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Abstract. Electric Vehicles (EVs) are gaining
popularity due to their low maintenance, better
performance and zero carbon emission. To expand
their adoption, Electric Vehicles Charging Stations
(EVCS) must be integrated with the distribution system
constructively to charge EVs. This study suggests an
RAO-3 based on the fuzzy classification technique for
the optimum EVCS, Distributed Generations (DGs),
and Shunt Capacitors (SCs) sizing and positioning
for 69 bus radial distribution systems with network
reconfiguration. The proposed method has the following
advantages (i) lower active power loss, (ii) enhanced
voltage profiles, (iii) improved power factor at the
substation, and (iv) optimum distribution of EVs at
charging stations. Characteristic curves of Li-Ion
battery charging are utilised for load flow analysis
to build EV battery charging loads models. The
proposed simultaneous fuzzy multi-objective study with
a reconfigured network can handle the optimal number
of EVs in EVCS and maintain the substation power
factor at the required level, yielding an impressive
distribution system performance. For example, the
minimum active power loss of 18.0884 kW is achieved
with a minimum voltage enhanced to 0.9905 p.u.,
maintaining the bus voltages at their permissible
limit. The numerical results indicate that using the
RAO-3 algorithm, the simultaneous technique with
system reconfiguration is computationally efficient
and scalable, outperforming the two-stage methodology
and the method without system reconfiguration.
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1. Introduction

The rapid adoption of EVs in transportation in
place of conventional commercial vehicles can help to
minimise air pollution and fossil fuel dependency. The
EVCS must be integrated with distribution networks to
reduce losses and increase voltage stability [1]. In order
to minimise this problem, this paper includes network
reconfiguration, DGs, and SCs placement.

Electrical harmonics, poor power factor, voltage
instability, and imbalance are all randomly caused
by the integration of EVCS into the existing grid
infrastructure [2] and [3]. Many elements [4] influence
the distribution system, including charging techniques,
vehicle density at charging stations, etc. Experimental
studies [5] and [6] are used to examine and validate the
impact of EVCS on the distribution network with the
objective function of initial investment cost and power
quality factors. The influence of EVCS on a distributed
system is investigated [7], [8] and [9] in the evolution of
the power grid moving towards sustainable energy, with
EVs affecting and supporting future energy growth.

The impact of EVCS on the distribution system is
mitigated by network reconfiguration. The distribution
network’s power loss will not be minimal with variable
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load demand and fixed network topology. As a result,
timely network reconfiguration is essential. In order to
relieve overcrowded feeders and reduce real power loss
in the distribution system, network reconfiguration is
generally favoured [10] and [11].

On the other hand, reconfiguring the network may
not meet the desired power loss reduction and power
quality limitations. As a result, network reconfigu-
ration is used in conjunction with Shunt Capacitors
(SCs) or Distributed Generators (DGs) to improve
voltage profile and minimise power losses and energy
savings [12], [13], [14], [15] and [16]. The author of [17]
developed a two-stage process for determining the best
location for EVCS, DGs, and SCs. DGs and SCs are
optimally situated in the initial stage. EVs are installed
later in the second stage. This author does not exam-
ine the substation power factor after the installation of
EVCS.

Various optimisation problems can be solved
using the metaheuristic technique. In [18] used a PSO
method to allocate EVs in the given system. In the lit-
erature [19] and [20] JAYA and Grey Wolf Optimizer
algorithms are used to integrate EVCS in the distribu-
tion systems. In this paper a robust optimisation tech-
nique known as Rao algorithms [21] is used to tackle
the proposed problem. The effect of EV battery charg-
ing rates on the distribution system’s performance are
investigated [22] and [23].

Most of the literature review discusses appropriate
EVCS allocation in distribution systems without con-
sidering substation power factor. In this study, the
electrical distribution network is reconfigured, and op-
timal simultaneous EVCS, DGs, and SCs are placed
with a fuzzy multi-objective approach based on the
RAO-3 algorithm for better distribution network per-
formance, such as reducing active power loss, enhanc-
ing voltage profile, and keeping Substation (SN) pf
at the optimal value. The performance of the RAO-
3 algorithm is compared with conventional algorithms
like Particle Swarm Optimisation (PSO), Artificial Bee
Colony (ABC), and Grey Wolf Optimiser (GWO).

