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Abstract. The uncertainty of the non-conventional
sources especially solar energy caused due to spatio-
temporal factors like temperature, pressure,
relative humidity etc. is continuously disrupting
the productivity and reliability of an integrated
power system which motivates the researcher or
energy industry for strategic forecasting solutions to
enhance the proper scheduling and control of solar
generation power plants. Several studies have been
carried out; but still the objective of achieving accurate
forecasting dependent on the spatio- temporal features
is not achieved. To address this critical forecasting
issue in this research article a hyper parametric
tuning of the Extreme Gradient Boosting (XGB)
machine learning model has been carried out using
two met heuristic algorithms: Moth Flame Optimiza-
tion (MFO) and Grey Wolf Optimization (GWO).
The dataset comprises five years of metrological at-
tributes collected from the National Renewable Energy
Laboratory (NREL) for analysis. The validation
of the proposed model has been done based on the five
statistical errors: Max Error (ME), Mean Absolute
Error (MAE), Coefficient of Determination (R2),
Mean Square Error (MSE) and Root Mean Square
Error (RMSE). The regressive assessment of all three
models has confirmed that the XGB-MFO model out-
performed the others as showing the highest R2 score
of 0.9337, 0.9011, 0.8744 and lowest RMSE values
of 76.29 W·m−2, 41.90W·m−2 and 95.94W·m−2 for
Global Horizontal Irradiance (GHI), Diffuse Horizon-
tal Irradiance (DHI) and Direct Normal Irradiance
(DNI) respectively which ensures the proposed model

implementation for the prediction and production
of solar power.
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1. Introduction

1.1. Motivation

The consistent availability of energy supply across
the nation is essential to a nation’s economic pros-
perity [1]. With the rapid development of technology
and urbanization [2], the need for a stable power sup-
ply is also increasing proportionally, pushing the power
industry to complete shift on the Renewable Energy
Sources (RES) in the long run-in order to fulfil the ris-
ing power consumption and reduce the greenhouse
effect. As per recent International Energy Agency
(IEA) analysis, the amount of energy produced via
renewable sources surpassed 8,000 TWh in 2021,
a record 500 TWh more than in 2020. At the same time
hydropower decreased by 15 TWh, and wind and
solar Photovoltaic (PV) output climbed by 270 TWh
and 170 TWh, respectively.
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The growth in worldwide CO2 emissions in 2021
would have been 220 Mt greater without increased out-
put from nuclear and renewable energy sources [13].
The total installed and pipelined solar capacity of
India has been shown in Fig. 1 which depicts the pro-
gressive behaviour of the solar energy system [14].
Though the PV system is paving the path for clean
energy, its intermittent nature makes its performance
highly reliant on the weather and environment [15]
and [16]. For the steady and secure integration of green
energy sources into the present energy network accu-
rate forecasting techniques have become essential [17]
and [18]. Numerical Weather Prediction (NWP), sta-
tistical and Machine Learning (ML), and image-based
methods are the three primary categories of solar fore-
casting techniques [19]. The NWP studies the fore-
casts of irradiance and weather while image-based
approaches track and advection clouds using sky cam-
eras, satellite photos, or shadow cameras to anticipate
solar irradiance. Statistical and machine learning mod-
els ‘train’ themselves using past data and makes fore-
casts based on new input variable values. Statistical
and ML methods can be used to a variety of time
spans, but they are mostly used in hourly forecasting
studies. Authors in [20] give an overview of trends
in solar forecasting techniques.
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Figure: Total installed and pipeline capacity as on 31 March 2022, MW

Source: BRIDGE TO INDIA research, MNRE

Executive summary
 
Q1 2022 was another bumper quarter as India added 4,418 MW solar 
power capacity, the second highest ever. Capacity addition was split 
85:13:2 between utility scale, rooftop solar and off-grid solar at 3,759 MW, 
575 MW and 84 MW respectively. Total installed capacity reached 56,812 
MW by 31 March 2022. Total commissioned utility scale, rooftop solar and 
off- grid solar capacity is estimated at 45,692 MW, 9,563 MW and 1,557 
MW respectively.

Total project pipeline – projects allocated to project developers and at 
various stages of development – stands at 53,119 MW.		
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Fig. 1: Total installed and pipelined capacity by 31st December
2021, in (MW) [2].

