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Summary: The paper deals with the new method of power analysis of single-phase power electronic systems.
Using a new particular transform theory the ordinary single-phase system can be transformed into equivalent
two-axis orthogonal one. The new original thought is based on the idea that ordinary single-phase quantity can
be complemented by fictitious second phase so that both of them will create orthogonal system, as it usual in
three-phase systems. Application of the above theory makes this possible to use complex methods of analysis as
instantaneous reactive power method, which have not been usable for single-phase systems so far. All types of
the power, active and reactive, can be determined by this way.

1. INTRODUCTION
It is well known that the analysis of multiphase 15
systems can be more simple using the Clarke/ Park : S .
transformation in two-axis stationary (& f) or rotary N ,*/‘
(d.q) reference frame. The above transformation can 85
be used for electrical machines as well as for power Upi UREN
electronic systems. The projection of time state- 3 80 soN10 1
space vector for any quantity of symmetrical three- 05 1
phase system in Gauss complex plane (o + jf)
shows out six-side symmetry of vector quantity
trajectory. Then, analysis of such a system can be 45
focused on the interval equal to 1/6 of the time
period only [1]-[3]. It is clear that when using
similar transform of single-phase quantity into
equivalent two-axes orthogonal system it will be
possible to use all advantages as in three-phase
transformed system with respect of 4-side symmetry
instead of 6-side of previous[4].

Fig. la Example of time-waveforms of voltage and
current of the real phase

we obtain orthogonal co-ordinate system whereas
g =u (1) and up = u,(t). (6)

1.5
2. USING ORTHOGONAL TRANSFORMA- 1 i1as
TION FOR SINGLE-PHASE SYSTEM os|
As mentioned the basis for this approach can be S
symbolic vector expression and substitution of o ¥ e
h&f[ﬂf}ﬂiﬁ ful"iCTiOn, 30 90 120 150 180N210 240\ 270 300 330,360
cos(wr) -> exp(jor) = cos(wr) + j.sin(wr), (1) o \
thus for resistant-inductive load current in steady- RR T AR— -
state e
(1) = Uexp(jon/ | Z| exp(jo)= Lexp[j.(0r-¢ )] e

= [[cos(wt-Q)+j.sin(we-@)], where (2) Fig. 1b Time-waveforms of voltage and current of
Z=R+jol, I = Ul { R+ joL |, and the fictitious imaginary phase
@ = arctg (0L/R).

The resulted current is simply the real part of Note that both phases, real- and imaginary ones,
1), Le.s are completely separated, however they are

i(1) = Lcos(wr-¢). (3) synchronised by signal SYNC, see Fig. 2. Such
Assuming a single-phase system defined as in Fig. arrangement implies that zero component of any
ia quantity will be a priori zero.

u(t) = U.cos(wn);i(t) = L.cos(@t-¢). @) Generally, the fictitious phase can be created by
After complementing by fictitious imaginary s,ftifting of ordinary single-phase quantity to the
phase defined as in [4] by above approach as Fig. right with phase shift equal to -n/2. It follows out
1b from the 4-side symmetry of vector quantity

w(r) = Upsin(@n);i(f) = I,.sin(wt-@), (5) trajectory in Gauss plane [4].
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Fig. 2 Arrangement of real- and fictitious
imaginary phases of single-phase system

The following equations (7)-(9) must be valid for
quantity with 4-side symmetry
8y = % (- TI4) . exp(jn/2), and also (7
x(1) = -x(t-T12) and x;(1) = x{t-T/4). (8)
Finally, the general transform equation can be
introduced for single-phase system
() = K x(n) + exp(in/2).x,(0)], (9
where K is multiplicative constant (equal to 1 for
single-phase system) and
Xo = x(#) and x5 = x;(2). (10a.b)
Let's notice that all integral quantities (e.g.
average- and/or rms values) are then possible to
compute over one fourth of time period.

2.1. Fourier Analysis in Orthogonal Coordinate
System
Fourier analysis of investigated quantity is also
possible to do in 1/4 of time period.
The complex Fourier coefficients for basic
harmonic component are defined now as

;

4 4 ;
C, w—T—j};({).e?”("ciz s (1)
o

that means, within one fourth of the time period.
The magnitude and phase shift of the fundamental
harmonic component of any quantity x(¢) is then:

B

C,=(C, +Cip) s @, xaxcmuc‘ﬁ L (12,13)
e
Let’s assume a set of numerical data for u{(r) and
wr) from [4]. The result can be gained by
application of numerical solution of the integral
expression (11) by substitution
of ™ x#(1).exp(-jon).dr =
UNGa ZVARAD) + (RO+AND/2), - (14)
where N is number of samples, & is order of the
sample.

3. MODIFIED SINGLE-PHASE POWER
THEORY

3.1, Instantaneous Active-, Reactive- and
Distortion Power Determination for Both Real-
and Imaginary Phases under Linear Load
(with Inductive/Capacitive Power Factor)

Assume now, for the simplicity, harmonic
waveforms of phase-voltage and phase-current
u(ty = U.cos{m),i{t) = Lcos(wr-@). (15a,b)
Utilisation of instantanecus reactive  power
method is used in [5] for three-phase systems, and
above theory allows its use for single-phase
systems as well taking in account (4) - (6)
Pap= o do + Hp.dp,
Gop = He. ip - Upe io (16ab)
Note that instantaneous power pgp is not purely
active one because of it comprises both DC-
average and AC alternating components generally
Pop= Papav + Papac. (I7)
In fact, pup is apparent power of both real- and
fictitious phases.
Similarly as in (17) we get for instantaneous
POWEr §op
Gop = Papay + Gopacs (18)
where gup are the instantaneous reactive- and
distortion components of powers of both phases in
orthogonal co-ordinates.
Power components for non-linear load (diode
rectifier) are shown in Fig. 3.
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Fig. 3 Time-dependence of instantaneous pap qup
components of the power for non-linear load