This work’s main points can be summed up as
follows:

1. The distribution network’s EVCS, DGs, and SCs
are all sized and placed optimally simultaneously
with the optimal quantity of EVs.

2. In the distribution network reconfiguration,
simultaneous optimal sizing and position of EVCS,
DGs, and SCs with the optimal quantity of EVs.

3. In order to investigate the effect of EVCS on
the distribution system’s performance, EV battery
charging loads models are developed.

The rest of the paper is organised in the following man-
ner: Sec. 2. discusses the fuzzy multi-objective
formulation of the problem and its constraints.
Section 3. discusses the fuzzy multi-objective RAO
technique. Section 4. includes the results and
analyses, whereas Sec. 5. has the conclusions.

2. Problem Formulation

The fuzzy-based multi-objective functions necessary
for optimal deployment of EVCS, DGs, and SCs in
order to improve distribution system performance are
established in this section.

2.1. Substation Power Factor
Membership Function:

The DGs primarily run at 0.95 lagging pf ; hence, the
goal is to improve the Substation (SN) pf to 0.95 lag-
ging. The following equation can be used to compute
the substation power factor.

pf = cos

(
SSN
kW

SSN
kV A

)
, (1)

SSN
kW =

nbs∑
m=1

P load
m + Pl −

ndg∑
n=1

PDG
n , (2)

SSN
kV Ar =

nbs∑
m=1

Qload
m +Ql −

nsc∑
o=1

QSC
o −

ndg∑
n=1

PDG
n × ∅dg,

(3)

SSN
kV A =

√
SSN
kW

2
+ SSN

kV Ar

2
. (4)

SSN
kW and SSN

kV A are the active and reactive power
drawn from the substation. PDG

n is the capacity of
the nth DG. The total no-of DGs installations is ndg.
∅dg is the DGs units’ power factor angle. The mth

node’s active power and reactive power loads are P load
m

and Qload
m .

nbs is the total number of buses in the distribu-
tion network. Pl is the real power loss and Ql is the
reactive power loss of the distribution system. The
capacity rating of shunt reactive is QSC

o . The total
number of SCs installations is nsc. The fuzzy mem-
bership function for the SN Power-Factor (pf) [17] is
depicted in Fig. (1(a)), and the mathematical expres-
sion is given in Eq. (5).
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δ pf =



0 for pf ≤ pfmin,
pf − pfmin

pfs − pfmin

for pfmin ≤ pf ≤ pfs,

pfmax − pf

pfmax − pfs

for pfs ≤ pf ≤ pfmax,

0 for pf ≤ pfmax,

(5)
pfmin = 0.85, pfs = 0.95, pfmax = 1 are assumed.

2.2. DGs Penetration Membership
Function:

The DGP is the proportion of installed DGs to total
active power load.

DGP =

∑ndg
n=1 P

DG
n∑nbs

m=1 P
load
m

, (6)

The fuzzy membership function for the DGs penetra-
tion [17] is shown in Fig.1(b) and mathematical expres-
sion is given in equation Eq. (7).

δ DGP =



0 for DGP ≤ DGPmin,

DGP −DGPmin

DGP s −DGPmin
for DGPmin ≤ DGP ≤ DGIs,

DGPmax −DGP

DGPmax −DGPs
for DGPs ≤ DGP ≤ DGPmax,

0 for DGP ≤ DGPmax,

(7)
DGPmin = 0.4, DGP s = 0.5, DGPmax = 0.6 respec-
tively. DGP s is the desired penetration level in the
distribution system. Percentage penetration is believed
to be 50 % in this work.

