ON THE USE OF THE p-q THEORY FOR HARMONIC CURRENTS CANCELLATION WITH SHUNT ACTIVE FILTER

Federico Martin SERRA1, Oscar Danilo MONTOYA2, Cristian Hernan DE ANGELO3, Daniel Gustavo FORCHETTI3

1Laboratorio de Control Automatico, Facultad de Ingenieria y Ciencias Agropecuarias, Universidad Nacional de San Luis, Ruta 148 Ext. Norte, 5730 Villa Mercedes, San Luis, Argentina
2Ingenieria Electrica e Ingenieria Electronica, Facultad de Ingenieria, Universidad Tecnologica de Bolivar, Parque Industrial y Tecnologico Carlos Velez Pombo Km. 1 Via Turbaco, 131001 Cartagena, Colombia
3Grupo de Electronica Aplicada, Instituto de Investigaciones en Tecnologias Energeticas y Materiales, Facultad de Ingenieria, Universidad Nacional de Rio Cuarto, Ruta Nacional 36 Km. 601, X5804BYA Rio Cuarto, Argentina

1fserra@ieee.org, 2o.d.montoyagiraldo@ieee.org, 3cdeangelo@ieee.org, dforchetti@ing.unrc.edu.ar

DOI: 10.15598/aeee.v17i3.3415

Abstract. Discussion and mathematical proof on necessary and sufficient conditions for the application of the p-q theory for compensating the harmonic currents consumed by non-linear load using a shunt active filter are presented. These conditions over instantaneous active and reactive powers were not addressed before and must be considered on the design of new control strategies based on p-q theory. Theoretical demonstration is proposed and an application example with simulations results is used to validate the theoretical results.

Keywords

Active filter control, harmonic compensation, p-q theory.

1. Introduction

Since late the 1960s, with the appearance of power electronic devices, the use of non-linear loads was increased significantly. In many cases, this kind of load represents a high percentage of the total load connected to the electric system \cite{1}, \cite{2} and \cite{3}.

Non-linear loads consume high harmonic currents which must be supplied by the power source and transported by the transmission line increasing power losses due to parasitic resistance \cite{4}, \cite{5} and \cite{6}. Besides generating undesirable losses in the transmission line, the consumption of currents with high harmonics content is currently penalized by the power system operators \cite{7} or affects the useful life of electrical machines \cite{8}. For these reasons, eliminating harmonic components of the load current implies cost reduction in the system operation.

One way of eliminating harmonic currents consumed from the power source by the load, even for unbalanced and/or distorted source voltages (V), is using a shunt active filter \cite{9}, \cite{10}, \cite{11} and \cite{12}. Shunt active filters are based on the injection of compensation currents (I_C) for canceling undesirable harmonics components of the current consumed from the source (I_S). Figure \ref{fig:power_system} shows a block diagram for the power system with a shunt active filter. Shunt active filters are composed by an electronic power converter, a passive filter (L_f) and a controller \cite{11}, \cite{13} and \cite{14}. Several control strategies have been proposed for shunt active filters based on the Instantaneous Active-Reactive Power theory \cite{15}, \cite{16}, \cite{17} and \cite{18}, or simply the p-q

\textbf{Fig. 1:} Power System with shunt active filter.
theory [19], [20]. Control based on this theory is intended to eliminate undesirable fundamental and harmonic current components from the source (harmonics elimination and reactive power compensation) while allowing the active and reactive power defined by control strategy to go through [21] and [22].

In the design of control strategies used to get sinusoidal currents from the source is assumed that the oscillating components of both real and imaginary powers, must be zero. In [11], several control strategies for Shunt Active Filters based in pq theory are proposed. In these strategies, the control objective is to cancel the oscillating components of the power; however, it is not mathematically proved that both power components, real and imaginary, must be null instead of only one of them to achieve sinusoidal current consumed from the power source.

This work proves mathematically that both oscillating power components must be zero in order for the control objective to be fulfilled. It also offers an example where only one of the power components is which shows clearly that this condition is not enough to fulfill the control objective.

