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Abstract. Nowadays, with advances in CMOS technol-
ogy and sub-micron processes, the leakage power dissi-
pation is becoming a critical design metric. The de-
signs are getting complex to incorporate more func-
tions, thereby increasing the leakage power dissipation.
The low power design objective requires early explo-
ration and estimation. This paper presents the power
estimation model for ASIC (Application Specific In-
tegrated Circuit) based designs at the C-level of ab-
straction. The method includes analysis and extraction
of the application specific information from the LLVM
(Low-Level Virtual Machine) bit-code and then training
of the neural network. The trained model provides the
estimation of the leakage power. The estimated leak-
age power of designs is compared with the implemented
power to demonstrate the accuracy. In addition, the
model provides fast estimates and eliminates the need
for synthesis based exploration.
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1. Introduction

Modern applications require large on-chip functions
which results in increased design complexity. Cur-
rently, leakage power by such complex designs, makes
power budget a critical issue. In the ASIC design, the
leakage power of cells, such as AND, NAND, MUX
increases as technology node decreases. Complex func-
tional design and implementation require a number of
combinational and sequential cells. The sub-threshold
leakage, gate-oxide tunneling leakage, and reverse bias

drain-substrate leakage are the primary sources of leak-
age power dissipation [1]. The leakage power remains
present in active as well as in the idle time. Thus, it is
a primary concern for the designers. Since changes in
the designs at a later stage is difficult.

The leakage power can be determined very quickly at
the system-level. This reduces the design cycle time.
Modeling of designs at the system-level provides an
opportunity to explore the design metrics at the ini-
tial phase. Modeling of HW and SW was carried out
at the cycle accurate level [2], instruction level [3] and
functional level [4] to get the power estimates. How-
ever, there is a need of a high-level model that can pro-
vide quick as well as accurate estimates of design power
at the high-level of abstraction. Therefore, this work
presents a model to get an accurate early power esti-
mate at the system-level. The LLVM IR and ANN are
used for the profiling and the modeling, respectively.

The rest of the paper is organized as follows.
Section 2. discusses related work. Section 3. dis-
cusses the profiling and modeling methodology. Sec-
tion 4. presents the implementation and the results
and finally, Sec. 5. presents the conclusion.

2. Related Work

Sources of the leakage current and reduction techniques
were discussed in [1]. These techniques are proposed
at the circuit-level and process technology level. Thus,
to decrease the design time, estimation should be done
at the high level of abstraction.

The leakage power for ASIC designs was estimated in
[5]. The linear regression model, with a maximum error
of 12 %, has been reported for the HDL description of
the circuits.
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In [6], early power estimation model was presented
for the FPGA based designs with better accuracy.
However, it does not provide any model for ASIC based
designs.

In [2], power was evaluated by observing the cycle
by cycle operations and exchanges. However, this work
models the static power at the cost of the accuracy.

A SystemC class library, PowerSim, was proposed in
[7], to calculate the energy consumption of hardware
described at the system-level. It was based on monitor-
ing the C++ operators when called on SystemC data
types at the time of simulation. However, PowerSim re-
quires a change in SystemC library and recompilation
of source code.

The IO ports power consumption of OpenRISC ar-
chitecture was modeled in [3]. IO ports power was
modeled using the types of instructions such as load
and store, and the cache miss rate. Since the effect of
the adjacent instruction was not considered, the max-
imum error of 15 % was reported.

Open-PEOPLE (Open Power and Energy Optimiza-
tion and Estimator), an estimator, was presented in [8]
with the integration of estimation tools from the func-
tional level to real board measurements, and a maxi-
mum error of 22.5 % was reported.

The HLS based, a fast system-level power estimation
method was presented in [9]. However, a maximum er-
ror of 9 % was reported for the DSP based designs.
Similarly, a neural network based linear and nonlinear
system-level power estimation models were presented
in [10]. However, the maximum error of 31 % and
4.78 % were reported for the linear and nonlinear mod-
els, respectively.

A System-level power estimation model was pro-
posed in [11] for the wireless communication systems,
implemented on the FPGA. However, it takes a signif-
icant amount of time because of the low-level charac-
terization.

In [4], learning methods based on high-level energy
models were used for the processors. Host compiled
modeling approach instead of instruction level simula-
tion was used. The observed maximum estimation er-
ror is 10 % for considered applications GEMM, DCT,
and HDR.

Nowadays, with the help of high-level synthesis [12],
[13] and [14] tools, it is possible to start the design
space exploration at the system-level and synthesize
the behavioral description into the RTL model. The
RTL model of any given application simulated with a
test bench provides a power estimate. PETS, a sim-
ulationbased tool, was presented in [15]. The power
was estimated by running an application on the em-
bedded platform. However, it does not generalize the

power model and requires a new power model for a new
architecture.

PK tool 2.0, a power estimation model, was in-
troduced in [16] for the executable designs. It di-
rectly extracts the energy consumption from SystemC
sc_module, which contains the system to examine.
Since the SystemC sc_module was divided into the
different power states representing the operative con-
ditions and the set of instructions, it was required to
provide the power states information to the tool.

To summarize, all of the aforementioned approaches
are time-consuming, inaccurate, and complex. The
power estimation is difficult at the system-level due
to the lack of the information and may lead to the in-
ferior precision. Consequently, it prevents a fast and
an efficient design space exploration.

Therefore, this paper presents a system-level power
estimation model to overcome the aforementioned chal-
lenges.

3. Profiling and Modeling
Methodology

Figure 1 shows the profiling and modeling flow.
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Fig. 1: Profling and Modeling flow for estimation.

The profiling phase uses the analysis of the LLVM IR
(bit-code) format of the applications. The LLVM IR is
a static single assignment [17] and an easier represen-
tation to analyze than the machine level representation
of applications. This leads us to collect the application
specific information from LLVM IR through static code
analysis.