2.3. Active Power Loss Membership
Function:

The following equation depicts the distribution
network’s Active power Loss (AL):

AL =

nbs−1∑
m=1

Plm, (8)

Plm represents the branch active power loss [25], where
formulated from the following equation:

Plm =
rm ×

{
P 2
m+1 +Q2

m+1

}
|vm+1|2

, (9)

where Pm+1 is the active power load injected at the
load (m + 1) node and Qm+1 is the reactive power
load.

The following formula can be used to determine the
active power loss index (ALX):

ALX =
ALDGSC

ALBase
, (10)

With DGs and SCs, ALDGSC denotes active power
loss. ALBase denotes the real power loss in the base
case. The fuzzy membership function for the real power
loss [17] is depicted in Fig. 1(c) and mathematical ex-
pression is given in equation Eq. (11). ALXmax = 1.
ALXminis chosen based on utility necessity so that
active power loss is minimized to a desirable value.

δ ALX =


1 for ALX ≤ ALXmin,
ALXmax −ALX

ALXmax −ALXmin
for ALXmax ≤ ALX ≤ ALXmin,

0 for ALX > ALXmax.

(11)

2.4. Distribution System Voltage
Membership Function:

In Fig. 1(d), the fuzzy membership function of voltage
[17] (δvm) of each node m in the distribution system
is explained, and it can be mathematically explained
using Eq. (12). vld1 = 0.94, vmin = 0.95, vmax = 1.05,
vld2 = 1.06 are assumed. The distribution system’s
fuzzy voltage limit is now defined as δv = min (δvm)):

δvm =



0 for vm ≤ vld1,
vm − vld1
vmin − vld1

for vld1 < vm < vmin,

1 for vmin ≤ vm ≤ vmax,
vm − vmax

vld2 − vmax
for vmax < vj < vld2,

0 for vm > vld2.

(12)

2.5. Reconfiguration Methodology

To determine the efficacy of loss reduction, the
researchers’ proposed optimum network reconfigura-
tion switching strategies must consider each feasible
transition. In [11] the proposed network reconfigura-
tion strategy is described in detail.

2.6. Optimal Allocations of EVs,
DGs, and SCs Using a
Multi-objective Fuzzy Function:

Gzs =
1

δ ALX + δ pf + δ v + δ DGP
. (13)

The propose method is to minimise fuzzy function
described in equation Eq. (13), which is exposed to
various constraints:

0 < PDG
n ≤ PDG

max,where n = 1, 2, 3, (14)

0 < Qsc
o ≤ Qsc

max,where o = 1, 2, 3. (15)

The DGs and SCs power injection at the optimal point
in the distribution system are PDG

n and Qsc
o .
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Fig. 1: Fuzzy membership function.

2.7. Battery Charging Load
Modelling for EVs:

Equations for load flow analysis using the battery
charging load model [22] can be generated from
Fig. (2). Eq. (16) depicts the charging of a battery
for both steady-state and transient circumstances. The
following exponential equations can be used to predict
the power charging properties of batteries [17]:

PBEV (t) =


Pmax
BEV

(
1− e

(
−γ×t

t2

))
, 0 ≤ t ≤ t2,

Pmax
BEV

(
tm−t
tm−t2

)
, t2 ≤ t ≤ tm,

0, t > tm.

(16)

The instantaneous electric vehicle battery charging
load is PBEV (t). Pmax

BEV is the substation’s maximum
battery charging load.

δPmax
BEV = Pmax

BEV

(
1− e

(
−γ×t1

t2

))
, (17)

γ = −
(
t2
t1

)
ln(1− δ), (18)

t1 = 0.25 h, t2 = 4.5 h, and tm = 5 h are in the
preceding Eq. (16) and Eq. (17), respectively, taken
from Fig. 2. The EV battery characteristic constants
are γ and δ. δ is the proportion of maximum load for
charging, with a value of 0.95 corresponding to 95 % of
Pmax
BEV at time t1. Eq. (18) (which may be derived from

Eq. (17)) can be used to find the value of γ. The equa-
tion for power charging can be represented as Eq. (19).
The batteries are charged from a zero-charge condition
P 0
BEV .