Several researchers have proposed various ML mod-
els with default hyperparametric values which pro-
vide different prediction outcomes. In the present sce-
nario, the hybridisation of metaheuristic algorithms
with the ML model is being carried out to improve
the accuracy for the various range of hyperparame-
ters [21] and [22]. Although XGB has a considerably
good performing model, the parametric search is essen-
tial for the development of the basic structure of any
ML model which can be performed by incorporating
the optimization methods. To address this hyperpara-
metric search and develop an effective ML model for
accurate solar irradiance forecasting, in this research
article the hyperparametric tuning of the basic model
of the XGB regressor has been performed by hybridiza-
tion of the two optimization algorithms namely moth-

flame optimization and grey wolf optimization method
based on the 5 years dataset taken from NREL.

1.2. Status Quo of Solar Forecasting
Using AI

Over the last few decades, many attempts have been
made to forecast Solar Radiation using different sorts
of empirical models, such as cloudiness-based mod-
els [23], sunshine-based models [24], and hybrid models
that estimate global solar radiation by incorporating
other meteorological factors. It has been predicted us-
ing ANN [25] and SVM [26] and the recent studies have
been tabulated in Tab. 1.

1.3. Contributions to the Paper

The main objectives of our study are:

1. To create and analyze the XGB model for fore-
casting solar radiation utilizing web-based data,
including.

2. To optimize the hyper parameters of the XGB
model using MFO and GWO algorithms.

3. To compare all the three machine learning models
accuracies and to find the best model among them
for solar forecasting.

The remaining section of the research article has
been structured as follows: Sec. 2. illustrates
the dataset used and proposed methodology applied
while the description of the algorithms incorporated
has been briefly explained in Sec. 3. Section 4.
describes the performance metrics used for the determi-
nation of the best model and Sec. 5. briefly explains
the overall result analysis of all the ML models. Finally,
the article has been concluded with the future scope
in Sec. 6.

2. Methodology

2.1. Site Selection

As per the City Mayors Foundation, Jamshedpur, with
coordinates (22◦47’33 “N, 86◦11’03 “E) is the 84th
fastest-rising city globally. The Indian Meteorological
Department Centre in Ranchi reports that Jamshedpur
was the state’s hottest location in 2022, with a scorch-
ing temperature of up to 43 ◦C [27]. Temperatures
range from a minimum of 5 ◦C in winter to a maximum
of about 43 ◦C in summer, and the average tempera-
ture of Jamshedpur is 25.7 ◦C [28].
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Tab. 1: Literature survey of latest solar forecasted methods.

Authors Objective Solution
Jebli et al. [3] ML models with the Pearson coefficient used to predict the real-time

and shot time solar power.
Linear Regression (LR), Sup-
port Vector Regression model
(SVR), Random Forest (RF),
Multilayer Perceptron (MLP)

Kumari et al. [4] An ensemble XGB-DNN method proposed for the estimation
of the GHI on an hourly basis

Extreme Gradient Boosting
(XGB), Deep Neural Network
(DNN)

Trizoglou, et al. [5] Authors have applied the XGB and LSTM in association with
the SCADA system of wind turbines for forecasting of faults and re-
duce the operation and maintenance cost.

XGB, Long Short-Term Mem-
ory (LSTM)

Lee et al. [6] An ensemble technique for forecasting the solar radiation for a short
duration used which shows more reliable outputs as compared to indi-
vidual ML models.

Ensemble Method Bagged-
Trees, Boosted-Trees, RF,
Support Vector Machines
(SVM), Gaussian Process
Regression (GPR)

Massaoudi et al. [7] A Stacking method used to combine the three ML models (XGB-
LGBM-MLP) to forecast the grid load for short duration.

Stacking (XGB-LGBM-MLP)

Mokbal et al. [8] Extreme Gradient Boosting Cross-Site Scripting (XGBXSS) method
used for detecting the Cross-Site Scripting attacks where XGB has
been applied with the feature selection and a recursive optimization.

XGB, Grid Search

Fan et al. [9] ML models were used to predict the transpiration of daily maize and it
was concluded that the DNN model is more efficient for daily maize T
estimate.

XGB, Artificial Neural Net-
works (ANN), DNN, SVM

Nguyen et al. [10] XGB applied to forecast the punching shear resistance of R/C interior
slabs. The designed XGB model’s prediction accuracy for punching
shear strength was investigated and compared to other machine learn-
ing models and empirical models.

