
THEORETICAL AND APPLIED ELECTRICAL ENGINEERING VOLUME: 19 | NUMBER: 3 | 2021 | SEPTEMBER

Booth-Encoded Karatsuba: A Novel Hardware-Efficient
Multiplier

Riya JAIN 1 , Khushbu PAHWA 2 , Neeta PANDEY 1

1Department of Electronics and Communication Engineering, Delhi Technological University,
Bawana Road, Shahbad Daulatpur Village, Rohini, 110042 Delhi, India

2Department of Electrical Engineering, Delhi Technological University, Bawana Road,
Shahbad Daulatpur Village, Rohini, 110042 Delhi, India

rj.riyajain26@gmail.com, khushbu16win@gmail.com, n66pandey@rediffmail.com

DOI: 10.15598/aeee.v19i3.4199

Article history: Received Mar 07, 2021; Revised Jun 17, 2021; Accepted Jul 14, 2021; Published Sep 30, 2021.
This is an open access article under the BY-CC license.

Abstract. There is a recent boom being witnessed in
emerging areas like IoMT (Internet of Medical Things),
Artificial Intelligence for healthcare, and disaster man-
agement. These novel research frontiers are critical
in terms of hardware and cannot afford to compro-
mise accuracy or reliability. Multiplier, being one of
the most heavily used components, becomes crucial in
these applications. If optimized, multipliers can im-
pact the overall performance of the system. Thus, in
this paper, an attempt has been made to determine the
potential of accurate multipliers while meeting mini-
mal hardware requirements. In this paper, we propose
a novel Booth-Encoded Karatsuba multiplier and pro-
vide its comparison with a Booth-Encoded Wallace tree
multiplier. These architectures have been developed us-
ing two types of Booth encoding: Radix-4 and Radix-8
for 16-bit, 32-bit and 64-bit multiplications. The algo-
rithm is designed to be parameterizable to different bit
widths, thereby offering higher flexibility. The proposed
mul- tiplier offers advantage of enhanced performance
with significant reduction in hardware while negligibly
trad- ing off the Power Delay Product (PDP). It has
been observed that the performance of the proposed ar-
chitecture increases with increasing multiplier size due
to significant reduction in hardware and slight increase
in PDP. All the architectures have been implemented
in Verilog HDL using Xilinx Vivado Design Suite.

Keywords

Accurate, Booth-encoding, Karatsuba, Wal-
lace.

1. Introduction

Approximate multipliers [1], [2], [3], [4], [5], [6] and [7]
have garnered a lot of attention from the researchers in
the recent past. This is primarily due to the need to de-
velop architectures for arithmetic computing that can
reduce delay, power and hardware utilization, while re-
laxing the constraint on accuracy. However, there has
been an upsurge in requirement to develop accurate
hardware-efficient circuits for healthcare applications,
resulting in emergence of novel technologies like Wire-
less Body Area Networks (WBAN) [8], and biomed-
ical circuits for Brain Machine Interfaces [9]. Finite
field arithmetic is another research direction that re-
quires optimized hardware architectures, especially for
coding theory and public-key cryptosystems [10], [11]
and [12]. Complex field operations like exponentiation
and inversion can be attained by iterative multiplica-
tion. Thus, it is necessary to design efficient multiplier.
Being the core components of these systems, slight im-
provement in multiplication unit can offer significant
performance enhancement of overall system.

Generally, multiplication operation can be bisected
in two stages: (1) partial-products generation, and (2)
addition of generated partial products. Research is cur-
rently underway to optimize the multiplication oper-
ation by optimizing either of the two stages. Booth
encoding is being used as an effective technique to re-
duce the number of partial products generated in the
multiplication process [13], [14] and [15] which in turn
results in substantial reduction in area. Furthermore,
for optimizing the second stage, Wallace tree multipli-
ers are used as they are faster due to logarithmic depth
and utilize lesser hardware by using fewest adders pos-

272 © 2021 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING

https://orcid.org/0000-0001-7201-0724
https://orcid.org/0000-0002-4819-9595
https://orcid.org/0000-0003-2911-7061
https://creativecommons.org/licenses/by/4.0/

THEORETICAL AND APPLIED ELECTRICAL ENGINEERING VOLUME: 19 | NUMBER: 3 | 2021 | SEPTEMBER

sible. Therefore, Booth and Wallace tree multipliers
can be modified and hybridized together to obtain an
optimized multiplier, namely Booth-Encoded Wallace
tree multiplier. This hybrid architecture has thus been
leveraged by several researchers [16], [17], [18], [19]
and [20] to attain higher speed and area optimization.
Hence, we have chosen the same over other architec-
tures for comparison with our proposed multiplier.

 PP7 PP5 PP3 PP1

 0 0 0

 PP8 PP6 PP4 PP2 PP0

Fig. 1: Partial Products generation for 16-bit operand using
Radix-4.

 PP5 PP3 PP1

 0 0 0

 PP4 PP2 PP0

Fig. 2: Partial Products generation for 16-bit operand using
Radix-8.

In Wallace tree multiplication, further
optimization can be obtained by dividing
an N × N multiplication in 4 small N

2 × N
2 mul-

tiplications which are processed in parallel [21]. The
outputs of these 4 smaller size multipliers are then
arranged suitably and added together using a ripple
carry adder or carry look-ahead adder to obtain the
final result. This helps in reducing the delay as
4 multiplications are done in parallel. However, the
Karatsuba multiplier [7] uses 3 small multiplier for an
N × N multiplication: two N

2 × N
2 multipliers and

one (N
2 + 1) × (N

2 + 1) multiplier. Thus, Karatsuba
multiplier requires one less multiplier compared to
Wallace tree multiplier which helps in reducing the
hardware drastically while causing meagre increase in
delay and power due to complex structure. One less
multiplier in Karatsuba algorithm is compensated by
using a series of addition and subtraction operation.
Therefore, the reduction in hardware becomes more
significant as the size of multiplier increases. This is
owed to the fact that hardware utilization increases
exponentially with increase in multiplier size; however,
the trend is linear for an adder. Therefore, in this
paper, we have utilized the properties of Karatsuba
algorithm and proposed a novel Booth-Encoded
Karatsuba multiplier which is a hybrid of Booth
and Karatsuba multiplier. The proposed multiplier
uses one less multiplier compared to Booth-Encoded

Wallace tree multiplier while individual multipliers
use Booth encoding to reduce the number of partial
products which is then employed with Wallace tree
addition scheme.