The work is organized as follows: Sec. 2. describes the control of sinusoidal current using the p-q theory with a detail of the calculations for the compensation power. Section 3. contains an application example in which it can be clearly observed the necessity of annulling both power components in order to achieve the control objective. Finally, conclusions are given in Sec. 4.

2. Control Strategy

The main goal of the control strategy is to compensate the load current \(I_L \) harmonic components so as to get a sinusoidal balanced current from power source \(I_S \) on a three wire unbalanced system where line voltages may have harmonic components.

This control objective can be described as:

\[
I_S = I_S^{+1},
\]

\[
(I_S^{-1} = I_S^{-n} = 0, \quad n = 2, 3, \ldots, \infty),
\]

where \(I_S^{+n} \) is the positive (+) or negative (−) sequence component corresponding to the \(n^{th} \) harmonic component, whose frequency is \(n \) times the fundamental system frequency, \(\omega \) [23].

2.1. Power Calculation

On balanced 3-wire systems with harmonic components, line voltages can be described on \(\alpha \beta \) coordinates [24] as:

\[
v_{\alpha} = +\sqrt{3} \sum_{m=1}^{\infty} V^{+m} \sin(m\omega t + \phi^{+m}) + \ldots +\sqrt{3} \sum_{m=1}^{\infty} V^{-m} \sin(m\omega t + \phi^{-m}),
\]

\[
v_{\beta} = -\sqrt{3} \sum_{m=1}^{\infty} V^{+m} \cos(m\omega t + \phi^{+m}) + \ldots +\sqrt{3} \sum_{m=1}^{\infty} V^{-m} \cos(m\omega t + \phi^{-m}),
\]

where \(m \) is the \(m^{th} \) harmonic component of the line voltage and \(\phi^{\pm m} \) the phase angle of this component.

By considering the same degree of freedom as for the line voltages, line currents can be described as:

\[
i_{\alpha} = +\sqrt{3} \sum_{n=1}^{\infty} I^{+n} \sin(n\omega t + \delta^{+n}) + \ldots +\sqrt{3} \sum_{n=1}^{\infty} I^{-n} \sin(n\omega t + \delta^{-n}),
\]

\[
i_{\beta} = -\sqrt{3} \sum_{n=1}^{\infty} I^{+n} \cos(n\omega t + \delta^{+n}) + \ldots +\sqrt{3} \sum_{n=1}^{\infty} I^{-n} \cos(n\omega t + \delta^{-n}),
\]

where \(n \) is used to name the \(n^{th} \) harmonic component of the current and \(\delta^{\pm n} \) the corresponding phase angle.

Real and imaginary instantaneous powers \((p\text{ and } q) \) can be defined as [19]:

\[
\begin{bmatrix} p \\ q \end{bmatrix} = \begin{bmatrix} v_{\alpha} & v_{\beta} \\ v_{\beta} & -v_{\alpha} \end{bmatrix} \begin{bmatrix} i_{\alpha} \\ i_{\beta} \end{bmatrix}.
\]

These real and imaginary instantaneous powers can be separated into two components:

\[
p = \bar{p} + \tilde{p},
\]

\[
q = \bar{q} + \tilde{q},
\]

where \(\bar{p} \) is defined as the constant real power, \(\tilde{p} \) is defined as the oscillating real power, \(\bar{q} \) is defined as the constant imaginary power, and \(\tilde{q} \) is defined as the oscillating imaginary power. By replacing Eq. (2) and Eq. (3) in Eq. (4), \(\bar{p}, \tilde{p}, \bar{q}, \tilde{q} \) and \(\tilde{q} \) can be expressed as in Eq. (5), Eq. (6), Eq. (7), Eq. (8) and Eq. (9), respectively (next page).
\[
\tilde{p} = 3 \sum_{n=1}^{\infty} V^{-n} I^{n} \cos(\phi^{+n} - \delta^{+n}) + 3 \sum_{n=1}^{\infty} V^{-n} I^{-n} \cos(\phi^{-n} - \delta^{-n}),
\]

\[
\tilde{q} = 3 \sum_{n=1}^{\infty} V^{-n} I^{n} \sin(\phi^{+n} - \delta^{+n}) - 3 \sum_{n=1}^{\infty} V^{-n} I^{-n} \sin(\phi^{-n} - \delta^{-n}),
\]

where the superscript \(+1\) is used to indicate that the power is calculated using the positive-sequence fundamental-frequency line voltage component \(V^{+1}\) and \(\pm n\) is used to indicate that the power is calculated using \(V^{+1}\) with another, positive or negative-sequence, current component.