XGB, ANN, RF

Chia et al. [11] XGB with met heuristic models i.e. MFO, Whale Optimization Al-
gorithm (WOA) and Particle Swarm Optimization (PSO) have been
used for evapotranspiration estimation

XGB with PSO, MFO, WOA

Rui Liu et al. [12] GWO has been incorporated with ML models for groundwater poten-
tial prediction.

GWO with RF and SVM

2.2. Data Pre-processing

The meteorological data is in its raw state and must
be pre-processed before it can be used. In the data
pre-processing, there is a combination of the following
four processes. Figure 2 depicts the workflow for our
experiment.

1. Data Cleaning: It involves checking for
repeated, duplicate, and Not Applicable (NA)
entries in the data.

2. Data Normalization: Here, all data variables are
normalized to a common interval, which is often
between 0 and 1. This phase compares the values
of numerous variables.

3. Feature Extraction: Here, only important fea-
tures are picked, as including unnecessary features
increases data size and slow down a forecasting
algorithm’s learning speed and accuracy. It is
done through Exploratory Data Analysis (EDA)
process.

4. Data Splitting: The pre-processed dataset is
divided into test and training sets and sent
to the forecasting phase.

Metrological 
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Fig. 2: Methodology of the proposed work.
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3. Forecasting Algorithm Used

3.1. Extreme Gradient Boosting
(XGB) ML Model

Chen and Guestrin developed the XGB algorithm as
a revolutionary implementation approach for Gradient
Boosting Machines, namely Regression Trees and K
Classification [29]. XGB is designed to avoid over
fitting and optimizing computation resources
at the same time. During the training phase of XGB,
calculations are also performed synchronously and
automatically for all the functions. The model’s final
prediction is calculated as the sum of each model’s
predictions. The pseudo-code description for XGB is
given by Algorithm 3 and the schematic diagram for
the XGB algorithm is shown in Fig. 3.
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Fig. 3: XGB model.

3.2. Moth Flame Optimization
(MFO)

In 2015, author in [30] proposed the MFO
algorithm, which was motivated by the mirroring
behaviour of moths. These moths employ a peculiar
kind of nocturnal triangulation known as transverse
orientation, which allows moths to hover in a straight
line by remembering the stationary perspective
parallel to the moon. Moths float in spiral patterns
in the latency of an unreal source of light that is close
to the moon by focusing upon the source of light.

AM =


AM1

AM2

...
AMa

 . (5)

Moths and flames are two significant components
of the MFO structure. The moths that hover
in a deeply engaged, d-dimensional plane act as search
mediators. In the M matrix, the dwelling is reserved.
The fitness value relevant to each month is subse-
quently stored in array AM . The size of a moth

Algorithm 1 Implementation of XGB.

1: Input: Dataset D, X (Features) and y (Target)
loaded with training labelled data, parameters (es-
timators, learning rate, maximum depth etc.).
Output: System accuracy in terms of performance
metrics.

2: Initialize a base model with:

f0(x) = argmin
γ

m∑
i=1

L (yi, γ) + Ω. (1)

3: while (stopping criterion) do
4: for t = 1, t++ do
5: for i = 1 to m do
6: Compute residual, rit:

rit = −
[
∂L (yi, f (xi))

∂f (xi)

]
f−fi−1

. (2)

7: end for
8: for j = 1 to Jt do
9: Fit the weak tree to rit.

10: Compute revised loss function:

γjt = argmin
γ

∑
xi

L (yi, ft−1 (xi) + γ) . (3)

11: Update model function:

ft(x) = ft−1(x)+

Jm∑
j=1

γjmI (x ∈ Rjm) . (4)

12: end for
13: end for
14: end while
15: Model fitting with training data.
16: Model validation with testing data.

and a flame are the same. Moth and flame both func-
tion as parts of the algorithmic solution. Flame denotes
the moth’s ideal position, whereas the moth denotes
the hunting agent. Moths revolves around the flames
that serve as flag throughout the search process.
As a result, both positions are being updated, decreas-
ing the likelihood that one would be lost. According
to Eq. (6), the moth’s location is updated.

Mj = SF (Mj , Fj) , (6)

where Mj indicates the jth moths, whereas Fj repre-
sents the jth flames and SF is for spiral function which
is expressed in Eq. 7.