The rest of the manuscript has been structured as
follows: Sec. 2. puts forth the background of our
research, focusing on Booth’s algorithm, Wallace tree
multiplier and how they can be hybridized to obtain
an optimized Booth-Encoded Wallace tree multiplier.
Section 3. elaborates on the working and implementa-
tion of proposed Booth-Encoded Karatsuba multiplier
which is followed by the results in Sec. 4. Finally,
the paper has been concluded in Sec. 5. based on all
the findings from Sec. 4.

2. Background

2.1. Modified Booth’s Algorithm

The modified Booth’s algorithm [22] and [23] is
a slightly modified and improved version of the Booth’s
algorithm. In the modified Booth algorithm, parallel
encoding is performed as opposed to the serial encod-
ing used in the originally proposed Booth algorithm.
For Radix-R, encoding is obtained in following steps
[24]:

• LSB of Multiplier (MR) is padded with a single
bit 0.

• MR with padded 0 at LSB is partitioned into over-
lapping groups of x-bits where x = 1 + log2 R.

• Each block of x-bits is encoded to generate a single
partial product. Encoding is done based on the
Booth encoding table which differs for different
Radix.

• Each partial product is then shifted s-bits to the
left of its preceding neighbor, where s = x − 1.

For a N -bit multiplier, total of P partial products
are generated, where:

P = floor
(

N + s

s

)
. (1)

All the partial products, after shifting and getting
arranged suitably, are then added using appropriate
addition scheme.

In this paper, Radix-4 and Radix-8 modified Booth’s
algorithms are being utilized. For Radix-4, partition-
ing of the MR is done using overlapping groups of 3-
bits as shown in Fig. 1 and each block of 3-bits is en-
coded to generate a single partial product as per the

© 2021 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 273

THEORETICAL AND APPLIED ELECTRICAL ENGINEERING VOLUME: 19 | NUMBER: 3 | 2021 | SEPTEMBER

Tab. 1. For instance, PP0 in Fig. 1 is the the prod-
uct of the encoding obtained from {Bi+1,Bi,Bi−1} and
MD, where Bi−1 is the 1’b0 appended to the right of
the LSB, Bi is the 1st bit (LSB), and Bi is the 2nd bit.
Finally, each partial product generated is shifted 2-bits
left to its precedent before adding them. For an N -bit
operand, the number of partial products generated is
equal to floor(N+2

2). Similarly, the generation of the
partial products for Radix-8 is obtained by partition-
ing the multiplier into overlapping groups of 4-bits as
shown in Fig. 2, and then each block of 4-bits is en-
coded as per the Tab. 2.

Fig. 3: Generalized Wallace Tree Architecture.[7]

Finally, before addition, all partial product is then
shifted 3-bits left to its precedent. For an N -bit
operand, the number of partial products generated are
floor(N+3

3). One factor to be noted here is that the
MSB of the MR needs to be padded with at least an ex-
tra 0 bit. This is done to make the final sum a positive
multiple of the Multiplicand (MD). This accounts for
the appearance of 1 in the floor(N

2 +1) and floor(N
3 +1)

expressions.
Thus, by means of using Booth encoding, the num-

ber of partial products generated can be reduced which
in turn helps in reduction of hardware usage as well as
delay.

Tab. 1: Radix-4 Booth Encoding.

Bi+1 Bi Bi−1 Encoding
0 0 0 0× MD
0 0 1 1× MD
0 1 0 1× MD
0 1 1 2× MD
1 0 0 −2× MD
1 0 1 −1× MD
1 1 0 −1× MD
1 1 1 0× MD

Tab. 2: Radix-8 Booth Encoding.

Bi+2 Bi+1 Bi Bi−1 Encoding
0 0 0 0 0× MD
0 0 0 1 1× MD
0 0 1 0 1× MD
0 0 1 1 2× MD
0 1 0 0 2× MD
0 1 0 1 3× MD
0 1 1 0 3× MD
0 1 1 1 4× MD
1 0 0 0 −4× MD
1 0 0 1 −3× MD
1 0 1 0 −3× MD
1 0 1 1 −2× MD
1 1 0 0 −2× MD
1 1 0 1 −1× MD
1 1 1 0 −1× MD
1 1 1 1 0× MD

2.2. Booth-Encoded Wallace Tree
Multiplier

Several architectures have been proposed in the past
with the aim of boosting the speed of the multiplier.
One such architecture is the Wallace tree architecture
which is an improved version of tree based multipli-
ers [16] and [17]. The advantage offered by Wallace
tree multiplier in terms of speed gets amplified when
a higher multiplier units are constructed, generally
16-bit or higher. In Wallace tree architecture, the bits
of all of the partial products in each column are added
together by employing counters or compressors in par-
allel without carry propagation. A tree of Carry Save
Adders (CSA) is thus used until a final 2 row matrix
is generated. The final 2 rows are added using a ripple
carry adder or carry look-ahead adder. The main ad-
vantage of Wallace tree architecture is the speed since
the time complexity for the addition of N partial prod-
ucts is reduced from O(N2) to O(log N).

Furthermore, a higher order N × N bit multiplier
unit can be further optimized by splitting it into
smaller N

2 × N
2 bit multiplier units. Thus, an N -bit

MD can be split into two N
2 bit words which are MDH

and MDL. Similarly, the N -bit MR can be decom-
posed into MRH and MRL. Thus, the product for
an N -bit by N -bit multiplication can be attained by
employing four smaller N

2 × N
2 bit multiplier units. This

can be better understood from Fig. 3. The products
of the four multiplier units (M1, M2, M3, and M4) are
given as:

a = MDH × MRH , (2)

b = MDL × MRL, (3)

c = MDH × MRL, (4)

d = MDL × MRH . (5)

274 © 2021 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING

THEORETICAL AND APPLIED ELECTRICAL ENGINEERING VOLUME: 19 | NUMBER: 3 | 2021 | SEPTEMBER

Here, c and d are added together using A1 (adder)
and then the sum is left shifted by N

2 bits to generate
output e given as follows:

e = 2 N
2 (c + d). (6)

Now, a is also shifted left by N bits and added with
e and b, using adder A2 to obtain the final product
given by the following equation:

Product = 2N a + 2 N
2 (c + d) + b. (7)

Fig. 4: Multiplier Architecture.