PBEV (t) = Pmax
BEV

(
1− e(

−γ×t
tc

)
)
+

+ P 0
BEV

(
e(

−γ×t
tc

)
)
,

0 < t < tc .

(19)

The tc represents the amount of time it takes to charge
a battery from its starting charging position fully. The
following equation can be used to represent the status
of the power charging battery.

SOC(t+ 1) = SOC(t) + PBEV (t)×∆(t). (20)

3. RAO-3 Algorithm

RAO-3 and RAO-1 are new optimisation algorithms
[21]. It was chosen as a population-based approach for
this study because of its simplicity and ease of imple-
mentation in optimization applications. It has a few
control parameters. The population size is the sole
control parameter that must be changed once the stop
criteria are met. The proposed RAO-3 and RAO-1
algorithms make use of the worst and best solutions
that can be found in Eq. (21) and Eq. (22):

y′m,p,i = ym,p,i + rand1,m.i × (ym,b,i − |ym,w,i|) +
rand2,m.i × (|ym,p,i or ym,d,i| − (ym,d,ior ym,p,i )),

(21)
y′m,p,i = ym,p,i + rand1,m.i × (ym,b,i − ym,w,i),

(22)
ym,p,i is the mth variable’s value for the pth candidate
in the ith iteration. The best candidate solution is
denoted by ym,b,i, whereas the worst candidate solution
is denoted by ym,w,i.

Between exploitation and exploration, the Rao-3
algorithm can ensure optimum equilibrium. Figure 3
illustrates the suggested approach and is thoroughly
explained in the steps that follow:

Step 1: Read Distribution system data and run
the load flow for the base case.

Step 2: Initialise the algorithm parameters such
as population, dimension (location and
size), iteration (itr), and the maximum
number of iterations (itrmax).

Step 3: Randomly initialise the EVCS, DGs, and
SCs location and sizes within maximum
and minimum limits.

Step 4: Run the load flow. Determine the fitness
values for every population using Eq. (5),
Eq. (6), Eq. (7), Eq. (8), Eq. (9), Eq. (10),
Eq. (11), Eq. (12) and Eq. (13).

Step 5: Determine the population’s best and
worst solutions.

Step 6: The objective function values are selected
to provide the optimal solution, which is
then compared to the previous one. If the
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Fig. 2: Li-Ion battery charging characteristics.

Fig. 3: RAO-3 flow chart for the placment of EVCS, DGs, and
SCs.

new solution is superior to the previous
one, the previous one will be replaced.

Step 7: Whether the criterion is not satisfied,
proceed to Step 5; otherwise, display the
best optimal solution.

4. Result and Discussions

In this study, a 69 bus radial distribution system [24],
three bus nodes of DGs units, three bus nodes of SCs
units and five EVCS bus nodes are considered. In the
algorithm, parameters such as population = 100 and
itrmax = 100 are assumed. Furthermore, maximum
50 EVs can be charged at each charging station are

assumed. A Li-Ion battery’s maximum charging load
during steady charge is 6.5 kW, according to the char-
acteristic charging curve depicted in Fig. 2. The given
system’s base values are 100 MVA and 12.66 kV. In the
base case based on load flow following data, the active
power demand is 3082.19 kW, the reactive power de-
mand is 2796.77 kVAr, total real power loss is 225 kW,
and the lowest voltage is 0.9092 p.u. The proposed
problem is solved using the MATLAB 2022 a software
installed with an Intel Core i5 8th Gen processor and
8 GB RAM.

Two scenarios are studied for EVCS, DGs, and SCs
in a particular distribution network to be sized and
placed optimally:

4.1. Scenario 1

Fuzzy multi-objective functions described in this
paper’s Eq. (13) are placed optimally using the RAO-3
method by DGs, SCs, and EVCS.

