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Abstract. Protective relays are installed in genera-
tion, transmission, and distribution system for detec-
tion, classi�cation, and estimation of faults. To match
the future load demand and to get uninterrupted power
supply, use of renewable energy sources are increas-
ing day by day. Faults can occur in transmission
lines, transformers, generators, and busbars but the na-
ture of these faults may change many times when
renewable energy sources are considered. This re-
search paper introduce techniques to detect and clas-
sify different faults on transmission line in the pres-
ence of wind energy sources using ef�cient tools of ar-
ti�cial intelligence. The main challenges of the sys-
tem fault detection, in presence of wind turbine lie
in their non-linearity, uncertainty and unknown distur-
bances. PSCAD/EMTDC software tool is used to sim-
ulate the power system model with RES which is imple-
mented in MATLAB and Python software. Arti�cial
Neural Network (ANN) and Support Vector Machine
(SVM) algorithms have been used to classify and detect
faults on transmission lines connected with wind en-
ergy source. The proposed technique has been validated
for internal faults on transmission line and external
faults on power system. In total of 4320 internal and
external fault cases with wide variation in system pa-
rameters have been used for validation of the proposed
model. The proposed model gives an overall fault zone
identi�cation accuracy of more than 99 % in presence
of wind energy source. The results obtained from vali-
dation show that the performance of SVM classi�er is
better than ANN in term of ef�cacy and classi�cation
time.
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1. Introduction

Renewable energy generation is increasing tremen-
dously nowadays whole over the world to mitigate elec-
tricity demand. Small scale and large scale penetration
of wind and solar system are creating problems of false
tripping, over reach, under reach and malfunctioning
of transmission line relay. To overcome above prob-
lems at transmission, distribution and micro-grid level,
scientists have done enough research work.

In the present era, use of renewable energy sources is
signi�cantly increasing to generate electricity as a pro-
gressive attempt towards prospective low carbon emis-
sion system [1]. Different factors are affecting protec-
tion systems of transmission line when integrated with
renewable energy sources. The variation of wind pa-
rameters signi�cantly affects the reach of the distance
protection of transmission line. Short circuit behavior
is completely different in induction types wind gener-
ators as compared to conventional synchronous gener-
ators, which is one of the important aspect to decide
the characteristics of the distance protection. Distance
protection characteristic is also affected by parame-
ters like fault location, wind speed, mutual coupling,
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fault resistance etc. in the presence of wind system [1]
and [2].

In last few years, many researchers have focused
to solve the protection issues, using numerical relay as-
sociated with the signal processing and machine learn-
ing techniques. Fast and accurate fault identi�ca-
tion and discrimination is a primary goal of numerical
protection relay. In article [3], comprehensive review
of different fault detection, classi�cation and location
has been presented. This paper serves as a guideline
for the researchers who are working in this domain.
Over the years, many machine learning and classi�ca-
tion techniques have been developed, tested, and im-
plemented in the electrical power system. Few of them
are mentioned in the research article [3]. In [4], Arti-
�cial Neural Network (ANN) based back propagation
technique has been implemented. Syntactic pattern
recognition function model has been ef�ciently used
for detection of fault at transmission line. Moreover,
VHSIC Hardware Description Language (VHDL) has
been implemented on power system model for measure-
ment of system parameters [5]. In research article [6],
Deep Neural Network has been applied for fault de-
tection and classi�cation. In the case of fault detec-
tion, researchers have investigated the effects of two
hyper parameters, number of hidden layer and number
of neurons in the last hidden layer on the performance
of networks. The author concluded that by increas-
ing the network size, the fault detection accuracy did
not improve above certain level. Authors in [7] imple-
mented Support Vector Machine (SVM) technique for
fault detection, and ANN technique for fault location
and classi�cation in 400 kV three phase double circuit
transmission line with linear and non-linear load at bet-
ter accuracy. Other authors also implemented SVM
classi�er on 400 kV transmission line and has achieved
fault classi�cation accuracy of 99.5 % [8]. The data
can be analyzed and classi�ed based on Arti�cial Neu-
ral Network [9]. Fuzzy interfaced scheme has been pro-
posed in [10], which gives 99 % accuracy for detection
of fault. Decision Tree method has been introduced
in [11]. This method uses data from one side of the pro-
tected line and the decision is performed in less than
a quarter cycle.

The ANN and SVM-based approach to real-time
fault classi�cation with high accuracy and high
speed implementation are discussed in research arti-
cle [12], [13], [14] and [15]. Modi�ed multi-class SVM
approach has been implemented and discussed in arti-
cle [13] for distribution system fault detection. In [14],
fault prediction in presences of wind DG using python
algorithm is proposed. Proposed method also reduced
the time require to clear the fault in wind based power
system network. In [16], authors presented adaptive
reach of numerical distance relay by considering var-
ious system parameters. In article [15], a modi�ed

multiclass SVM technique has been used to detect and
classify fault in distribution system. The Radial Basis
Function (RBF) kernel function has been used to de-
velop MMC-SVM model. To improve impedance reach
of the numerical relay by adaptive setting of the quadri-
lateral characteristics was proposed in research pa-
per [16]. In research article [17], SVM technique has
been used to detect and classify fault, whereas ANN
based classi�cation has been shown in [19] and [26].