Fig. 5: CSA Tree Architecture to add 9 partial products.

Each of the 4 N
2 bit multipliers (denoted as M1, M2,

M3, and M4 in Fig. 3) employ the processing steps as
highlighted in Fig. 4. Various blocks involved in the
multiplier architecture and their respective functional-
ity will be explained further.

Partial Product Generator: The first process-
ing block of the multiplier architecture, as depicted
in Fig. 4, is the Partial Product Generator block that
groups the MR as per the Fig. 1 or Fig. 2 depending on
the Radix-4 or Radix-8 encoding. Furthermore, it gen-
erates the partial products using the encoding tables
as described in Tab. 1 or Tab. 2 employing the steps
enumerated in Subsec. 2.1.

Partial Product Compressor: The generated
partial products are fed into the Partial Product Com-
pressor block which is the second processing block.
It employs a Wallace tree Architecture using 3:2 Carry
Save Adders (CSA). For instance, the Fig. 5 represents
the CSA tree architecture for the addition of 9 par-
tial products obtained from Radix-4 Booth encoding of
16-bit multiplier. The CSA takes three inputs (a, b and
cin) and generates two outputs, namely carry and sum.
CSA(s) are used to improve on the delay (O(log N))
and area (O(N)). The compression of partial products
using CSA is much faster than their conventional addi-
tion. The Cout and Sout which represent the carry-out
and sum generated by the last CSA block are passed
onto the next block of the architecture i.e. Full Adder
Array.

Full Adder Array: The Full Adder Array block
takes in the Cout and Sout generated from the Par-
tial Product Compressor block to generate the desired
N -bit product by using an array of full adders, com-
monly known as ripple carry adder. This block can
also be realized using carry look-ahead adder.

Thus, the Booth Encoded Wallace Tree Multiplier
offers advantage of both Booth Encoding for reduc-
tion of Partial Products using Radix-4 and Radix-8
algorithms and faster accumulation of the generated
partial products by reducing the levels of addition us-
ing the Wallace Tree structure. Thus, it finds use in
various DSP applications like the computation of FFT
for biomedical applications [25], and convolution oper-
ations [26].

3. Proposed Algorithm:
Booth-Encoded Karatsuba
Multiplier

The Karatsuba multiplication algorithm was proposed
in 1962 by Karatsuba and Ofman [27]. It was the first
attempt at finding efficient techniques for multiplica-
tion of large integers. The naive approach of multi-

© 2021 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 275

THEORETICAL AND APPLIED ELECTRICAL ENGINEERING VOLUME: 19 | NUMBER: 3 | 2021 | SEPTEMBER

plying two numbers has a time complexity of O(N2)
for a N -bit multiplication. However, the Karatsuba
algorithm leverages the divide and conquer approach
and has a time complexity of O(N log2 3) which is a sig-
nificant improvement over the naive algorithm. The
Karatsuba Algorithm can be employed in several ap-
plications that aim at achieving enhanced performance
and efficient hardware accelerators, such as biomedical
devices to address healthcare issues, human-computer
interfaces for human assistance and cryptographic ap-
plications like RSA and DSA [28], [29] and [28]. These
applications require high accuracy and demand for
compact hardware designing. Recently, an approx-
imate Karatsuba multiplier was proposed [7] in the
literature which focused on the error-resilient applica-
tions. However, in this paper, we intend to introduce
an accurate multiplier which integrates the Karatsuba
algorithm with Booth-Encoded multiplier in order to
achieve an optimized multiplier for applications where
accuracy is critical and cannot be compromised.
The flow of the algorithm has been depicted in Fig. 6.

In order to multiply two N -bit numbers MD and MR,
the Karatsuba algorithm can be understood as de-
scribed below. Let subscript H represent the upper
half bits of (MD/MR) and subscript L represent the
lower half bits of (MD/MR), then

a = MDH × MRH , (8)

b = MDL × MRL, (9)

At the same time,

c = MDH + MDL, (10)

d = MRH + MRL, (11)

Now, a and b are subtracted from the product of
c and d. It can be computed as follows:

e = (c × d) − (a + b) =
= (MDH + MDL)(MRH + MRL)+
−(MDH × MRH)(MDL × MRL), (12)

After simplifying Eq. (12) we get,

e = MDHMRL + MDLMRH . (13)

Thus, final product can be written as:

Product = 2N a + 2 N
2 e + b. (14)

From the above equations, it can be seen that for
N -bit multiplication, Karatsuba multiplier requires
two N

2 bit multipliers and one N
2 + 1 bit multiplier.

Therefore, a total of 3 small size multipliers are re-
quired along with a series of addition and subtraction
operations. In comparison to the Wallace tree multi-
plier as described in Subsec. 2.2. which utilises 4
small multipliers (denoted by M1, M2, M3, and M4),
the Karatsuba multiplier utilises only 3 such multipli-
ers units (M1, M2, and M3), as shown in Fig. 6. Thus,
the Karatsuba multiplier performs the same N -bit mul-
tiplication as the Wallace Tree multiplier utilizing one
lesser multiplier.

Fig. 6: Karatsuba Multiplier Architecture [7].

To further enhance the performance of the existing
Karatsuba multiplier, we have proposed the hybridized
architecture in which all the smaller size multipliers of
Karatsuba algorithm are realized to exploit the advan-
tages of reduced number of partial products obtained
from modified Booth algorithm and the fast, parallel
addition offered by Wallace Tree structure. Thus, to
overcome the drawback of a conventional multiplier
in which N × N multiplication results in N partial
products, Booth encoding with Radix-4 and Radix-8
has been used which greatly reduces the number of
partial products generated. Furthermore, these gen-
erated partial products are then added using Wallace
tree addition scheme. The multiplier architecture used
for BoothEncoded Karatsuba algorithm is same as de-
scribed in Fig. 4. Working of multiplier architecture
with respect to Booth-Encoded Karatsuba algorithm
will be described below.

