δt_{S} (delay time), γ (delay factor of control signals), and operating frequency f. At $\gamma=1$, the control of f is the most extensive. Decrease of γ restricts the range of f control.
2. Presence of the separation transformer in the converter's topology poses great difficulty for calculation of mathematical dependences determining elements of the resonant circuit, which also includes charge elements of the transformer. The author proposes a method of selecting elements on the basis of simulation using computer software, e.g. Simplorer, through the following stages:

- Determination of elements of the resonant circuit L, C_{D},
- Determination of transformer leakage and main inductances,
- Choice of R of the transformer's load without a bridge rectifier in order to obtain the desired output power,
- Choice of the output filter C_{F},
- The element values should be verified with simulation waveforms to confirm ZVS operation of the converter.

3. The control algorithm should ensure:

- Safe operation of the converter where control signals are separated from one another (including $\left.t_{\mathrm{on}}, t_{\mathrm{off}}\right)$ so that transistors do not short-circuit,
- ZVS converter's operation,
- Obtaining of maximum converter efficiencies.

4. The output power of the system is defined by mean current of the transistor. Transistor voltage, approximately equal to the supply voltage, is not a criterion of its selection. Thus, the output power is enlarged as the value of supply voltage increases.
5. Maximum converter efficiencies obtained on the basis of simulation are about 80%. Compared to converters including only one transistor, efficiency of the circuit under analysis is lower by about 10%, which constitutes its disadvantage. The greater losses across the converter result from presence of greater numbers of semiconductor elements. The
results provide evidence against using bridge converters in low-power applications.
6. A serious drawback of the converter including galvanic separation is involvement of elements on the transformer's secondary side in the series resonant circuit. This causes:

- Variation of resonant frequency at different values of these elements,
- Reduced quality factor of the resonant circuit.

In consequence, there is a reduction of the output power and ZVS operation area of the circuit.

REFERENCES

[1] EL-BACHTIRI R., MATAGNE E., LABRIQUE F.: Commutation processes in a multiresonant ZVS bridge inverter regulated by phase shifting the control of the two legs, Electrotechnical Conference, MELECON '96, (1996), vol.3, 1275-1278
[2] KÁCSOR G., ŠPÁNIK P., DUDRÍK J., LUFT M., SZYCHTA E.: Principles of operation of threelevel phase shift controlled converter, KTU Journal of Electronics and Electrical Engineering, T170 Electronics, 2008. Nr 2(82), Kaunas Lithuania, pp. 69-74 (ISSN 1392-1215)
[3] SZYCHTA E.: Multirezonansowe przeksztattniki ZVS napięcia statego na napięcie state (Multiresonant DC/DC ZVS converters), Oficyna Wydawnicza Uniwersytetu Zielonogórskiego, Monograph, Vol. 6, (2006), (ISBN 83-7481-040-8)
[4] TABISZ W.A., LEE F.C.: DC analysis and design of zero-voltage-switched multi-resonant converters, Power Electronics Specialists Conference, PESC" 89 Record., 20th Annual IEEE, (1989), vol.1, 243-251
[5] TABISZ W.A., LEE F.C.Y.: Zero-voltageswitching multiresonant technique-a novel approach to improve performance of highfrequency quasi-resonant converters, Power Electronics, IEEE Transactions, (1989), vol.4, 450-458
[6] LUFT, M., SZYCHTA, E.: Математическая модель мультирезонансного инвертора ZVS $D C / D C$, повышающего напряжение, Вестник МИИТ-а, № 17, сс.74-86, Москва 2007, Россия, (ISSN 0208-3205)