Multiple SVM model based hybrid classi�cation has
been introduced in [20] and [21]. Classi�cation and lo-
cation of fault in distribution network with renewable
source has been implemented in [22]. Dynamic and
static model comparison to classify faults in power sys-
tem network has been given in [23]. Multi-resolution
analysis using stockwell's transform has been imple-
mented for detection of LG, LL, LLG and LLLG faults
in power system network integrated with wind energy
system. S-contour, amplitude plot and variance graph
has been used to recognize the fault [25]. Decision
Tree and concurrent neuro fuzzy AI techniques has
been applied in [32] for fault classi�cation and detec-
tion on nine phase transmission line system. How-
ever, as stated in [32], the complexity will be increased
with the increase in the level of phases and will reduce
the accuracy of program execution.

The performance of the power system has been inves-
tigated during a noisy condition in [29], [30] and [31],
in which white Gaussian noise has been contaminated
with the recorded fault signals measured at the relaying
point. The results show that the fault index is higher
than threshold with noise signal. Therefore, the pro-
posed protection scheme is not affected by the distorted
signal in the presence of recorded signal as given in ar-
ticle [29], [30] and [31]. However, the accuracy of WT
based technique is affected by high frequency noise sig-
nals penetrated during decomposition of current sig-
nals. The same is not much affected for classi�ca-
tion technique based on NN, SVM and RVM. Different
techniques investigated by several researchers for de-
tection, classi�cation, and localization of transmission
line faults are described in [18] and [24].

MHO relay is widely used in the protection of trans-
mission line to detect all kinds of faults. However,
this relay sometimes fails to detect high resistance
fault in its own zone of protection under the situa-
tion of varying system and fault parameters. In this
paper, a portion of power system has been simulated
in PSCAD, where 100 km long transmission line has
been considered. To test the MHO relay characteris-
tic, a line to ground fault with varying fault resistance
has been created at 70 km of line length (in-zone fault).
Performance of distance protection by MHO relay at
fault resistance of 5 Ω, 10 Ω, and 18 Ω have been shown
in Fig. 1, Fig. 2, and Fig. 3 respectively.
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Fig. 1: L-G fault at 70 km, fault resistance 5 Ω.
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Fig. 2: L-G fault at 70 km, fault resistance 10 Ω.
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Fig. 3: L-G fault at 70 km, fault resistance 18 Ω.

The results represent the effect of fault resistance
variation on distance protection characteristics. Relay
is misoperating in the second or the third zone as shown
in Fig. 2 and Fig. 3, respectively, even though the fault
is in the �rst zone due to increasing value of fault re-
sistance. Similarly, the variation of other parameters

of power system network may weaken the performance
of the relay under faulty conditions speci�cally with
the penetration of renewable sources in the network.
This may create a problem of under reach and over-
reach of protective scheme in the transmission line.

The ANN and SVM techniques are presented in this
article for classi�cation of in-zone and out-of-zone
faults on transmission line. Various fault resistance,
fault inception angles, load angles, and fault locations
are considered in the presence of wind generation sys-
tem. Feasibility of the proposed algorithms has been
tested on an IEEE 9 bus power system network with in-
tegration of wind system at bus 3. The system model
has been developed using PSCAD/EMTDC software
package. A simulation data set of 12570 cases has
been generated using an automatic fault data gener-
ation model developed by the authors. Among which,
4320 simulation cases have been considered for valida-
tion of the proposed ANN and SVM technique.

2. Proposed System Modelling

Figure 4 shows a single line diagram of IEEE 9 bus
230 kV electrical power system network considered for
the simulation studies. IEEE 9 bus system is consist-
ing power generators G1, G2 and wind system genera-
tor G3, six transmission lines, three transformers and
three loads connected at bus 4, 5 and 8. The gener-
ators G1, G2 are modeled as an equivalent dynamic
source consisting of a multi machine system connected
to bus 1 and 2 respectively. Whereas generator G3
is Type 3 Wind Turbine Model used as renewable en-
ergy source (wind farm) which is intermittent in power
generation. Bergeron model with distributed parame-
ters has been used for modelling of transmission line.
The system including generation system, transmission
line, transformer and connected load parameters are
given in the appendix.