Partial Product Generator: The first processing
block in Fig. 4 is the Partial Product Generator which
uses Radix-4 or Radix-8 Booth encoding to generate
partial products. For an N -bit multiplication, the pro-
posed algorithm requires two N

2 bit multipliers and one
N
2 + 1 bit multiplier. In order to develop a 32-bit mul-

276 © 2021 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING

THEORETICAL AND APPLIED ELECTRICAL ENGINEERING VOLUME: 19 | NUMBER: 3 | 2021 | SEPTEMBER

Tab. 3: Comparison of Total Hardware Utilization.

Encoding Percentage
Size used Structure Hardware decrease

64-bit × 64-bit
Radix-4 Booth Karatsuba 2478 18.59 %Booth Wallace 3044

Radix-8 Booth Karatsuba 1815 13.57 %Booth Wallace 2100

32-bit × 32-bit
Radix-4 Booth Karatsuba 777 14.05 %Booth Wallace 904

Radix-8 Booth Karatsuba 576 10.00 %Booth Wallace 640

16-bit × 16-bit
Radix-4 Booth Karatsuba 252 5.97 %Booth Wallace 268

Radix-8 Booth Karatsuba 192 −14.28 %Booth Wallace 168

Tab. 4: Comparison of PDP.

Encoding Percentage
Size used Structure Power Delay PDP increase

64-bit × 64-bit
Radix-4 Booth Karatsuba 0.715 36.36 25.99 1.86 %Booth Wallace 0.713 35.80 25.52

Radix-8 Booth Karatsuba 0.719 37.40 26.89 3.73 %Booth Wallace 0.715 36.25 25.92

32-bit × 32-bit
Radix-4 Booth Karatsuba 0.636 14.41 9.16 2.57 %Booth Wallace 0.635 14.07 8.93

Radix-8 Booth Karatsuba 0.639 15.23 9.73 6.45 %Booth Wallace 0.638 14.33 9.14

16-bit × 16-bit
Radix-4 Booth Karatsuba 0.612 10.39 6.36 3.08 %Booth Wallace 0.611 10.10 6.17

Radix-8 Booth Karatsuba 0.612 11.52 7.05 11.46 %Booth Wallace 0.610 10.37 6.32

tiplier using Radix-4 Booth encoding, two 16-bit mul-
tipliers and one 17-bit multiplier are used. For the
16-bit and 17-bit multipliers the number of par-
tial products generated would be 9 using the
Eq. (1). For the 32-bit multiplier using Radix-
8 Booth encoding, the 16-bit and 17-bit multi-
pliers would result in the generation of 6 par-
tial products. Similarly, in order to develop
a 64-bit multiplier, two 32-bit multipliers and one
33-bit multiplier are used.

Partial Product Compressor: The partial prod-
ucts generated in the Partial Product Generator block
are then added and compressed to generate two rows
of Cout and Sout using the CSA tree as described in
Fig. 5.

Full Adder Array: Finally, an array of full adders
is used to generate the product using Cout and Sout

obtained from the Partial Product Compressor block.

4. Results

Architectures of the proposed multiplier and BoothEn-
coded Wallace tree multiplier [16], as discussed in
Sec. 3. and Subsec. 2.2. respectively, have
been realized for 16-, 32- and 64-bit multiplication us-
ing Radix-4 as well as Radix-8 Booth encoding. All the

architectures have been implemented in Verilog HDL
using Xilinx Vivado Design Suite. They are then eval-
uated in terms of hardware utilization and PDP, as
discussed in this section.

Hardware Utilization: Hardware consumption for
all the architectures has been compared in terms of the
total number of Full Adders (FA) required. The per-
centage decrease in hardware of proposed architecture
with respect to Booth-Encoded Wallace tree multiplier
[16] have been recorded for all architectures in Tab. 3.
Following observations can be derived from Tab. 3:

• For 16-, 32- and 64-bit multiplication,
Radix-4 encoding, the proposed Booth-Encoded
Karatsuba multiplier utilizes less hardware com-
pared to Booth-Encoded Wallace tree multiplier.

• For 32- and 64-bit multiplication, Radix-8 encod-
ing, the proposed Booth-Encoded Karatsuba mul-
tiplier utilizes less hardware compared to Booth
Encoded Wallace tree multiplier.

• There is one outlier: for 16-bit multiplication,
Radix-8 encoding, the proposed Booth-Encoded
Karatsuba multiplier utilizes more hardware com-
pared to Booth-Encoded Wallace tree multiplier.
The reason for above discrepancy is that the hard-
ware addition due to extra addition/subtraction

© 2021 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 277

THEORETICAL AND APPLIED ELECTRICAL ENGINEERING VOLUME: 19 | NUMBER: 3 | 2021 | SEPTEMBER

operations overshadows the hardware savings due
to 1 less multiplier.

• Rate of decrease in hardware utilization from
Booth-Encoded Wallace tree multiplier to Booth-
Encoded Karatsuba multiplier increases with in-
crease in size. Thus, system performance, in terms
of hardware utilization, increases with increase in
size.

• For better visualization, graphical representation
has been added in Fig. 7 and Fig. 8. It can be seen
that plot corresponding to Booth-Encoded Karat-
suba multiplier always lies below the plot corre-
sponding to Booth-Encoded Wallace tree multi-
plier - for both Radix-4 and Radix-8. Moreover,
the gap between two plots keeps increasing with
increasing multiplier size which shows that im-
provement in terms of hardware increases with in-
creasing multiplier size.

Power Delay Product (PDP): The proposed
Booth-Encoded Karatsuba architecture has also been
compared with the Booth-Encoded Wallace [16] archi-
tecture in terms of the PDP. The results are summa-
rized in the Tab. 4 from where certain observations can
be made:

• For all the architectures, the proposed Booth-
Encoded Karatsuba multiplier has slightly more
PDP compared to Booth-Encoded Wallace tree
multiplier.