The total power loss of the distribution network has
decreased to 39.3467 kW and the minimum voltage was
improved to 0.9762 p.u. The optimal number of EVs
that can accommodate at EVCS is 193. The opti-
mal number of EVs and EVCS are depicted in Tab. 1.
Table 2 and Tab. 3 shows the DGs and SCs optimal
location and size. Table 4 shows the distribution sys-
tem’s performance. Figure 4 and Fig. 5 illustrate the
fitness function and voltage profile curves, respectively.
Figure 6 shows a single line diagram of the 69 bus radial
distribution system with EVCS, DGs, and SCs from
scenario 1.
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Fig. 4: Simultaneous placement of EVCS, DGs, and SCs fitness
curve.

0 10 20 30 40 50 60 70

Bus

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005
RAO-3
RAO-2
RAO-1
JAYA
TLBO

RAO-3
RAO-2
RAO-1
JAYA
TLBO

V
o
lt

a
g
e
 (

p
.u

.)

0 10 20 30 40 50 60 70

Bus

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005
RAO-3
RAO-2
RAO-1
JAYA
TLBO

V
o
lt

a
g
e
 (

p
.u

.)

Fig. 5: Simultaneous placement of EVCS, DGs, and SCs Volt-
age curve.

© 2023 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 85



POWER ENGINEERING AND ELECTRICAL ENGINEERING VOLUME: 21 | NUMBER: 2 | 2023 | JUNE

Tab. 1: Optimum number of EVs and optimum location of EVCS.

Fuzzy PSO Fuzzy ABC Fuzzy GWO Fuzzy RAO-1 Fuzzy RAO-3
Optimum node

for
EVs locations

Optimum
no-of
EVs

Optimum node
for

EVs locations

Optimum
no-of
EVs

Optimum node
for

EVs locations

Optimum
no-of
EVs

Optimum node
for

EVs locations

Optimum
no-of
EVs

Optimum node
for

EVs locations

Optimum
no-of
EVs

31 24 48 34 10 31 53 38 6 38
19 38 9 41 40 35 56 37 18 45
48 32 45 33 36 36 3 33 30 35
43 31 47 36 45 36 37 50 60 30
32 42 18 33 35 43 39 30 40 45

Total no-of EVs 167 Total no-of EVs 177 Total no-of EVs 181 Total no-of EVs 188 Total no-of EVs 193
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Fig. 6: 69 bus radial distribution system with EVCS, DGs and
SCs.

4.2. Scenario 2

In this scenario, first network reconfiguration of 69
bus radial system is done.The system’s real-power loss
prior to reconfiguration was 224.95 kW, and the lowest
system voltage Vmin=0.9092 p.u.

After network reconfiguration, the active power loss
of 69 bus radial distribution network was reduced to
98.5512 kW, i.e., 56.1789 % power loss reduction, and
minimum voltage is increased to Vmin = 0.94947 p.u.
which is shown in Fig. 7. Table 5 represents the
performances of distribution system after network
reconfiguration.

DGs, SCs, and EVCS are optimally positioned in the
distribution system obtained from network reconfigura-
tion. In this scenario, the distribution system’s overall
power loss was decreased to 18.0884 kW and minimum
voltage improves to 0.9905 p.u. The optimal number of
EVs has been increased to 213 vehicles. Table 6 shows
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Fig. 7: Voltage curve before and after reconfiguration.

the performance of the distribution system, the opti-
mal location and sizing of DGs and SCs are illustrated
in Tab. 7 and Tab. 8. Table. 9 examines the distribu-
tion system’s performance. Based on the performance,
RAO-3 algorithm outperforms the other conventional
algorithm. Figure 8 and Fig. 9 depicts the fitness func-
tion and voltage profile curves, respectively. Figure 10
shows a single line diagram of the after-network recon-
figuration of the 69 bus radial distribution system with
EVCS, DGs, and SCs from scenario 2.
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Fig. 8: Fitness curve.

According to the previous findings, scenario 2 per-
forms better than the other scenario. Table 10 com-
pares the outcomes of all of the scenarios.