A sampling frequency of 4 kHz at 50 Hz nominal fre-
quency has been used. A channel plot step has been
taken as 250 µs, i.e. 80 samples/cycle. Post fault
data have been captured with measuring devices like
CVT and CT. The same con�guration is used nor-
mally in digital relay available at the market. All ten
types of faults on line between bus 8 and bus 9 at var-
ious locations with different values of fault resistance,
fault inception angles and power �ow angles have been
simulated, including large numbers of internal faults.
For each case, the voltage and current values are mea-
sured and saved as a data �le from PSCAD software.
In the similar way, external faults have been also simu-
lated outside the line between bus 8 and bus 9 including
location on bus 8, bus 9, line between bus 7 and 8, line
between bus 6 and 9 along with all above mentioned
internal fault parameters.
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Fig. 4: Single line diagram of IEEE 9 bus power system network.

Tab. 1: Internal fault cases generated for fault on transmission line bus 8�9.

Power system
parameter

ANN/SVM
training patterns

ANN/SVM unseen
testing patterns

Variation in
parameter

Numbers of
variation

Variation in
parameter

Numbers of
variation

Fault type
L-G, LL,

LL-G, LLL-G
10

L-G, LL,
LL-G, LLL-G

10

Fault location
FL (km)

10 %, 20 %, 30 %,
50 %, 75 %

5
15 %, 40 %,
60 %, 80 %

4

Fault resistance
RF (Ω)

1 Ω, 5 Ω, 10 Ω,
15 Ω, 20 Ω

5 0 Ω, 8 Ω, 15 Ω, 25 Ω 4

Power �ow angle
of G2 (δ)

0 ◦, 5 ◦, 10 ◦ 3 4 ◦, 8 ◦, 12 ◦ 3

Fault inception angle
FIA (◦)

0 ◦, 45 ◦, 90 ◦,
135 ◦, 180 ◦ 5 0 ◦, 30 ◦, 80 ◦, 135 ◦ 4

Total (5670)
Total training patterns

for fault
3750

Total testing patterns
for fault

1920

Tab. 2: External fault cases created for fault outside of transmission line bus 8�9.

Power system
parameter

ANN/SVM
training patterns

ANN/SVM unseen
testing patterns

Variation in
parameter

Numbers of
variation

Variation in
parameter

Numbers of
variation

Fault type
L-G, LL,

LL-G, LLL-G
10

L-G, LL,
LL-G, LLL-G

10

Fault location
FL (km)

On bus-8,
On bus-9,
Line 7�8

(2 location, 40 %, 70 %),
Line 9-6

(2 location, 40 %, 70 %)

6

On bus-8,
On bus-9,
Line 7-8

(1 location, 50 %),
Line 9-6

(2 location, 30 %, 60 %)

5

Fault resistance
RF (Ω)

1 Ω, 5 Ω, 10 Ω,
15 Ω, 20 Ω

5 0 Ω, 8 Ω, 15 Ω, 25 Ω 4

Power �ow angle
of G2 (δ)

0 ◦, 5 ◦, 10 ◦ 3 4 ◦, 8 ◦, 12 ◦ 3

Fault inception angle
FIA (◦)

0 ◦,45 ◦, 90 ◦,
135 ◦, 180 ◦ 5 0 ◦, 30 ◦, 80 ◦, 135 ◦ 4

Total (6900)
Total training patterns

for fault
4500

Total testing patterns
for fault

2400
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Table 1 and Tab. 2 shows different cases of 5670 in-
ternal faults and 6900 external faults created, respec-
tively. It is observed from Tab. 1 that out of 5670
internal faults and 6900 external faults, 3750 (66.16 %
of total internal cases) and 4500 (65.22 % of total exter-
nal cases) have been utilized as training process of ANN
and SVM. The remaining 1920 (33.84 % of total inter-
nal cases) and 2400 (34.78 % of total external cases)
have been utilized for testing and validation of the pro-
posed algorithm. The trained ANN and SVM based
fault classi�er models are then extensively used for test-
ing of unseen fault data. The ANN and SVM fault
detection technique have been veri�ed for all symmet-
rical and asymmetrical faults (L-G, LL, LL-G, LLL-G)
at different locations. These algorithms are tested with
wide variation in fault resistance, Fault Inception An-
gle (FIA) (0�180 ◦) and also load �ow angle are evalu-
ated for internal and external faults in the system.
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Fig. 5: Feed forward neural network topology.

3. Arti�cial Neural Network
Technique (ANN)

3.1. Evaluation of Training model

and Testing

Before applying the ANN, the training and testing
data sets are normalized column wise using Eq. (1)
to avoid under �tting issues, as it may destroy ac-
curacy of the model. The model generally does not
perform well for given data set, so now pre-processing
of the data points, removal of noise from the data is
the prime requirement [6]. The training and testing in-
put values are required to re-scale using Eq. (1). Input
values ui are normalized as shown in Eq. (1) to improve
the accuracy of algorithm to detect and classify faults
of power system network.

ui =
(ui − umin)

(umax − umin)
, (1)

where, ui is the input values of post fault sending end
and receiving end voltages and currents, umax and umin

are the maximum and minimum values of the input
column, respectively.

b

ui f
tj

uj

Input Adder Activation
function Output

Weight adjustment

bias

Compare with
target output

∑ 

Fig. 6: Feedback Supervised Learning ANN structure.