To obtain sinusoidal balanced source currents \(I_S\), Eq. (1) must be satisfied. From the point of view of real and imaginary powers, this control objective can be defined as:

\[
I_S^{-1} = I^{\pm n}_S = 0 \Rightarrow \tilde{p}^{+1}_S = 0, \quad (14)
\]

and also:

\[
I_S^{-1} = I^{\pm n}_S = 0 \Rightarrow \tilde{q}^{+1}_S = 0, \quad (15)
\]

where \(S\) subindex is used to indicate that the power is delivered by the power source.

The reciprocal of Eq. (14) or Eq. (15) are not necessarily true. However, if equations Eq. (14) and Eq. (15) are satisfied simultaneously, then sinusoidal balanced source currents can be guaranteed. This can be written as:

\[
I_S^{-1} = I^{\pm n}_S = 0 \iff \tilde{p}^{+1}_S = \tilde{q}^{+1}_S = 0. \quad (16)
\]

To demonstrate that both powers \((\tilde{p}^{+1}_S, \tilde{q}^{+1}_S)\) must be canceled to accomplish with Eq. (1), a detailed analysis of Eq. (12) and Eq. (13) must be performed.

Without loss of generality and to simplify the calculations, it is possible to assume that \(\phi^{+1} = 0\). Then, by expanding Eq. (12) and Eq. (13) to \(n = 7\) and regrouping terms of the same frequency, it is pos-

\[
\tilde{p} = 3 \sum_{m=1,m \neq n}^{\infty} \sum_{n=1}^{\infty} V^{m} I^{n} \cos((m-n)\omega t + \phi^{+m} - \delta^{+n}) + \ldots
\]

\[
+3 \sum_{m=1,m \neq n}^{\infty} \sum_{n=1}^{\infty} V^{-m} I^{-n} \cos((m-n)\omega t + \phi^{-m} - \delta^{-n}) + \ldots
\]

\[
-3 \sum_{m=1,n=1}^{\infty} V^{m} I^{-n} \cos((m+n)\omega t + \phi^{+m} + \delta^{+n}) + \ldots
\]

\[
-3 \sum_{m=1,n=1}^{\infty} V^{-m} I^{n} \cos((m+n)\omega t + \phi^{-m} + \delta^{-n}),
\]

\[
\tilde{q} = 3 \sum_{m=1,m \neq n}^{\infty} \sum_{n=1}^{\infty} V^{m} I^{n} \sin((m-n)\omega t + \phi^{+m} - \delta^{+n}) + \ldots
\]

\[
-3 \sum_{m=1,n=1}^{\infty} V^{m} I^{-n} \sin((m+n)\omega t + \phi^{+m} + \delta^{+n}) + \ldots
\]

\[
-3 \sum_{m=1,n=1}^{\infty} V^{-m} I^{n} \sin((m+n)\omega t + \phi^{-m} + \delta^{-n}) + \ldots
\]

\[
+3 \sum_{m=1,m \neq n}^{\infty} \sum_{n=1}^{\infty} V^{-m} I^{-n} \sin((m+n)\omega t + \phi^{-m} + \delta^{+n}).
\]
sible to write:

\[\tilde{p}^+ = [I^1 \cos(\omega t + \delta^+^2) + I^3 \cos(2\omega t + \delta^+^3) + \ldots - I^{-1} \cos(2\omega t + \delta^-^1) + I^4 \cos(3\omega t + \delta^+^4) + \ldots - I^{-2} \cos(3\omega t + \delta^-^2) + I^5 \cos(4\omega t + \delta^+^5) + \ldots - I^{-3} \cos(4\omega t + \delta^-^3) + I^6 \cos(5\omega t + \delta^+^6) + \ldots - I^{-4} \cos(5\omega t + \delta^-^4) + I^7 \cos(6\omega t + \delta^+^7) + \ldots - I^{-5} \cos(6\omega t + \delta^-^5) + \ldots] 3V^+1, \]