3.2. Instantaneous & Average Values of Active,
Reactive and Distortion Power Determination
of Real Phase under Linear Load (with
Inductive Power Factor)

From the Fig. 5 flows that active- and reactive
power average values of real phase will be simply
one half of pe  and  gup,  respectively.
Instantaneous values of active- and reactive power
components of real phase then will be

Pi= pop/2.[1+cos(2an)] =

= pugl(cos’ (@], (19a)
and g1 = gop/2.[1-cos(Zwn)] =
= qupl (sin’(wn)]. (19b)

Note that instantaneous active power p; is not
equal instantaneous product of phase voltage and
phase current

5= Uy , 20)
which is instantaneous apparent power, in spite of
its average value is equal to average value of
active power. Instantaneous reactive power ggg is
to be understood as negative one due to presenting
below time axis for clarity.
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Instantaneous distortion power pagac and gapac in
both axes will be equal zero.
Average values of active- , reactive- and
distortion power are then constant due to constant
waveforms of (17), (18)
Pav = PapaviZ  and Qav = Qopav/2. (21ab)
Distortion component of power will be zero due to
absence of high harmonic components:
Dyy=0. (22
The apparent power comprises all power
components by the rglation .

S = V(P2 av+Q*av+D’ay). (23)
Phase displacement factor of fundamental
harmonic component can be expressed as

@1 =arctan (Qav/ Pay) =

= arctan [( g ip - g i)/ ooig + up.ig)].(24)
and it can be determined without any “zero-
crossing” measurement.
Power relations for all power components of real
phase are shown in Fig. 4
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Fig. 4 Power component waveforms of real phase
in p-axis

It's important that p,, g, and ¢ ; are - under
condition of steady-state and linear load -
determined instantaneously, what is the essential
contribution of introduced method in relation to
s0 far known ones.

The total apparent power s (equal uy.i,) can be
generally projected and decomposed into p-, g-
and r-axes. But, under p-projection the average
value of all reactive power will be zero (Fig. 7).
and, vice-versa under g-projection, the average
value of active power will be zero (Fig. 8). Power
in r-axis (distortion component) will be zero in
case of linear load. In contrary to p- and g-axes it
comprises reactive high harmonics power, only.
Average values of both component of
fundamental power pl and g1 will be therefore
also zero.,

Generally, the power in p-axis will be consist of
active component p; and distortion component of
power p_, what is analogically to (17). (18)

. p=pi+p.. (25)
similarly as power in g-axis
g =q; + .. {26)

The g-power components are shown in Fig. 5.

Fig. 5 Power component waveforms of real phase
in g-axis

3.3. Instantaneous & Average Values of Active,
Reactive and Distortion Power Determination
of Real Phase under Non-Linear Load with
Inductive/Capacitive Power Factor

In case of non-linear loads the wvalues of
instantaneous active and reactive powers are not
constant, due to existence of distortion power
caused by higher harmonic components.

Let’s consider non-linear waveforms of current as
in Fig. 6.
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Fig. 6 Example of time-waveforms of voltage and
current of the real phase

Power circumstances for power components of
both phases are shown in Fig. 7
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Fig. 7 Active- and reactive powers of both phases
at non-linear load

Power component in p-axis of real phase can be
shown now as in Fig. 8.
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Fig. 8 Power component waveforms of real phase
in p-axis

Using time-sub-optimal analysis in transformed
orthogonal co-ordinates for 4-side symmetry an
average value of active power P,y of an original
(real) phase

Pay = Papav/2 = 2/ Tof "*[ug.iq + ug.ig 1.d1, (27)
and reactive power Qav of original phase

Oav = Qupav/2 = 2 T.ol M lug. ig - up. iz].dr. (28)
Phase displacement is also possible to determine
by average values of active- and reactive powers

@ 1= arctan{Qav / Pav). (29)

Now, the phase displacement is integral quantity
and can be determined over one fourth of the time
period similarly as average power values.
Power component in p-. g- and r-axes of real
phase can be shown now as in Fig. 8, Fig. 9 and
Fig. 10.
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Fig. 9 Power component waveforms of real phase
in g-axis

In case of ideal rectagonal waveform of load
current {idealized diode rectifier) the actual value
of Qav will be zero due to zero phase
displacement ¢.
For ¢ ;= 0 (and Qsv = 0), the distortion
component of power can be calculate as
Day = V(5§ - PPay) =

=V[2/m)* - (1/2)°] = 0.394 pu. (30)
Average values of active and reactive powers of
imaginary fictitious phase Py, Qv can be
determined by similar way.
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Fig. 10 Active- and reactive components of the
real phase current

4. DISCUSSION AND CONCLUSION

In active filters the reference values of
compensating currents are based on the
knowledge of above derived formulae for active
and reactive powers, where the average value of
active power must be eliminated. In three-phase
active filters the AC components of powers are
gained usually by low-pass filtering, sometimes
by calculation through some time interval (one
period). Thanks to introduced theory is possible to
compute the average values of active and reactive
powers for 1/4 of time period. These average
values can be calculated continuously for each
time instant 7, using data stored for previous 1/4
of period.
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