Compared to the base case, two-stage methodology
[17], and scenario 1, the active power loss in scenario 2
is reduced to 91.9589 %, 55.89 %, and 54.028 %. Com-
pared to the base case minimum voltage of 0.9092, the
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Tab. 2: DGs optimum location and sizing.

Fuzzy PSO Fuzzy ABC Fuzzy GWO Fuzzy RAO-1 Fuzzy RAO-3
DG Node
location

DG sizing
(kW)

DG Node
location

DG sizing
(kW)

DG Node
location

DG sizing
(kW)

DG Node
location

DG sizing
(kW)

DG Node
location

DG sizing
(kW)

63 900 19 529.4247 61 898.3838 61 806.9187 13 507.8488
23 900 61 871.2734 14 900.0000 59 591.6334 21 539.3180
6 100.7 10 500.0016 24 102.3163 19 502.1479 61 853.5330

Tab. 3: SCs optimum location and sizing.

Fuzzy PSO Fuzzy ABC Fuzzy GWO Fuzzy RAO-1 Fuzzy RAO-3
SC Node
location

SC sizing
(kVAr)

SC Node
location

SC sizing
(kVAr)

SC Node
location

SC sizing
(kVAr)

SC Node
location

SC sizing
(kVAr)

SC Node
location

SC sizing
(kVAr)

38 540.1420 32 457.3101 38 575.9351 50 511.6601 64 595.8269
58 582.9905 62 472.1094 62 519.4239 40 241.6474 69 372.0686
69 241.5578 28 455.2351 69 266.6933 12 635.2496 22 392.8228

Tab. 4: 69 bus system performance comparison.

69 bus Base case Fuzzy PSO Fuzzy ABC Fuzzy GWO Fuzzy RAO-1 Fuzzy RAO-3
SN real power (kW) 4027.19 2240.19 2223.76 2218.69 2173.09 2131.49

SN Reactive power (kVAr) 2796.77 733.7 731.01 719.2853 710.0001 702.53
SN pf 0.8214 0.95 lag 0.95 lag 0.95 lag 0.95 lag 0.95 lag

DGs Penetration - 1900.7 1900.7 1900.7 1900.7 1900.7
Real Power loss (kW) 224.95 45.1027 43.9481 43.7336 41.688 39.3467

Voltage minimum (p.u.) 0.9092 0.96507 0.96605 0.96681 0.96948 0.9762

Tab. 5: Performances of distribution system after network reconfiguration.

Entity Base case Fuzzy PSO Fuzzy ABC Fuzzy GWO Fuzzy RAO-1 Fuzzy RAO-3
Tie

Switches 69, 70, 71, 72, 73 17, 55, 61, 69, 71 9, 17, 56, 63, 71 14, 57, 61, 69, 70 14, 57, 61, 69, 70 14, 55, 61, 69, 70

Active
Power loss (kW) 224.95 115.7826 112.8772 98.6046 98.6046 98.5512

Vmin(p.u.) 0.9092 0.94831 0.94831 0.94947 0.94947 0.94947

Tab. 6: Performance comparison of 69 bus system.

69 bus Base case Fuzzy PSO Fuzzy ABC Fuzzy GWO Fuzzy RAO-1 Fuzzy RAO-3
SN Active power (kW) 4027.19 3053.60 3154.76 3155.33 3257.9 3303.3

SN Reactive power (kVAr) 2796.77 1003.673 1036.919 1037.106 1070.8 1085.71
SN pf 0.8214 0.95 lag 0.95 lag 0.95 lag 0.95 lag 0.95 lag

DGs Penetration - 1900.4177 1900.5 1900.6997 1900.70727 1901.69996
Real Power loss (kW) 224.95 20.06 19.64 19.09 18.2453 18.0884

Voltage minimum (p.u.) 0.9092 0.9811 0.9812 0.9852 0.9868 0.9905

Tab. 7: Optimum number of EVs and optimum location of EVCS.