\[\tilde{q}^+ = [-I^+^2 \sin(\omega t + \delta^+^2) - I^+^3 \sin(2\omega t + \delta^+^3) + \ldots - I^-^1 \sin(2\omega t + \delta^-^1) - I^+^4 \sin(3\omega t + \delta^+^4) + \ldots - I^-^2 \sin(3\omega t + \delta^-^2) - I^+^5 \sin(4\omega t + \delta^+^5) + \ldots - I^-^3 \sin(4\omega t + \delta^-^3) - I^+^6 \sin(5\omega t + \delta^+^6) + \ldots - I^-^4 \sin(5\omega t + \delta^-^4) - I^+^7 \sin(6\omega t + \delta^+^7) + \ldots - I^-^5 \sin(6\omega t + \delta^-^5) + \ldots] 3V^-1. \]

(17)

(18)

On Eq. (17) and Eq. (15), it can be seen that the first term containing \(\tilde{I}^2 \) can be canceled by canceling either real or imaginary oscillating power (\(\tilde{p}^+ = 0 \) or \(\tilde{q}^+ = 0 \)), since it is the only term with frequency \(\omega \). However, for the remaining terms of the series, this does not happen.

As an example, it can be seen on the last row of Eq. (17) that if \(I^+^7 = I^-^5 \) and \(\delta^+ = \delta^- \) then:

\[+ I^+^7 \cos(6\omega t + \delta^+^7) - I^-^5 \cos(6\omega t + \delta^-^5) = 0, \]

(19)

but from Eq. (18), it can be seen that:

\[- I^+^7 \sin(6\omega t + \delta^+^7) - I^-^5 \sin(6\omega t + \delta^-^5) \neq 0. \]

(20)

Then, if the line currents contain these harmonic components, the oscillating real power will be identically null (\(\tilde{p}^+ = 0 \)) even when the line current is not sinusoidal (\(I^+^7 = I^-^5 \neq 0 \)). However, in this case, the oscillating imaginary power will not be null (\(\tilde{q}^+ = 0 \)).

To prove that there is not harmonic components combination that fulfills simultaneously that \(\tilde{p}^+ = 0 \) and \(\tilde{q}^+ = 0 \), a generic expression for each pair of terms of the same frequency of this powers can be written as:

\[+I^+(u+2) \cos((u+1)\omega t + \delta^+(u+2)) + \ldots - I^-u \cos((u+1)\omega t + \delta^-u) = 0, \]

(21)

\[-I^+(u+2) \sin((u+1)\omega t + \delta^+(u+2)) + \ldots - I^-u \sin((u+1)\omega t + \delta^-u) = 0, \]

(22)

where \(u = 1, 2, \ldots, \infty; (I^+^2 \text{ is not considered in these expressions}) \).

The system formed by Eq. (21) and Eq. (22) can be written in matrix terms:

\[\mathbf{Ax} = 0, \]

(23)

with:

\[\mathbf{A} = \begin{bmatrix} \cos((u + 1)\omega t + \delta^+(u+2)) & -\cos((u + 1)\omega t + \delta^-u) \\ -\sin((u + 1)\omega t + \delta^+(u+2)) & -\sin((u + 1)\omega t + \delta^-u) \end{bmatrix}, \]

\[\mathbf{x} = \begin{bmatrix} I^+(u+2) \\ I^-u \end{bmatrix}, \quad \mathbf{0} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}. \]

(24)

(25)

This algebraic system Eq. (23) has a unique solution \((x = 0) \) if matrix \(\mathbf{A} \) is not singular \((\det(\mathbf{A}) \neq 0 \ \forall t) \), then:

\[\det(\mathbf{A}) = \sin(2(u + 1)\omega t + \delta^+(u+2) + \delta^-u) \neq 0, \quad \forall t, \]

(26)

or:

\[2(u + 1)\omega t + \delta^+(u+2) + \delta^-u = k\pi, \quad k = 1, 2, \ldots, \infty. \]

(27)

Since there is no combination of \(u, \delta^+(u+2) \) and \(\delta^-u \) which gives the trivial solution of Eq. (23), it is necessary that:

\[I^+(u+2) = I^-u = 0 \quad \Rightarrow \quad \tilde{p}^+ = \tilde{q}^+ = 0. \]

(28)

Then, the relationship stated in equation Eq. (16) is demonstrated.