Human brain has millions of neurons which do many
sensitive tasks. It takes signals from different parts
of the body and using the brain, it generates appropri-
ate action naturally. The ANN works similarly but it is
arti�cial in nature. The ANN has capability of parallel
processing, nonlinear mapping, online and of�ine learn-
ing approach. Neurons are known as nodes in arti�cial
system. The ANN has input layer, hidden layer and
output layer. ANN process depends on network topol-
ogy like, feed forward single or multi-layer as shown
in Fig. 5 [4], and feedback network (weight updating
or learning) as given in Fig. 6.

The ANN basically classi�es three types of learning
methods, supervised learning, unsupervised learning
and reinforcement learning. Here, supervised learning
method has been used as shown in Fig. 6 [4]. The es-
timated output has been compared with the desired
output; the error signal is generated as the difference
between the predicted values and the actual values.
Based on the error signal, weights are modi�ed to min-
imize the error so that desire output matches with
the calculated output. ANN algorithm can be applied
as a feed forward and feedback neural network. Here
in this paper, the back propagation method has been
applied for detection and classi�cation of faults. Back
propagation algorithm eventually corrects the weights
among the different layers, according to the difference
between the targeted output and calculated output.
An activation function makes back propagation achiev-
able since the gradient are passed with error to up-
date weight and bias. Linear activation function and
nonlinear activation function such as Sigmoid, Tanh,
ReLU, Softmax activation functions are used to achieve
the accurate output. Output of the hidden layer is
calculated from the activation function. Activation
value of the connected node depends on the summa-
tion of bias and weights sum of all inputs connected
to it as given by Eq. (2) and Eq. (3).

uj = f(

n∑
i=0

uiwji + bi), (2)

where

uiwji = u1wj1 + u2wj2 + u3wj3 + · · ·+ unwjn. (3)
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In normal practice Recti�ed Linear Unit (ReLU) ac-
tivation function is preferred because of less compu-
tation, faster in operation and easy to reach at desire
output. But for binary classi�cation sigmoid function
is widely used. Sigmoid non linear transformation is
used to detect and classify faults as shown in Eq. (5).
Equation (5) is computed from Eq. (2), Eq. (3) and
Eq. (4).

Netj =

n∑
i=0

uiwji + bi, (4)

uj = f(Netj) =
1

1 + e−Netj
=

1

1 + e−
∑n

i uiwji+bi
,

(5)
where, Netj = Net Input of the jth Layer, bi = Bias
of hidden layer, uj Bias is the degree of sensitivity, with
which the hidden layer uj answer to the perturbation
it receives by the net input. Equation (5) represents
the feed forward algorithm of neural network. Error
factor is calculated by taking square of actual out-
puts subtracted from target outputs summation [27]
as shown in Eq. (6) and Eq. (7).

Error signal is de�ned as:

Ex =
1

2

∑
k

(txk − uxk)
2 =

1

2

∑
k

(txk − fk(Netxk))
2,

(6)

Ex =
1

2

∑
k

(txk − fk(
∑
j

(wkjuxj + bk))
2, (7)

where, E is the error, x is the model, tk is the target,
uk is the ouput

To correct the weight for achieving desire output,
the back propagation delta rule has been applied.
The coef�cient of error in delta rule is calculated by
difference between the actual output and the predicted
output and relating this difference to the derivative
between the activation state of the actual output and
the net input of that output as shown in Eq. (8) and
Eq. (9).

∂uj

∂Netj
= uj(1− uj), (8)

∆outj = (tj − uj)
∂uj

∂Netj
= (tj − uj)uj(1− uj), (9)

where, tj is the target output, uj is the actual out-
put, uj(1−uj) is the derivative between actual output
and net input of jth layer as given in Eq. (8). The er-
ror coef�cient of back propagation method is indicated
in Eq. (9).

Weight correction is calculated using Eq. (10) with
the help of Eq. (8) and Eq. (9).

∆wji = − ∂Ex

∂wji
, (10)

∂Netxk
∂wkj

=
∂(
∑

j wkjuxj + bk)

∂wkj
= uxj . (11)

By substituting Eq. (11) into Eq. (12), we obtain:

− ∂Ex

∂wkj
= (txk − uxk)f

′
k(Netxk)uxj . (12)

By substituting Eq. (12) and Eq. (9) into Eq. (10),
we obtain:

∆wji = r∆outjuj . (13)

Quantity of the value added or subtracted
from the weight wji depends on δoutj with respect
to the activation state of layer ui the activation with
which uj is connected to weight wji and in relation
to coef�cient r as shown in Eq. (13). The δwji can be
negative or positive. The value can be added or sub-
tracted from the previous value of weight wji as shown
in Eq. (14).

wji(n+1) = wji(n)∆wji. (14)

In Eq. (14), each arriving layer of weight has an ac-
tual value which is comparable with an ideal value as
mentioned in the articles [14] and [27]. Figure 7 shows
�owchart of ANN training model.