• Lowest and highest PDP is seen in case of Booth-
Encoded Wallace tree multiplier with Radix-4 en-
coding and Booth-Encoded Karatsuba multiplier
with Radix-8 encoding, respectively. This trend is
consistent for 16-bit, 32-bit as well as 64-bit mul-
tiplication.

• Percentage increase in PDP from Booth-Encoded
Wallace tree multiplier to Booth-Encoded Karat-
suba multiplier decreases with increase in size.
Thus, system performance, in terms of PDP,
increases with increase in size.

• For better visualization, graphical representa-
tion has been added in Fig. 9 and Fig. 10.
It can be seen that plot corresponding to Booth-
Encoded Karatsuba multiplier is always close
to the plot corresponding to Booth-Encoded
Wallace tree multiplier- for both Radix-4 and
Radix-8. Thus, it is evident that there is no sig-
nificant degradation in terms of PDP with varying
multiplier size.

SECTION POLICIES VOLUME: XX | NUMBER: X | 2021 | MONTH

Booth-Encoded Karatsuba: A Novel Hardware-Efficient
Multiplier

Riya JAIN 1 , Khushbu PAHWA 2 , Neeta PANDEY 1

Missing the institution/workplace!

Missing e-mail address of the author!

Missing DOI address of the article!

Missing History of the article!

1. Introduction

24 25 26

500

1,000

1,500

2,000

2,500

3,000

Multiplier size

H
ar

dw
ar

e
ut

ili
za

tio
n

Booth Karatsuba Booth Wallace

Fig. 1: Hardware utilization varying with multiplier size for
Radix-4 encoding.

24 25 26

500

1,000

1,500

2,000

2,500

3,000

Multiplier size

H
ar

dw
ar

e
ut

ili
za

tio
n

Booth Karatsuba Booth Wallace

Fig. 2: Hardware utilization varying with multiplier size for
Radix-8 encoding.

24 25 26

5

10

15

20

25

Multiplier Size

Po
we

r
D

el
ay

Pr
od

uc
t

Booth Karatsuba Booth Wallace

Fig. 3: PDP varying with multiplier size for Radix-4 encoding.

24 25 26

5

10

15

20

25

Multiplier size

Po
we

r
de

la
y

pr
od

uc
t

Booth Karatsuba Booth Wallace

Fig. 4: PDP varying with multiplier size for Radix-8 encoding.

© 2021 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 1

Fig. 7: Hardware Utilization varying with multiplier size for
Radix-4 encoding.

SECTION POLICIES VOLUME: XX | NUMBER: X | 2021 | MONTH

Booth-Encoded Karatsuba: A Novel Hardware-Efficient
Multiplier

Riya JAIN 1 , Khushbu PAHWA 2 , Neeta PANDEY 1

Missing the institution/workplace!

Missing e-mail address of the author!

Missing DOI address of the article!

Missing History of the article!

1. Introduction

24 25 26

500

1,000

1,500

2,000

2,500

3,000

Multiplier size

H
ar

dw
ar

e
ut

ili
za

tio
n

Booth Karatsuba Booth Wallace

Fig. 1: Hardware utilization varying with multiplier size for
Radix-4 encoding.

24 25 26

500

1,000

1,500

2,000

2,500

3,000

Multiplier size

H
ar

dw
ar

e
ut

ili
za

tio
n

Booth Karatsuba Booth Wallace

Fig. 2: Hardware utilization varying with multiplier size for
Radix-8 encoding.

24 25 26

5

10

15

20

25

Multiplier Size

Po
we

r
D

el
ay

Pr
od

uc
t

Booth Karatsuba Booth Wallace

Fig. 3: PDP varying with multiplier size for Radix-4 encoding.

24 25 26

5

10

15

20

25

Multiplier size

Po
we

r
de

la
y

pr
od

uc
t

Booth Karatsuba Booth Wallace

Fig. 4: PDP varying with multiplier size for Radix-8 encoding.

© 2021 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 1

Fig. 8: Hardware Utilization varying with multiplier size for
Radix-8 encoding.

SECTION POLICIES VOLUME: XX | NUMBER: X | 2021 | MONTH

Booth-Encoded Karatsuba: A Novel Hardware-Efficient
Multiplier

Riya JAIN 1 , Khushbu PAHWA 2 , Neeta PANDEY 1

Missing the institution/workplace!

Missing e-mail address of the author!

Missing DOI address of the article!

Missing History of the article!

1. Introduction

24 25 26

500

1,000

1,500

2,000

2,500

3,000

Multiplier size

H
ar

dw
ar

e
ut

ili
za

tio
n

Booth Karatsuba Booth Wallace

Fig. 1: Hardware utilization varying with multiplier size for
Radix-4 encoding.

24 25 26

500

1,000

1,500

2,000

2,500

3,000

Multiplier size

H
ar

dw
ar

e
ut

ili
za

tio
n

Booth Karatsuba Booth Wallace

Fig. 2: Hardware utilization varying with multiplier size for
Radix-8 encoding.

24 25 26

5

10

15

20

25

Multiplier size

Po
we

r
de

la
y

pr
od

uc
t

Booth Karatsuba Booth Wallace

Fig. 3: PDP varying with multiplier size for Radix-4 encoding.

24 25 26

5

10

15

20

25

Multiplier size

Po
we

r
de

la
y

pr
od

uc
t

Booth Karatsuba Booth Wallace

Fig. 4: PDP varying with multiplier size for Radix-8 encoding.

© 2021 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 1

Fig. 9: PDP varying with multiplier size for Radix-4 encoding.

278 © 2021 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING

THEORETICAL AND APPLIED ELECTRICAL ENGINEERING VOLUME: 19 | NUMBER: 3 | 2021 | SEPTEMBER

SECTION POLICIES VOLUME: XX | NUMBER: X | 2021 | MONTH

Booth-Encoded Karatsuba: A Novel Hardware-Efficient
Multiplier

Riya JAIN 1 , Khushbu PAHWA 2 , Neeta PANDEY 1

Missing the institution/workplace!

Missing e-mail address of the author!

Missing DOI address of the article!

Missing History of the article!