2.2. Sinusoidal Current Control Strategy

The main goal of the proposed control strategy \((I_S = I_S^+) \) can be achieved using the control strategy proposed in [25], where sinusoidal and balanced source current is obtained if:

\[I_S^{-1} = I_S^\pm n = 0 \quad \Leftrightarrow \quad \tilde{p}^+ = \tilde{q}^+ = 0. \]

(29)

Besides, since no constant reactive power should be consumed from the source to minimize transmission line power losses, then:

\[\tilde{q}^+ = 0. \]

(30)

With these restrictions, balanced and sinusoidal line current can be consumed from the source using an active shunt filter, where the power transferred by the filter \((\tilde{p}_C, \tilde{q}_C) \) can be defined as:

\[\tilde{p}_C = \tilde{p}^+_L, \quad \tilde{q}_C = \tilde{q}^+_L + \tilde{q}^+_L = q^+_L. \]

(31)

where subindex \(L \) is used to indicate that powers are calculated using load line currents \((I_L) \).
Compensating current references for the converter ($i_{Cα}^*, i_{Cβ}^*$) can be obtained (using $p-q$ theory) as:

$$
\begin{pmatrix}
 i_{Cα}^* \\
i_{Cβ}^*
\end{pmatrix} = \frac{1}{(v_{α}^* + v_{β}^*)^2} \begin{bmatrix}
 v_{α}^{+1} & v_{β}^{+1} \\
v_{β}^{+1} & -v_{α}^{+1}
\end{bmatrix} \begin{bmatrix}
P_C^* \\
q_C^*
\end{bmatrix} .
$$

(32)

On Fig. 2, a block diagram of the proposed control strategy is shown. This control strategy uses a positive sequence detector (DSOGI-FLL) [26], [27], [28] and [29] to obtain the fundamental positive-sequence component of the line voltage (V^{+1}) which is used in real and imaginary power calculations (p_L^{+1} and q_L^{+1}). Figure 3 shows the block diagram of the DSOGI-FLL extracted from [28].

![Block diagram of the proposed strategy.](image)

Fig. 2: Block diagram of the proposed strategy.

![Block diagram of the DSOGI-FLL extracted from [28].](image)

Fig. 3: Block diagram of the DSOGI-FLL extracted from [28].

3. Application Example

An application example is shown in this section where a particular case is analyzed. In this example, a sinusoidal balanced line voltage is considered ($V^{+1} = 1$ p.u.) but the line current is formed by a fundamental component in phase with the line voltage ($I_L^{+1} = 1$ p.u., and $\delta^{+1} = 0$), a 5th negative-sequence harmonic component and a 7th positive-sequence harmonic component with the same amplitude (0.1 p.u.) and phases $\delta^{-5} = \delta^{+7} = 0$:

$$
I_L^{-5} = 1, \quad I_L^{+7} = 0,1, \quad \delta^{+1} = \delta^{-5} = \delta^{+7} = 0.
$$

(33)

Then, the line voltages can be defined as in Eq. (3):

$$
v_α = +\sqrt{3}\sin(\omega t), \quad v_β = -\sqrt{3}\cos(\omega t),
$$

(34)

and the load line current will be:

$$
i_{Lα} = +\sqrt{3}[\sin(\omega t) + 0.1\sin(5\omega t) + 0.1\sin(7\omega t)],
i_{Lβ} = -\sqrt{3}[\cos(\omega t) - 0.1\cos(5\omega t) + 0.1\cos(7\omega t)],
$$

(35)

Then, the oscillating real power can be calculated using Eq. (12) as:

$$
\tilde{p}^{+1} = -0.3\cos(6\omega t) + 0.3\cos(6\omega t) \equiv 0,
$$

(36)

while the oscillating imaginary power is obtained from Eq. (13) as:

$$
\tilde{q}^{+1} = -0.3\sin(6\omega t) - 0.3\sin(6\omega t),
$$

(37)

then:

$$
\tilde{q}^{+1} = 0.6\sin(6\omega t).
$$

(38)