SF (Mj , Fj) = Dj
∗ebt∗ cos(2πt) + Fj , (7)

where, b is spiral constant, t is the arbitrary value
(−1,1) and Dj is jth moth and jth flame Euclidean
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distance. Dj is represented as Eq. (8).

Dj = |Fj −Mj | . (8)

In the initial stage, flames and moths remain to be
the exact number, which may reduce the potential
of sophisticated solutions to be diverse due to moths’
conscious choice of n distinct locations in the quest
of room for updating. Eq. (9) is used to update
the flames.

Fno = round

(
F − j∗

F − 1

irmax
O

)
. (9)

3.3. Grey Wolf Optimization (GWO)

GWO, modelled on the natural hunting tactics of grey
wolves is a meta-heuristic optimization technique pro-
posed in 2014 by authors in [31]. Every wolf in GWO
symbolizes a search agent (potential solution). GWO
classifies the wolves into four categories alpha (α), beta
(β), gamma (δ) and omega (ω) by replicating the grey
wolf population’s hierarchy. The wolves in the first
three grades correspond to the current three best solu-
tions. The current three best solutions are represented
by the wolves in the first three categories (α, β, δ).
The (ω) wolves follow the pack’s strongest wolves.

1) Encircling

Grey wolves surround their prey as part of the hunting
process. So, the initial phase of the mathematical mod-
elling of the GWO is to surround the target, which may
be expressed by the following formulas [16] and [17].

D⃗GW =
∣∣∣C⃗ · X⃗p

GW (t)− X⃗GW (t)
∣∣∣ , (10)

X⃗GW (t+ 1) =
∣∣∣X⃗p

GW (t)− A⃗ · D⃗
∣∣∣ , (11)

where, A⃗ and C⃗ are noted as the coefficient vectors
and t is symbolised as the current iterations. X⃗GW

signifies grey wolf position vector and Prey’s posi-
tion vector is indicated by X⃗p

GW whereas, the D⃗GW

is the vector which depends on X⃗p
GW . Computation

for the coefficient vectors A⃗ and C⃗ are as follows:

A⃗ = 2a⃗ · r⃗1 − a⃗, (12)

C⃗ = 2 · r⃗2, (13)

a⃗ = 2− 2

(
itr

itrmax

)
, (14)

where, r⃗1 and r⃗2 are random variables in the interval
[0, 1] and values of a⃗ are linearly decreasing from 2 to 0
throughout the span of iterations. Concisely, r⃗1 and r⃗2
vectors enable wolves to extend to any location. Ac-
cordingly, Eq. (13) and Eq. (14) indicates that the grey

wolf may update their position inside the search space
(space circling prey) at any random point. The same
approach could be employed in a search space with
dimension n, where the grey wolves will circle the best
outcome thus far in hyper-cubes or hyper-spheres.

2) Hunting

The α usually leads the hunt while the β and δ may
occasionally engage in hunting. We postulate that the
alpha (best solution), beta, and delta have superior in-
formation about the probable location of prey to math-
ematically imitate the hunting behaviour of grey
wolves. Therefore, we reserve the first three best
responses. Thus, to compel the other searching agent,
along with omegas and to upgrade their positions in
accordance with the status of the top search agents.
The below mentioned Eq. (15), Eq. (16), Eq. (17)
and Eq. (18) are followed for above stated context:

X⃗GW (t+ 1) =
X⃗1

GW + X⃗2
GW + X⃗3

GW

3
, (15)

X⃗1
GW = X⃗α

GW − A⃗1 ·
(∣∣∣C⃗1 · X⃗α

GW − X⃗GW

∣∣∣) , (16)

X⃗2
GW = X⃗β

GW − A⃗2 ·
(∣∣∣C⃗2 · X⃗β

GW − X⃗GW

∣∣∣) , (17)

X⃗3
GW = X⃗δ

GW − A⃗3 ·
(∣∣∣C⃗3 · X⃗δ

GW − X⃗GW

∣∣∣) . (18)

3) Searching and Attacking Prey

Grey wolves primarily use the (α), (β), and (δ) posi-
tions to guide their search. They disperse from one
another to look for prey and then reassemble to
attack it. We use A⃗ with random values higher than
1 or less than −1 to force the search agent to di-
verge from the prey to mathematically simulate diver-
gence. This encourages exploration and enables a wide
search for the GWO algorithm. As already mentioned,
after the prey stops moving, the grey wolves attack it
to end the hunt. We lower the value of a⃗ to mathemat-
ically simulate approaching the prey. Keeping in mind
the reduction occurring in A⃗ may also decrease by a⃗ .
In other respects, a⃗ decreases from 2 to 0 throughout
the duration of iterations, and A⃗ is a random num-
ber in the range [2a, 2a]. A⃗ search agent’s future
position may be anywhere between its present position
and the prey’s position when random numbers of A⃗ are
in the range [1, 1].