1. Introduction

24 25 26

500

1,000

1,500

2,000

2,500

3,000

Multiplier size

H
ar

dw
ar

e
ut

ili
za

tio
n

Booth Karatsuba Booth Wallace

Fig. 1: Hardware utilization varying with multiplier size for
Radix-4 encoding.

24 25 26

500

1,000

1,500

2,000

2,500

3,000

Multiplier size

H
ar

dw
ar

e
ut

ili
za

tio
n

Booth Karatsuba Booth Wallace

Fig. 2: Hardware utilization varying with multiplier size for
Radix-8 encoding.

24 25 26

5

10

15

20

25

Multiplier size

Po
we

r
de

la
y

pr
od

uc
t

Booth Karatsuba Booth Wallace

Fig. 3: PDP varying with multiplier size for Radix-4 encoding.

24 25 26

5

10

15

20

25

Multiplier size

Po
we

r
de

la
y

pr
od

uc
t

Booth Karatsuba Booth Wallace

Fig. 4: PDP varying with multiplier size for Radix-8 encoding.

© 2021 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 1

Fig. 10: PDP varying with multiplier size for Radix-8 encoding.

Hence, on the basis of above observations, we can
state that there is an overall performance improve-
ment of the proposed algorithm for 16-, 32- and 64
bit multipliers. The system’s performance improve-
ment increases with increasing size due to significant
reduction in hardware utilization with slight increase
in PDP. This can be accounted by the fact that per-
centage decrease in hardware increases with increase in
multiplier size. At the same time, percentage increase
in PDP decreases with increase in multiplier size. One
more thing to be noted here is that when compar-
ing different architectures with respect to encoding,
Radix-4 architectures shows better performance com-
pared to Radix-8 architectures.

5. Conclusion

An accurate multiplier based on the hybridized ar-
chitecture of modified Booth encoding and Karatsuba
multiplication algorithm was proposed in this paper.
It was compared with an existing accurate BoothEn-
coded Wallace tree multiplier [16]. For 64-bit and
32-bit multiplier, there is an average improvement of
16.08 % and 12.025 % in terms of hardware while slight
increase of 2.79 % and 4.51 % of PDP respectively has
been encountered. Similar trend was seen for 16-bit
Radix-4 multipliers. However, there is an exception
seen for 16-bit Radix-8 which does not show any im-
provement in terms of hardware and PDP compared
to the Booth-Encoded Wallace tree multiplier. Thus,
on the basis of results encapsulated in previous section,
it can be concluded that with increasing multiplier size,
our proposed algorithm shows significant improvement.
In future, the presented work can be extended by hy-
bridizing Karatsuba multiplication method with other
existing multipliers to optimize it further and lever-

age it in different applications. Furthermore, it can
be extended to approximate computing operations to
be employed in error-resilient applications.

Author Contributions

R.J. conceived the presented idea. R.J. encouraged
K.P. to investigate the literature and formulate the
plan for the proposed architecture. Both R.J. and K.P.
developed the methodology and implemented the algo-
rithms. R.J. performed data curation while K.P. wrote
the original draft. Both R.J. and K.P. contributed to
the final version of the manuscript. N.P. administered
and supervised the project and contributed towards the
modification of the final layout. All authors discussed
the results and contributed to the final manuscript.

References

[1] GOSWAMI, S. S. P., B. PAUL, S. DUTT and
G. TRIVEDI. Comparative Review of Approxi-
mate Multipliers. In: 30th International Confer-
ence Radioelektronika (RADIOELEKTRONIKA).
Bratislava: IEEE, 2020 pp. 1–6. IBSN 978-1-
7281-6469-4. DOI: 10.1109/RADIOELEKTRON-
IKA49387.2020.9092370.

[2] LIU, W., L. QIAN, C. WANG, H. JIANG,
J. HAN and F. LOMBARDI. Design of Ap-
proximate Radix-4 Booth Multipliers for Error-
Tolerant Computing. IEEE Transactions on Com-
puters. 2017, vol. 66, iss. 8, pp. 1435–1441.
ISSN 1557-9956. DOI: 10.1109/TC.2017.2672976.

[3] JIANG, H., C. LIU, L. LIU, F. LOMBARDI
and J. HAN. A Review, Classification, and Com-
parative Evaluation of Approximate Arithmetic
Circuits. ACM Journal on Emerging Technolo-
gies in Computing Systems. 2017, vol. 13, iss. 4,
pp. 1–34. ISSN 1550-4832. DOI: 10.1145/3094124.

[4] MASADEH, M., O. HASAN and S. TAHAR.
Comparative Study of Approximate Multipli-
ers. In: Proceedings of the 2018 on Great Lakes
Symposium on VLSI (GLSVLSI). New York:
ACM, 2018, pp. 415–418. ISBN 978-1-4503-5724-
1. DOI: 10.1145/3194554.3194626.

[5] JIANG, H., C. LIU, N. MAHESHWARI, F. LOM-
BARDI and J. HAN. A comparative evaluation
of approximate multipliers. In: IEEE/ACM Inter-
national Symposium on Nanoscale Architectures
(NANOARCH). Beijing: IEEE, 2016. ISBN 978-
1-4503-4330-5. DOI: 10.1145/2950067.2950068.

© 2021 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 279

http://dx.doi.org/10.1109/RADIOELEKTRONIKA49387.2020.9092370
http://dx.doi.org/10.1109/RADIOELEKTRONIKA49387.2020.9092370
http://dx.doi.org/10.1109/TC.2017.2672976
http://dx.doi.org/10.1145/3094124
http://dx.doi.org/10.1145/3194554.3194626
http://dx.doi.org/10.1145/2950067.2950068

THEORETICAL AND APPLIED ELECTRICAL ENGINEERING VOLUME: 19 | NUMBER: 3 | 2021 | SEPTEMBER

[6] YAMAMOTO, T., I. TANIGUCHI,
H. TOMIYAMA, S. YAMASHITA and Y. HARA-
AZUMI. A systematic methodology for design
and analysis of approximate array multipliers.
In: IEEE Asia Pacific Conference on Cir-
cuits and Systems (APCCAS). Jeju: IEEE,
2016 pp. 352–354. ISBN 978-1-5090-1570-2.
DOI: 10.1109/APCCAS.2016.7803973.