3.2. ANN Technique Result

Discussion

The ANN Back propagation model is trained using
MATLAB functions and Python coding. Both the soft-
ware, MATLAB and Python are giving satisfactory
results of faults classi�cation as shown in Tab. 3
to Tab. 6. Table 3 shows overall classi�cation accuracy
of in-zone faults (line between buses 8�9) and out-of-
zone faults on transmission line using Python coding.
Table 4 shows the fault type wise classi�cation accu-
racy using Python coding. Table 5 shows the fault
classi�cation accuracy with 6 hidden layers at different
training functions in MATLAB. Training function de-
pends on many factors, such as complexity of the prob-
lem, the number of data points in the training set,
the number of weights and biases in the network, no
of hidden layers, the error goal, and whether the net-
work is being used for pattern recognition regression.
Table 5 shows the fault classi�cation accuracy of inter-
nal and external faults achieved by Resilient, Gradient
descent and Levenberg-Marquardt (LM) back prop-
agation training functions. Levenberg-Marquardt is
the fastest back propagation algorithm and gives better
accuracy compared to the other two back propagation
algorithms. At the same time, Levenberg-Marquardt
requires more memory for the execution of the pro-
gram. However, resilient is slow in convergence but
is a memory ef�cient algorithm. Accuracy of the vari-
ous internal and external faults identi�cation with back
propagation training function Levenberg-Marquardt
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Tab. 3: Classi�cation accuracy for internal and external faults using Python.

Condition No of test cases
Total classi�cation data

% Accuracy (η)
TP TN

Internal faults 1920 1899 21 98.90 %
External faults 2400 2360 40 98.33 %

Total 4320 4259 61 98.58 %
TP = Test Positive (true) and TN = Test Negative (false)

Tab. 4: Fault zone identi�cation accuracy for various types of In-zone and Out-of-zone faults in Python.

Fault
type

In zone fault cases Out-of-zone fault cases

No of
test
cases

Total
classi�cation

data
% Accuracy

No of
test
cases

Total
classi�cation

data
% Accuracy

TP TN TP TN
LG 576 570 6 98.95 % 720 712 8 98.88 %
LLG 576 570 6 98.95 % 720 709 11 98.47 %
LL 576 568 8 98.61 % 720 701 19 97.36 %

LLLG 192 191 1 99.48 % 240 238 2 99.16 %

Tab. 5: Classi�cation regression accuracy for internal and external faults using MATLAB.

Hidden layer = 6

Condition
Back propagation
training function

% Accuracy
(η) train

% Accuracy
(η) test

% Accuracy
(η) valid

Internal fault
(1920 cases)

Resilient 97.39 96.77 96.25
Gradient descent 96.41 95.05 94.73

Levenberg-Marquardt 98.12 98.1 98.25

External fault
(2400 cases)

Resilient 92.13 91.56 90.83
Gradient descent 92.03 91.09 90.72

Levenberg-Marquardt 98.28 97.13 96.92

Tab. 6: Fault zone identi�cation accuracy for internal faults at different hidden layers using MATLAB.

Fault
type

No of
test cases

Hidden layer = 6 Hidden layer = 10
Total

classi�cation
data

% Accuracy
(η)

Total
classi�cation

data
% Accuracy

(η)
TP TN TP TN

LG 576 576 0 100 % 576 0 100 %
LLG 576 576 0 100 % 574 02 99.65 %
LL 576 549 27 95.3 % 576 0 100 %

LLLG 192 183 09 95.3 % 192 0 100 %
Total 1920 1884 36 98.1 % 1918 02 99.89 %

Tab. 7: Fault zone identi�cation accuracy for external faults at different hidden layers using MATLAB.

Fault
type

No of
test cases

Hidden layer = 6 Hidden layer = 10
Total

classi�cation
data

% Accuracy
(η)

Total
classi�cation

data
% Accuracy

(η)
TP TN TP TN

LG 720 717 3 99.58 % 720 0 100 %
LLG 720 689 31 95.69 % 686 34 95.3 %
LL 720 704 16 97.78 % 712 8 98.89 %

LLLG 240 232 8 96.66 % 240 0 100 %
Total 2400 2342 58 97.6 % 2358 42 98.3 %

It is observed that the overall fault classi�cation accuracy of the ANN algorithm is 98.58 % using Python programming performed
in Python 3.7.1 software tool. Whereas, using MATLAB programming performed in MATLAB Version 9.4 (R2018a) software
tool, LM function gives test accuracy more than 97 % as stated in Tab. 5. Table 4, Tab. 6 and Tab. 7 shows the classi�cation
accuracy for different types of faults on considered line and outside it.

increases with increasing hidden layer from 6 to 10 as
given in Tab. 6 and Tab. 7, respectively.