4. Performance Parameters

To quantify the performance and their variation
from the real value for the ML models, we provide
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Algorithm 2 Pseudo code of GWO.

1: Input: Wolf Population (N), A⃗, a⃗, and C⃗.
Output: Optimal solution (R2).

2: Fitness Calculation of search agent (i.e Grey
wolves).
X⃗α

GW best optimal solution (search agent).
X⃗β

GW second best optimal solution (search agent).
X⃗δ

GW third best optimal solution (search agent).
3: while (itr < itrmax) do
4: for i = 1, 2, 3, . . . N do
5: Update current position using Eq. (18).
6: end for
7: Update A⃗, a⃗, and C⃗.
8: Fitness Calculation of search agent.
9: Update X⃗α

GW , X⃗β
GW and X⃗δ

GW .
10: itr = itr + 1.
11: end while
12: return X⃗α

GW .

several common statistical metrics. The difference
between the estimated (or anticipated) and actual
output parameter is known as the deviation some-
times referred to as the errors or residue. For example,
the error for GHI can be expressed as:

δ = GHIobs −GHIpred . (19)

These can be used to assess the degree of diver-
gence and correlation between the predicted and actual
data. Figure 4 depicts the expressions for forecasting
the effectiveness of ML models in our research.
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Fig. 4: Performance Evaluation parameter used in our work.

5. Results and Discussion

The objective of the study is to develop an optimized
system for forecasting solar irradiance using the XGB
model for the selected region, as well as two optimiza-
tion techniques have been incorporated to optimize
the parameters of the XGB to enhance the perfor-
mance of prediction. Numerous research papers have
been published about the study of this kind of model.
Due to the complexity of the time series and the
accumulation of forecasting mistakes, it is still difficult
to determine how to best optimize the XGB model,
using the met heuristic optimization techniques for
the prediction of solar irradiation.

Hence, two hybrid model XGB-MFO and XGB-
GWO have been analysed for the forecasting pur-
pose. Initially the 70 % of dataset i.e., training data
has been used for the training the two hybrid models
and the functions built into the system are evaluated by
comparing the forecasted results to the real outcomes
based on statistical errors. This validates the recom-
mended methodological approach used. On the valida-
tion dataset, which includes 30 % of the dataset, five
evaluation metrics MAE, MSE, RMSE, ME and R2

score is utilised to determine the best hyper para-
metric optimized model. The model with the lowest
error and highest accuracy is finally noted as the best
predictive model.

It’s crucial to keep in mind that the population
size of each hybrid model varies and changing this
parameter’s value will have an immediate impact
on the model’s running duration and ability to iden-
tify the overall best solution. A large population will
greatly lengthen the running time, which will make
it difficult to apply the models to engineering prob-
lems, while a small population would result in unstable
fitness values. Five population sizes - 50, 100, 150, 200
and 500 were used in this study to construct the two
hybrid models.

The whole system has been designed using Python
language where the system has been trained for 3 years
and validated for the next 1 year i.e., 35,078 entries
have been used for model training and 4,922 entries
applied for validating the model to obtain the optimum
result.

5.1. Performance of XGB ML Model

Tab. 2: Selected values for XGB Hyper-parameters.

Sl. No. Description Value
1 Maximum no. of trees 100
2 Maximum depth 5
3 Learning rate 0.001
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Tab. 3: Performance evaluation parameters outcomes for XGB without optimization.

MAE MSE RMSE ME R2 score
(W·m−2) (W·m−2) (W·m−2) (W·m−2) Train Test

GHI 38.144 6449.03 80.30 791.74 0.9720 0.9278
DHI 25.265 2317.48 48.14 363.31 0.9611 0.8751
DNI 50.471 9318.99 96.53 692.92 0.9189 0.8527

Generally subsampling happens once for every tree
in XGB. Increasing the depth of the tree makes
the model more complicated and prone to over fitting.