[7] JAIN, R. and N. PANDEY. Approximate
Karatsuba multiplier for error-resilient ap-
plications. AEU - International Journal
of Electronics and Communications. 2021,
vol. 130, iss. 1, pp. 1434–8411. ISSN 1434-8411.
DOI: 10.1016/j.aeue.2020.153579.

[8] LIU, X., Y. ZHENG, M. W. PHYU, F. N. EN-
DRU, V. NAVANEETHAN and B. ZHAO. An
Ultra-Low Power ECG Acquisition and Moni-
toring ASIC System for WBAN Applications.
IEEE Journal on Emerging and Selected Top-
ics in Circuits and Systems. 2012, vol. 2, iss. 1,
pp. 60–70. ISSN 2156-3365. DOI: 10.1109/JET-
CAS.2012.2187707.

[9] CHEN, Y., E. YAO and A. BASU. A 128-
Channel Extreme Learning Machine-Based Neu-
ral Decoder for Brain Machine Interfaces. IEEE
Transactions on Biomedical Circuits and Systems.
2016, vol. 10, iss. 3, pp. 679–692. ISSN 1940-9990.
DOI: 10.1109/TBCAS.2015.2483618.

[10] SHAIK, N. B. Novel Implementation of Fi-
nite Field Multipliers over GF(2m) for Emerging
Cryptographic Applications. Dayton, 2017. Master
thesis. Wright State University. Supervisor Jiafeng
Xie, Ph.D.

[11] GAUBATZ, G. and B. SUNAR. Robust fi-
nite field arithmetic for fault-tolerant public-key
cryptography. In: Proceedings of the Third in-
ternational conference on Fault Diagnosis and
Tolerance in Cryptography (FDTC’06). Berlin:
Springer, 2006, pp. 196–210. ISBN 978-3-540-
46251-4. DOI: 10.1007/11889700_18.

[12] SAVAS, E. and C. K. KOC. Finite field arith-
metic for cryptography. IEEE Circuits and Sys-
tems Magazine. 2010, vol. 10, iss. 2, pp. 40–56.
ISSN 1558-0830. DOI: 10.1109/mcas.2010.936785.

[13] WARIS, H., C. WANG and W. LIU.
Hybrid Low Radix Encoding-Based Approxi-
mate Booth Multipliers. IEEE Transactions on
Circuits and Systems II: Express Briefs. 2020,
vol. 67, iss. 12, pp. 3367–3371. ISSN 1558-3791.
DOI: 10.1109/TCSII.2020.2975094.

[14] HE, Y. and C. CHANG. A New Redun-
dant Binary Booth Encoding for Fast 2n-Bit

Multiplier Design. IEEE Transactions on Cir-
cuits and Systems I: Regular Papers. 2009,
vol. 56, iss. 6, pp. 1192–1201. ISSN 1558-0806.
DOI: 10.1109/TCSI.2008.2008503.

[15] KUANG, S.-R., J.-P. WANG and C.-Y. GUO.
Modified Booth Multipliers With a Regular Par-
tial Product Array. IEEE Transactions on Cir-
cuits and Systems II: Express Briefs. 2009,
vol. 56, iss. 5, pp. 404–408. ISSN 1558-3791.
DOI: 10.1109/TCSII.2009.2019334.

[16] ASIF, S., and Y. KONG. Performance analysis
of Wallace and radix-4 Booth-Wallace multipliers.
In: Electronic System Level Synthesis Conference
(ESLsyn). San Francisco: IEEE, 2015, pp. 17–22.
ISBN 979-1-0922-7912-2.

[17] RAO, M. J. and S. DUBEY. A high speed
and area efficient Booth recorded Wallace tree
multiplier for fast arithmetic circuits. In: Asia
Pacific Conference on Postgraduate Research
in Microelectronics and Electronics. Hyderabad:
IEEE, 2012, pp. 220–223. ISBN 978-1-4673-5067-
9. DOI: 10.1109/PrimeAsia.2012.6458658.

[18] SHARMA, K., N. and S. RAVI. Modified Booth
Multiplier using Wallace Structure and Efficient
Carry Select Adder. International Journal of
Computer Applications. 2013, vol. 68, no. 13,
pp. 39–42. ISSN 0975-8887. DOI: 10.5120/11643-
7130.

[19] SUREKA, N., R. PORSELVI and K. KU-
MUTHAPRIYA. An efficient high speed Wallace
tree multiplier. In: International Conference on
Information Communication and Embedded Sys-
tems (ICICES). Chennai: IEEE, 2013, pp. 1023–
1026. ISBN 978-1-4673-5788-3. DOI: 10.1109/ICI-
CES.2013.6508192.

[20] LAKSHMANAN, T, M. OTHMAN and
M. A. M. ALI. High performance parallel
multiplier using Wallace-Booth algorithm.
In: Proceedings of the 9th International Con-
ference on Neural Information Processing.
Computational Intelligence for the E-Age
(IEEE Cat. No.02EX575)(CONIP ’02). Penang:
IEEE, 2002, pp. 433–436. ISBN 0-7803-7578-5.
DOI: 10.1109/SMELEC.2002.1217859.

[21] BHARADWAJ K., P. S. MANE and J. HENKEL.
Power- and area-efficient Approximate Wal-
lace Tree Multiplier for error-resilient systems.
In: Fifteenth International Symposium on Qual-
ity Electronic Design. Santa Clara: IEEE,
2014, pp. 263–269. ISBN 978-1-4799-3946-6.
DOI: 10.1109/ISQED.2014.6783335.