The confusion matrix plots have been plotted
in Fig. 8 and Fig. 9 of all symmetrical and asym-

metrical internal faults with hidden layer 6 and 10,
respectively. The confusion matrix represents the to-
tal number of fault detection observations in each
cell. The rows of the confusion matrix correspond
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Fig. 7: Flowchart of the back propagation ANN Training
Model.

to the output class (actual value) and the columns
of the confusion matrix correspond to the target class
(predicted values). In the confusion matrix, all ten
types of faults have been mentioned, i.e. �rst three
faults are L-G faults for R-Y-B 3-phase, respectively.
Diagonal and off-diagonal cells show correctly and in-
correctly classi�ed fault observations, respectively. As
shown in Fig. 8, out of 1920 fault cases, 192 fault
cases that are taken for each fault types. The �rst
column represent 192 fault cases are correctly classi-
�ed as R-G fault type, therefore the column accuracy
for R-G fault types are 100 %. Also �rst row indicates
192 R-G faults along with 4 YB (LL). faults are mis-
classi�ed as R-G (L-G) faults, so row accuracy was
reduced to 98 %. It has been observed from Fig. 8
and Fig. 9 that the accuracy of the classi�cation in-
creases with the increases in the number of hidden lay-
ers. Similarly, the accuracy of the identi�cation of ex-
ternal faults increases with the increment of hidden
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Fig. 9: Confusion matrix internal faults HL = 10.

layers from 6 to 10. With further increase of the num-
ber of hidden layers, algorithm increases data classi-
�cation accuracy but simultaneously the convergence
time also increases and this slows down the learning
process to achieve the target. The performance curves
of training, validation and test data for internal fault
with 10 hidden layers is shown in Fig. 10. It has been
observed that all three curves are similarly formed, this
means that the network responds similarly to learning
data as well as to the validation and test data by re-
ducing the probability of over-�tting [21]. Over trained
or over-�tting occurs if the validation error increases
at the same epoch, the training error slope decreases.
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The regression plot representing the regression analy-
sis between the network output and the corresponding
target was carried out. Figure 11 shows the regression
plot of the In-zone fault with 10 hidden layers. It shows
a good �t of ANN predicted values to actual output
data for training (70 %), testing (15 %), and valida-
tion data sets (15 %). The data set model includes all
training, testing and validation data sets. In Fig. 11,
`R' show the regression factor. R represents the slope
of linear �tting. Output equation used in this method
for regression plot is given in Eq. (15).

Output = w · Target+ b, (15)

where, w is the weight, b is the bias.
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Fig. 10: Best validation performance error vs. epochs.

4. Support Vector Machine
(SVM) Classi�cation
Technique

SVM is a statistical technique used for the purpose
of computational learning which overcomes the draw-
back of ANN by giving a global solution rather than
a local minima [16]. SVM classi�ers offer great ac-
curacy and work well with high dimensional space.
SVM classi�ers basically use a subset of training points
hence very less memory required in validation. SVM
classi�ers can be used either in single layer as binary
classi�er which has two possible states in-zone faults
(+1) and out-of-zone (−1) fault or multi-layer classi-
�er, which is a discrete classi�er that mainly focused
on regression problems. The inputs of the SVM clas-
si�ers provide maximum amount of margin between
different class labels. Boundary between the In-zone
and Out-zone fault class is known as hyperplane [8].
It is represented by Eq. (16).

f(x) = wT · x+ b = 0, (16)

where, w is weight vector and b is bias term to deter-
mine position of hyper-plane.

The separation distance can be increased by con-
sidering minimum value of w. For linear separation,
SVM can be realized by support vector as shown
in Eq. (17). Labels of the output class are given as
shown in Eq. (18) and Eq. (19).

ϕ(w) =
1

2
wTw, (17)

IfwT + b ⩾ 1, target class = 1, (18)

wT + b ⩽ 1, target class = −1. (19)

Here, the output function f(x) is equal to '+1'
which indicates one class of label (In-zone fault) and
'−1' indicates second class of label (Out-of-zone fault).
The �ow chart of the SVM Classi�er algorithm is
shown in Fig. 12. Cost (C) and Gamma (γ) are hyper-
parameters, which are set before the training model
as given in SVM �ow chart. Hyper-parameters are
used to control error and also indicate curvature weight
of the decision boundary respectively. When C is small,
margin will be wide. So, there will be many support
vectors and many mis-classi�ed observations. When C
is wide, margin will be small. So, there will be less
support vectors and less mis-classi�ed values. However
low value of cost (C) will give better test data sets per-
formance and also will prevent over �tting. Accuracy
of support vector machine learning algorithm is shown
in Eq. (20) [7] and [20].

%Accuracy =
Accurate classified samples

Total no of samples
·100. (20)

Table 8 indicates the internal and external faults de-
tection and classi�cation accuracy of the test data set
which is not the part of the trained data set. Table 9
and Tab. 10 shows the accuracy of internal and external
faults identi�cation respectively in Python. Similarly
tabulated accuracy of Tab. 8 has been veri�ed in MAT-
LAB and Python (SVM training and SVM model �t
functions) programming.