The line currents (I_{Sabc}) and the imaginary and real power provided by the power source (p^{+1} and q^{+1}) for the system without compensation are shown in Fig. 4(a) and Fig. 4(b). In Fig. 4(b), it can be seen that the oscillating real power is null since only constant real power is provided by the source ($\tilde{p}^{+1} = 1$ p.u. and $\tilde{p}^{+1} = 0$). However, the imaginary oscillating power is not null ($\tilde{q}^{+1} \neq 0$), as was determined by Eq. (38).

![System with no compensation.](image)

Fig. 4: System with no compensation.

If, for this example, only the oscillating real power \tilde{p}^{+1} is compensated, the source currents (I_{Sabc}) will still be nonsinusoidal, as shown in Fig. 5(a). Figure 5(b) shows the imaginary and real power provided by the power source (p^{+1} and q^{+1}) for this case. From these results, it is possible to see that compensating only the oscillating part of the real or imaginary power does not guarantee that the line current satisfies Eq. (1).
source current is non sinusoidal. However, the oscillating imaginary power is zero only when both oscillating powers are compensated, which gives sinusoidal balanced source currents.

Similar simulation can be performed using an appropriate selection of amplitudes and phases to show that compensating only \tilde{q}^+1 a sinusoidal balanced source current cannot be guaranteed.

4. Conclusions

A detailed discussion and mathematical proof on specific topics of p-q theory were performed in this work. From the power definitions and a generalized analysis, necessary conditions for current compensation using a shunt active filter were stated. Such conditions were not addressed in previous works, but they must be considered in the design stage of this kind of control strategies. Simulation results that validate the theoretical analysis are included.

References

© 2019 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 268

About Authors

Federico Martin SERRA was born in Villa Mercedes, Argentina, in 1981. He received the Electrical and Electronic Engineering degree from the Universidad Nacional de San Luis, Argentina, in 2007, and the Doctor of Engineering degree from the Universidad Nacional de Rio Cuarto, Argentina, in 2013. Since 2012 he is Director of the Laboratory of Automatic Control (LCA) in the Universidad Nacional de San Luis. He is currently a Professor at the Universidad Nacional de San Luis and Assistant Researcher at Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. His research interests include modeling and advanced control of power converters in applications of microgrids, electric vehicles and renewable energy conversion systems.

Oscar Danilo MONTOYA was born in Obando, Valle, Colombia. He received his B.Sc., M.Sc. and Ph.D degrees in Electrical Engineering from Universidad Tecnológica de Pereira, Colombia, in 2012, 2014 and 2019, respectively. He is currently working as an assistant professor at the Electrical Engineering Program at Universidad Tecnológica de Bolivar. His research interests include mathematical optimization, planning and control of power systems, renewable energy, energy storage, protective devices, passivity-based control, and dynamical analysis.

Cristian Hernan de ANGELO received the Electrical Engineer degree from the Universidad Nacional de Rio Cuarto, Argentina, in 1999, and the Dr. of Engineering degree from the Universidad Nacional de La Plata, Argentina, in 2004. In 1994, he joined the Grupo de Electrónica Aplicada, Universidad Nacional de Rio Cuarto. He is currently Associate Professor at Universidad Nacional de Rio Cuarto and Principal Researcher at Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina. His research interests include electric and hybrid vehicles, fault diagnosis on electric machines, electric motors control, and renewable-energy generation.

Daniel Gustavo FORCHETTI was born in Rosario, Argentina, in 1975. He received the Electrical Engineer degree from the Universidad Nacional de Rio Cuarto, Rio Cuarto, Argentina, in 1999, and the Doctor of Engineering degree from the Universidad Nacional de La Plata, La Plata, Argentina, in 2010. Since 1996, he has been with the Grupo de Electrónica Aplicada, Universidad Nacional de Rio Cuarto. He is also with the Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina. His research interests include electric generator control, sensorless induction machine control, and renewable energy generation.