To prevent over fitting, step size shrinking is
employed in the weight update with the help of learn-
ing rate. We may immediately obtain the new weights
of the features after each boosting step, and the learn-
ing rate, here, lowers the weights of the feature to make
the boosting method more conservative. The parame-
ters selected for the analysis the XGB model without
optimization has been shown in Tab. 2 where hyper
parameters has been fixed.

The evaluation parameters obtained using the
selected hyper parametric values have been tabulated
in Tab. 3 which shows the higher error values for DNI
than GHI and DHI while the R2 score of GHI is approx-
imately 8 % higher as compared to the DHI and DNI
parameter. The efficiency of the model can be im-
proved using the proper parameters of the XGB model.

To optimize the model, the range of various inter-
nal parameters of the XGB has been taken as shown
in Tab. 4 which will be optimized using the two opti-
mization methods i.e., MFO and GWO. The iteration
for both optimization methods has been fixed to 100
to analyse the effect of increasing the population size.
The evaluation parameters for determining the effect
of the MFO and GWO optimization on the XGB
model has been shown in Tab. 5 and Tab. 6, where all
the five parameters for the target variable GHI, DHI
and DNI have been calculated for the various popula-
tion size to check the best population of the nature-
based algorithm with respect to the fixed iteration
count. The best values for each parameter have been
highlighted in bold which shows that the model has
been optimized as the statistical errors have been
reduced and the accuracy of the model has been
considerably improved. The graphical representation
of the accuracy of the XGB-MFO model for various
population sizes has been shown in Fig. 5.

Tab. 4: Selected values for XGB hyper-parameters.

Sl. No. Description Upper Lower
bound bound

1 Maximum no. of trees 100 1000
2 Maximum depth 5 50
3 Learning rate 0.001 0.1

Additional testing of the novel approach will be
necessary for data derived from weather forecasts.

However, the model must employ predicted weather
information to be useful. The model would be
especially helpful for applications on a wider scale
(i.e., county, or regional scale). This is possible due
to the ability to smooth out the quick change in local
meteorological conditions that causes the intra-hourly
fluctuation in solar irradiance. Larger-scale PV out-
put tests in conjunction with anticipated weather data
encourage the proper use of the proposed model.
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Fig. 5: R2 score analysis using XGB-MFO (100 iterations).

5.2. Comparative Analysis

In this section, all three models i.e., XGB, XGB-
MFO and XGB-GWO are compared with the best
parameters to identify the well-suited ML model for
forecasting solar irradiance. The overall best com-
parative performance analysis has been represented
in Tab. 7, which shows that the XGB-GWO has an
accuracy of 0.63 %, 2.88 % 2.48 % and XGB-MFO
has 0.53 %, 2.73 % and 2.40 % accuracy more than
that of the unoptimized XGB model for GHI, DHI
and DNI respectively. The RMSE values have also been
reduced by 4.98 %, 12.94 %, 0.61 % using XGB-GWO
and 4.35 %, 12.31 % and 0.30 % using XGB-MFO pre-
dicted model for the three target parameters which
clearly signifies the contribution the meta-heuristic
algorithms with the ML models. The corresponding
population sizes were 100, 200 and 150 which shows
the importance of the proper selection of population
sizes. The best outcomes in the table have been high-
lighted. Overall, we can state that XGB-GWO out-
performs the other two models for the given datasets
and location. The comparative analysis has also been
represented in Fig. 6.
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Tab. 5: Performance evaluation parameters outcomes for XGB-MFO.

Iterations Population MAE MSE RMSE ME R2 score
size (W·m−2) (W·m−2) (W·m−2) (W·m−2) Train Test

GHI 100

50 33.8953 5947.45 77.0114 726.15 0.9611 0.9314
100 33.4033 5899.41 76.8076 738.05 0.9678 0.9328
150 32.8728 5939.38 77.0674 748.90 0.9744 0.9323
200 33.2459 5983.11 77.3505 743.24 0.9584 0.9318
500 33.2469 6023.76 77.6128 750.95 0.9514 0.9314

DHI 100

50 20.1519 1841.72 42.9153 361.75 0.9459 0.8963
100 20.0928 1834.19 42.8274 364.53 0.9384 0.8968
150 20.8935 1859.86 43.1260 361.86 0.9368 0.8953
200 20.7235 1781.66 42.2097 349.77 0.9637 0.8997
500 20.1217 1838.93 42.8827 365.12 0.9432 0.8965

DNI 100

50 48.7757 9258.24 96.2197 683.43 0.9602 0.8736
100 49.0448 9276.45 96.3143 694.41 0.9401 0.8735
150 48.9292 9262.21 96.2404 693.43 0.9498 0.8737
200 49.3427 9377.84 96.8392 699.48 0.9340 0.8721
500 49.6549 9446.23 97.1917 697.78 0.9319 0.8712

Tab. 6: Performance evaluation parameters outcomes for XGB-GWO.