5. Wind Farm Impact
on Transmission Line
Protection

The variation in wind parameter signi�cantly affects
the distance measurement problems in transmission
line protection. Fluctuation in wind speed causes vari-
ation in voltage level connected to power grid and this
leads to the change in impedance measure by protec-
tive relays [2]. The impact of a 3-phase short circuit
on the transmission line connected with DFIG is more
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Fig. 11: In-zone fault regression plot actual output vs. target (H = 10).

Tab. 8: SVM classi�cation accuracy for In-zone and Out-zone faults.

Condition No of test cases
Total classi�cation data

% Accuracy (η)
TP TN

Internal faults 1920 1918 02 99.89 %
External faults 2400 2383 17 99.29 %

Total 4320 4301 19 99.56 %
TP = Test Positive (true) and TN = Test Negative (false)

Tab. 9: SVM Classi�cation accuracy of various fault identi�cation for In-zone.

Condition
No of internal
fault cases

Total classi�cation data
% Accuracy (η)

TP TN
LG 576 575 00 100 %
LLG 576 576 01 99.82 %
LL 576 575 01 99.82 %

LLLG 192 192 0 100 %
Total 1920 1918 02 99.89 %

Tab. 10: SVM classi�cation accuracy of various fault identi�cation for Out-zone.

Condition
No of external
fault cases

Total classi�cation data
% Accuracy (η)

TP TN
LG 720 720 0 100 %
LLG 720 712 8 98.88 %
LL 720 711 9 98.75 %

LLLG 240 240 0 100 %
Total 2400 2383 17 99.29 %

It has been noted that the accuracy as obtained by applying SVM for fault classi�cation is highest in the case of in-zone
fault i.e. 99.89 %. The accuracy of the proposed algorithm is maximum for L-G fault which majorly occurs in power system.
Moreover, the fault classi�cation accuracy of the proposed SVM algorithm is 99.29 % in case of out-of-zone fault. This indicates
the greatest security to reject all power system transients occurring outside the line to be protected.
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Fig. 12: SVM classi�er �owchart.

critical than Line to ground fault. Wind farms are un-
stable during dynamical voltage disturbances which is
due to induction generator. When a fault occurs or
voltage drops, wind generator input power to the grid
is decreased and the generator is started to acceler-
ate. If the acceleration is faster than the retrieval
voltage, then the rotor speed increases and absorbs
more reactive power. If the speed exceeded the set
limit, then the whole unit is removed from the system.
A Change in positive and zero sequence impedance
leads to the overreach and underreach issues in pro-
tection strategy. The fault resistance, load angle varia-
tion, fault location parameters are equally affected by
the performance of the protective relay in wind con-
nected system [28].

The impact of the wind generation is more pro-
nounced for Type III Wind Turbine Generators
(WTGs) and especially when the wind park is tapped
at the line without installing additional relays at both

sides of the connection point. The impact of this pen-
etration varies from a delayed operation to a failure
in operation of protective scheme. When WTGs are
integrated, the short circuit current contribution is lim-
ited by their controllers. Moreover, the induction gen-
erator of Type III WTG provides a path for negative se-
quence current and these results error in distance mea-
surement by relay compared to other Type of WTG.
Type III WTG is taken for this study and its impact is
included in the data generation according to the wind
park type, fault type, fault location and wind genera-
tion level.

Above results depicted in Tab. 3, Tab. 4, Tab. 5,
Tab. 6, Tab. 7, Tab. 8, Tab. 9, and Tab. 10 that rep-
resent the better accuracy of the proposed ANN and
SVM algorithm considering impact of WTG in inter-
connected network.

6. Conclusion

In this paper, ANN and SVM based internal and
external fault discrimination scheme has been tested
in the presence of wind generation system. Three phase
voltage and current signals are sampled for one full cy-
cle duration of post internal/external faults. The sam-
pled data are given as input to ANN and SVM algo-
rithm for training and train model is used for test-
ing purpose. Feasibility of the proposed scheme has
been tested on 4320 test cases, with varying internal
and external faults condition. The proposed scheme
provides more than 98 % of discrimination accuracy
in case of ANN technique with 10 hidden layers us-
ing MATLAB development tool. On the other hand,
the SVM technique gives more than 99 % accuracy with
less convergence time compared to the ANN method.
Both of the methods are very simple, fast and accurate
to classify faults easily. Following concluding remarks
are drawn after executing mentioned machine learning
approach for same test data set.

1. Both the algorithms are parametric. In ANN pa-
rameters include: number of hidden layers, learn-
ing rate, activation function, number of iteration,
and the threshold error, while for SVM, parame-
ters include: kernel function gamma and margin
parameter C.

2. Both algorithms can work for linear and non-linear
functions.

3. ANN and SVM classi�cation approach gives
comparable accuracy and reliability depending
on the training.

4. ANN-based algorithm involves a trial and error
procedure to �nd the number of layers, neurons,
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and activation functions, which makes the overall
design process tedious and complex. ANN algo-
rithm is called learning based approach.