Fuzzy PSO Fuzzy ABC Fuzzy GWO Fuzzy RAO-1 Fuzzy RAO-3
Optimum node

for
EVs locations

Optimum
no-of
EVs

Optimum node
for

EVs locations

Optimum
no-of
EVs

Optimum node
for

EVs locations

Optimum
no-of
EVs

Optimum node
for

EVs locations

Optimum
no-of
EVs

Optimum node
for

EVs locations

Optimum
no-of
EVs

19 36 28 36 31 38 39 39 42 46
42 35 44 39 38 39 38 41 27 38
36 44 30 36 28 34 37 44 32 45
38 40 47 39 37 44 28 39 7 48
48 35 25 40 35 35 36 43 58 36

Total no-of EVs 190 Total no-of EVs 190 Total no-of EVs 190 Total no-of EVs 206 Total no-of EVs 213
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Tab. 8: DGs optimum location and sizing.

Fuzzy PSO Fuzzy ABC Fuzzy GWO Fuzzy RAO-1 Fuzzy RAO-3
DG Node
location

DG sizing
(kW)

DG Node
location

DG sizing
(kW)

DG Node
location

DG sizing
(kW)

DG Node
location

DG sizing
(kW)

DG Node
location

DG sizing
(kW)

61 812.6740 23 591.1429 21 535.7574 57 373.9585 61 885.1275
27 574.4756 61 850.1275 60 513.8592 61 797.9275 25 638.8911
45 513.2681 27 459.2271 61 851.0831 21 728.8167 46 377.6810

Tab. 9: SCs optimum location and sizing.

Fuzzy PSO Fuzzy ABC Fuzzy GWO Fuzzy RAO-1 Fuzzy RAO-3
SC Node
location

SC sizing
(kVAr)

SC Node
location

SC sizing
(kVAr)

SC Node
location

SC sizing
(kVAr)

SC Node
location

SC sizing
(kVAr)

SC Node
location

SC sizing
(kVAr)

50 267.0198 48 493.5362 43 388.2457 61 441.8827 27 287.9169
61 351.9917 61 353.1125 58 363.0878 57 122.4775 60 514.4220
11 414.3575 51 206.4988 55 295.7983 28 449.6673 16 195.6782
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Fig. 9: Voltage curve.
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Fig. 10: EVCS, DGs, and SCs allocation in the optimal network
structure after reconfiguration.
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Fig. 11: EVCS Voltage transients.

bus’s minimum voltage is enhanced to 0.9905 p.u. and
0.9762 p.u. in scenarios 2 and 1. Compared to the
two-stage methodology [17] and scenario 1, the opti-
mal number of EVs in scenario 2 increases to 12.1 %
and 10.362 %.

Figure 11 depicts the impact of EVs on EVCS node
voltages. It is also worth noting that, even with EV
charging demand, the voltage quality may be main-
tained at kept at deservedly high levels due to the
availability of the complete DGs capacity and SCs
installations.
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Tab. 10: Comparison results.

Cases Real Power loss (kW) Minimum Voltage (p.u.) Total number of EVs
Scenario 2 18.0884 0.9905 213
Scenario 1 39.3467 0.9762 193
Two-stage

Methodology [17] 41.01 0.9461 190

Base Case 224.56 0.9092 -

5. Conclusion

This paper suggests an RAO-3 algorithm for 69 bus
radial distribution systems with network reconfigu-
ration based on the fuzzy classification technique
for the simultaneous optimum size and positioning
of EVCS, DGs, and SCs to simultaneously sup-
ply the peak of the distribution system and the
EV charging load. EV battery charging P and
Q load models are built with Li-Ion characteris-
tic curves. The proposed technique achieves its
primary goal of (a) reducing active power loss,
(b) enhancing the substation power factor, (c) boost-
ing the distribution system’s voltage profile, and
(d) deploying the optimum number of EVs to EVCS.
The influence of transient battery charging load im-
pacts node voltages at the EVCS, and with the help
of DGs and SCs, node voltages are kept at acceptable
levels during steady-state charging. The existing work
can be enhanced with vehicle-to-grid technologies.
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