Iterations Population MAE MSE RMSE ME R2 score
size (W·m−2) (W·m−2) (W·m−2) (W·m−2) Train Test

GHI 100

50 33.4417 5823.47 76.3117 705.48 0.9822 0.9336
100 33.0237 5821.60 76.2994 685.70 0.9884 0.9337
150 33.70866 5906.59 76.8543 739.83 0.96533 0.9327
200 32.7415 5944.24 77.0988 747.75 0.9613 0.9323
500 32.97887 5978.46 77.3205 747.09 0.9604 0.9319

DHI 100

50 19.8547 1805.28 42.4886 361.32 0.9651 0.8984
100 19.9677 1829.09 42.7679 363.31 0.9481 0.8979
150 20.74984 1843.34 42.9342 356.59 0.9441 0.8962
200 20.46198 1756.35 41.9088 352.06 0.9788 0.9011
500 20.1074 1785.00 42.2493 357.94 0.9613 0.8995

DNI 100

50 48.5425 9058.75 95.1774 673.65 0.9674 0.8739
100 48.9012 9241.05 96.1304 687.33 0.9479 0.8740
150 48.8938 9205.37 95.9446 671.52 0.9612 0.8744
200 48.9643 9244.79 96.1498 690.55 0.9434 0.8739
500 49.0030 9392.69 96.9159 692.02 0.9308 0.8719

Tab. 7: XGB models comparative analysis.

ML MAE MSE RMSE ME R2 score
models (W·m−2) (W·m−2) (W·m−2) (W·m−2) Train Test

GHI
XGB 38.1442 6449.03 80.3058 791.74 0.9720 0.9278

XGB-MFO 33.4033 5899.41 76.8076 738.05 0.9678 0.9328
XGB-GWO 33.0237 5821.60 76.2994 685.70 0.9884 0.9337

DHI
XGB 25.2654 2317.48 48.1402 363.31 0.9611 0.8751

XGB-MFO 20.7235 1781.66 42.2097 349.77 0.9637 0.8997
XGB-GWO 20.46198 1756.35 41.9088 352.06 0.9788 0.9011

DNI
XGB 50.4714 9318.99 96.5349 692.92 0.9189 0.8527

XGB-MFO 48.9292 9262.21 96.2404 693.43 0.9498 0.8737
XGB-GWO 48.8938 9205.37 95.9446 671.52 0.9612 0.8744

XGB-GWO (train)
XGB-MFO (train)
XGB (train)
XGB-GWO (test)
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Fig. 6: Comparative analysis of all models based on R2 score.

6. Conclusion

The prediction of accurate solar irradiance is very use-
ful for the forecasting of solar energy. The main goal
of these techniques is to modify the XGB’s combination
of hyper parameters using most prominent optimiza-
tion algorithms, such as GWO, and MFO, to increase
the prediction accuracy which can be useful for engi-
neering practise. As a result, in this study, the XGB-
MFO and XGB-GWO hybrid models have been cre-
ated. Five statistical parameters were chosen to assess
the consistency between the actual value and the fore-
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casted value to examine the performance of each hybrid
model. An unoptimized XGB model was also devel-
oped, verified, and trained using the NREL historical
datasets to evaluate the performance of the two opti-
mization techniques. The experimental findings show
that both in the training stage and the test stage,
the two XGB-based hybrid models performed much
better than the unoptimized XGB model.

The two hybrid models’ prediction accuracy
exceeded 0.9 during testing, particularly the XGB-
GWO model (for GHI, R2 score: 0.9337; MSE:
5821.60; RMSE: 76.2994; ME: 685.70; MAE: 33.0237),
whose prediction accuracy reached 0.93 which
ensures the proposed model applicability for the
further forecasting purpose.
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