5. Disturbance or interruption may occur in electrical
power system any time due to intermittent nature
of renewable energy sources. The ANN is capable
of incorporating dynamic changes of the system.

6. Accuracy of the SVM classi�ers depend on size
of input data structure and optimization
of the kernel parameters.

7. The SVM can work well with small training as well
as large data set because maximum margin bound-
ary condition will decide the accuracy. Contrary,
in the case of the ANN if large or enough data
set is not given to the network, then it may result
in extremely poor classi�cation.

8. Training algorithm is very fast in SVM compared
to ANN. The ANN training process is quite com-
plex for high-dimension problems. The ANN offers
slow convergence in the BP algorithm. Conver-
gence is dependent on the selection of the initial
value of weight constraints.

9. In the ANN, the initial randomization places
the neural network close to local minimum of opti-
mization function while irrespective of initial con-
dition SVM converge to global minima.

It is concluded that the SVM classi�cation technique is
more effective, simple and faster compared to the ANN
for detection and classi�cation of faults in presence
of the wind generating system. Few factors like con-
sidering power swing condition and fault classi�ca-
tion of series compensated transmission line with wind
power generation which are not included in the given
studies. It will be included in future investigation with
diversi�ed fault scenario to verify the accuracy of fault
classi�cation and detection in the presence of multiple
terminal lines with renewable sources.
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Appendix A Generator Data:

� G1 - 512 MW, 17.16 kV, 50 Hz, xd = 1.7 p.u.,
x′
d = 0.27 p.u., xȷd = 0.2 p.u., T ′

d0 = 3.8 s,
T ȷd0 = 0.01 s, xq = 1.65 p.u., x′

q = 0.47 p.u.,
xȷq = 0.2 p.u., T ′

q0 = 0.48 p.u., T ȷq0 = 0.0007 p.u.,
Ra = 0.004 p.u.

� G2 - 270 MW, 18.45 kV, 50 Hz, xd = 1.7 p.u.,
x′
d = 0.256 p.u., xȷd =, T ′

d0 = 4.8 s,
T ȷd0 = 0.01 s, xq = 1.62 p.u., x′

q = 0.245 p.u.,
xȷq = 0.185 p.u., T ′

q0 = 0.5 p.u., T ȷq0 = 0.0007 p.u.,
Ra = 0.0016 p.u.
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Tab. 11: Zero Sequence line parameters.

From bus To bus Length (km) R0 (Ω·m−1) XL0 (Ω·m−1) XC0 (℧·m)
4 5 89.93 5.88·10−4 1.25·10−3 540.70
4 6 97.336 9.24·10−4 1.25·10−3 652.61
5 7 170.338 9.94·10−4 1.25·10−3 588.67
6 9 179.86 1.15·10−3 1.25·10−3 531.67
7 8 76.176 5.90·10−4 1.25·10−3 540.70
8 9 106.646 5.90·10−4 1.25·10−3 539.78

Tab. 12: Positive Sequence line parameters.

From bus To bus Length (km) R1 (Ω·m−1) XL1 (Ω·m−1) XC1 (℧·m)
4 5 89.93 5.88·10−5 4.18·10−4 324.64
4 6 97.336 9.24·10−5 4.18·10−4 391.24
5 7 170.338 9.94·10−5 4.18·10−4 353.46
6 9 179.86 1.15·10−4 4.18·10−4 319.11
7 8 76.176 5.90·10−5 4.18·10−4 324.64
8 9 106.646 5.90·10−5 4.18·10−4 323.98

� G3-Wind farm = 24 Unit · 5 MW/Unit =
120 MW, 13.8 kV, Type-3 DFIG (Rated power =
5 MW, Nominal wind speed = 11 m·s−1, Stator
resistance = 0.005 p.u., Stator/Rotor turns ratio
= 0.3, Stator leakage inductance = 0.1714 p.u.,
Squirrel-cage inductance = 0.1563 p.u., Magne-
tizing inductance = 2.9 p.u., Angular moment
of inertia = 0.5 s). Turbine Parameters: Turbine
radius = 68.5 m, Air density kg·m−3 = 1.225,
Maximum pitch angle = 25 ◦.

Appendix B Transformer Data:

� GT1: 550 MVA, 17.16 kV/230 kV, ∆/Y, 50 Hz.

� GT2: 300 MVA, 18.45 kV/230 kV, Y/Y, 50 Hz.

� GT3: 150 MVA, 13.8 kV/230 kV, Y/Y, 50 Hz.

Appendix C Full Load:

� L1: 230 kV, 488 MW, 0.9 power factor, 50 Hz.

� L2: 230 kV, 260 MW, 0.9 power factor, 50 Hz.

� L3: 230 kV, 90 MW, 0.9 power factor, 50 Hz.

Appendix D Transmission Line
Data:

Transmission line data are listed in Tab. 11 and Tab. 12
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