280 © 2021 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING

http://dx.doi.org/10.1109/APCCAS.2016.7803973
http://dx.doi.org/10.1016/j.aeue.2020.153579
http://dx.doi.org/10.1109/JETCAS.2012.2187707
http://dx.doi.org/10.1109/JETCAS.2012.2187707
http://dx.doi.org/10.1109/TBCAS.2015.2483618
http://dx.doi.org/10.1007/11889700_18
http://dx.doi.org/10.1109/mcas.2010.936785
http://dx.doi.org/10.1109/TCSII.2020.2975094
http://dx.doi.org/10.1109/TCSI.2008.2008503
http://dx.doi.org/10.1109/TCSII.2009.2019334
http://dx.doi.org/10.1109/PrimeAsia.2012.6458658
http://dx.doi.org/10.5120/11643-7130
http://dx.doi.org/10.5120/11643-7130
http://dx.doi.org/10.1109/ICICES.2013.6508192
http://dx.doi.org/10.1109/ICICES.2013.6508192
http://dx.doi.org/10.1109/SMELEC.2002.1217859
http://dx.doi.org/10.1109/ISQED.2014.6783335

THEORETICAL AND APPLIED ELECTRICAL ENGINEERING VOLUME: 19 | NUMBER: 3 | 2021 | SEPTEMBER

[22] MACSORLEY, O. L. High-Speed Arithmetic
in Binary Computers. Proceedings of the IRE.
1961, vol. 49, iss. 1 pp. 67–91. ISSN 2162-6634.
DOI: 10.1109/JRPROC.1961.287779.

[23] KAUR, N. and R. K. PATIAL. Implementation
of Modified Booth Multiplier using Pipeline Tech-
nique on FPGA. International Journal of Com-
puter Applications. 1913, vol. 68, iss. 16 pp. 38–41.
ISSN 0975-8887. DOI: 10.5120/11666-7261.

[24] BEWICK, G. and M. J. FLYNN. Binary Multipli-
cation using Partially Redundant Multiples. Stan-
ford: Stanford University. 1992.

[25] AJAY, A. and M. REGEENA. VLSI Implementa-
tion of an Improved Multiplier for FFT Computa-
tion in Biomedical Applications. In: IEEE Com-
puter Society Annual Symposium on VLSI. Mont-
pellier: IEEE, 2015, pp. 68–73. ISBN 978-1-4799-
8719-1. DOI: 10.1109/ISVLSI.2015.104

[26] MOHANTY, J. P., S. and R. DAS and
S. K. PANDA. Design and Simulation of Convo-
lution using Booth Encoded Wallace Tree Multi-
plier. IOSR Journal of Electronics and Communi-
cation Engineering (IOSR-JECE). 2016, pp. 42–
46. ISSN 2278-2834.

[27] KARATSUBA, A. and Y. OFMAN. Multiplica-
tion of Multidigit Numbers on Automata. Dok-
lady Akadademii Nauk SSSR. 1962, vol. 145, iss. 2,
pp. 293–294.

[28] KASHIF, M., I. CICEK and M. IMRAN.
A Hardware Efficient Elliptic Curve Accelera-
tor for FPGA Based Cryptographic Applications.
In: 11th International Conference on Electrical
and Electronics Engineering (ELECO). Bursa:
IEEE, 2019, pp. 362–366. ISBN 978-605-01-1275-
7. DOI: 10.23919/ELECO47770.2019.8990437.

[29] CHOW, G. C. T., K. EGURO, W. LUK and
P. LEONG. A Karatsuba-Based Montgomery
Multiplier. In: International Conference on Field
Programmable Logic and Applications. Milan:
IEEE, 2010, pp. 434–437. ISBN 978-1-4244-7843-
9. DOI: 10.1109/FPL.2010.89.

[30] MANIKANDAN, S. and C. PALANISAMY.
Design of an Efficient Binary Vedic Mul-
tiplier for High Speed Applications using
Vedic Mathematics with Bit Reduction Tech-
nique. Circuits and Systems. 2016, vol. 7,

no. 9, pp. 2593–2602. ISSN 2153-1293.
DOI: 10.4236/cs.2016.79224.

About Authors

Riya JAIN received her B.Tech in the discipline
Electronics and Communication Engineering from
Delhi Technological University (DTU) in 2020. She is a
research enthusiast who aims to contribute in the field
of Electronics and Communication in coming future.
Her areas of interest are: Digital Very Large Scale
Integration (VLSI) design, Digital Design, and Com-
puter Architecture. She has been contributing to the
field of Electronics since 2016 and has been rigorously
involved in research since 2018. Being a novice re-
searcher, she is still exploring multiple domains in the
field of Electronics and is motivated enough for further
contribution to technological advancement in the same.

Khushbu PAHWA received her B.Tech from
Delhi Technological University (DTU) in 2020 in
the field of Electrical and Electronics Engineering
(Gold Medallist). Her research interests span across
the broad domain of Very Large Scale Integration
(VLSI) (Digital and Analog Circuits), Internet of
Things (IoT), Artificial Intelligence, and Wireless
Sensor Networks. She has gained valuable experience
in these domains through her research internships
and publications. She aspires to work on hardware
optimization which can be leveraged to serve as the
workhorse for future complex Deep Learning Models
for deployment at the edge.

Neeta PANDEY received her M.E. in Micro-
electronics from Birla Institute of Technology and
Sciences, Pilani in 1991 and Ph.D. from Guru Gobind
Singh Indraprastha University, Delhi in 2009. She has
served in Central Electronics Engineering Research
Institute, Pilani, Indian Institute of Technology, Delhi,
Priyadarshini College of Computer Science, Noida and
Bharati Vidyapeeth’s College of Engineering, Delhi in
various capacities. At present, she is a professor in
the ECE department, Delhi Technological University.
Her teaching and research interests include analog
and digital VLSI design. A life member of Indian
Society for Technical Education (ISTE), and senior
member of Institute of Electrical and Electronics
Engineers (IEEE), USA, she has coauthored over 100
papers in international, national journals of repute
and conferences.

© 2021 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 281

http://dx.doi.org/10.1109/JRPROC.1961.287779
http://dx.doi.org/10.5120/11666-7261
http://dx.doi.org/10.1109/ISVLSI.2015.104
http://dx.doi.org/10.23919/ELECO47770.2019.8990437
http://dx.doi.org/10.1109/FPL.2010.89
http://dx.doi.org/10.4236/cs.2016.79224

	Introduction
	Background
	Modified Booth's Algorithm
	Booth-Encoded Wallace Tree Multiplier

	Proposed Algorithm: Booth-Encoded Karatsuba Multiplier
	Results
	Conclusion