LLVM bit-code files were generated by the Clang
compiler. Bit-code analysis flow is shown in Fig. 2.
The bit-stream files contain tags and nested struc-
tures. Blocks in a bit-stream denote nested regions
of the stream and are identified by a content-specific
ID number. The block IDs 0-7 are reserved and the
IDs greater than 7 provide the application specific in-
formation. The information from these blocks used as
the inputs to the proposed model, is shown in Tab. 1.
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Fig. 2: Bit-code analysis flow.

Tab. 1: Type of LLVM IR Blocks.

Type of Block Block ID Content

Module Block 8
Top-level block, contains

the entire
module information

Parameter Block 9 Parameter attributes

Constant Block 11 Constants for a
module or function

Function Block 12 Describes function body

Type Block 17 Describes all of the
types in the module

The training data set was prepared to train the
ANN-based model after profiling of the applications
[18]. The feed-forward-back-propagation neural net-
work is selected for the training. Input dataset with
corresponding target data is applied to the network for
the supervised learning and training. The errors are
generated by comparing the training output with ini-
tially applied target data to the network. The weights
of each connection get updated according to these er-
rors. Then the network is trained with the updated
weights. The trainlm and learngdm are the selected
training algorithm and transfer function, respectively.
Tansig and purelin are activation functions for the in-
put and the output layer neuron, respectively. The net-
work configuration and training parameters are shown
in Tab. 2.

Tab. 2: Network configuration for leakage power estimation.

Parameters [18]

Network type Feed-forwardback
propagation

Training function trainlm
Learning function learngdm
Activation function tansig, purelin
Number of layers 2
Number of neurons 7

4. Implementation and Result

In this section, estimation results are presented for
ASIC based designs. A total of 74 applications were
used for the training. After that, the trained model
was validated for the different benchmark applications.
The information obtained from the LLVM IR was ap-
plied to the proposed neural network model. The pro-
posed neural network model is shown in Fig. 3.

Input layers have 7 inputs and 7 neurons. Transfer
function for input neurons is tansig. Transfer func-
tion for the second layer, which is the output layer, is
purelin. The following equations represent the output
of this neural network configuration. 
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Fig. 3: Proposed ANN model.

An = tansig

(
n=7∑
n=1

wnaIn + bAa

)
, (1)

Output = purelin

(
a=7∑
a=1

AnwAaO + bOA

)
. (2)

The output of this model is given by Eq. (2). In the
Eq. (1) and Eq. (2), In are the inputs, wna are the
weights from the inputs to the hidden layer neurons,
bAa are the biases to the hidden layer neurons, wAaO

are the weights of hidden layer neurons to the output
layer neuron, and bOA is the bias to the output neuron.

Tab. 3: Benchmark/Application description.

Benchmarks Description

gsm Linear predictive coding analysis of global
system for mobile communications

dfsin
It implements IEC/IEEE standard double

precision floating point sine function
using 64-bit integer numbers

dfdiv
It implements IEC/IEEE standard double

precision floating point division
using 64-bit integer numbers
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The proposed ANN-based model is applied to the
CHStone [19] benchmark applications, mentioned in
Tab. 3.

The size of the blocks is shown in Tab. 4 for the
benchmark applications [19].

Tab. 4: Type and size of LLVM IR Blocks.

Type of Block Size of Blocks
gsm dfsin dfdiv

Module Block 85 154 114
Parameter Block 9 3 3
Constants Block 399 441 343
Function Block 1557 1773 916
Type Block 33 43 37

Constant block file 16.3 14.5 18
Function block file 63.8 58.2 48

4.1. Validation and Comparison

In this section, we will be validating the estimated
power against the power obtained from the commercial
tool, in order to demonstrate the accuracy of the pro-
posed methodology. Figure 4 shows the result valida-
tion and comparison flow. The output of the proposed
model, estimated leakage power, is compared with the
power obtained from the Synopsys Design Compiler.
Designs are compiled using Synopsys Design Compiler
SAED_90nm library. The error in evaluated power
amends the weights of the input for the network in the
training phase. Now, the trained network is ready to
estimate the power for any given application.
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Fig. 4: Validation and Comparison.

The estimated results are compared using the follow-
ing equation.

errori =

(
ei − pi

pi

)
· 100. (3)

In the above expression, errori is the percentage er-
ror in the estimate, ei is estimated power obtained from
the presented methodology, and pi is power obtained
from Synopsys DC, for an application i. The esti-
mated results and comparisons are shown in Tab. 5 and
Tab. 6, respectively. The time comparison is shown in
Tab. 7. The platform used for the time comparison is
the Intel Core i3 @ 3.3 GHz processor. Since the LLVM
profiling output comes in less than 1 second, only the
training time of the ANN was considered. The total
time, t2, taken by Synopsys DC, for the benchmark
applications in this paper is 4 minutes and 53 seconds.
However, through the proposed model, estimation time
(t1) is 58 times faster than the typical synthesis tool.

Tab. 5: Comparison of Estimated Leakage power with Imple-
mented power.

Through
Synopsys
DC (mW)

Proposed
model
(mW)

Relative
Error %

gsm 3.90 3.70 5.10 %
dfsin 3.17 3.26 2.80 %
dfdiv 2.30 2.40 4.30 %

Tab. 6: Comparison with other works.

S. No. Works Error %
1. [4] 3 % to 10 %
2. [9] 3 % to 9 %
3. This work 2.8 % to 5.1 %

Tab. 7: Time taken by Synopsys Design Compiler (DC) and
proposed model to get power estimate for Intel Core i3
@ 3.3 GHz processor platform.

Benchmarks Through Design
Compiler t2

Through Presented
model t1

gsm 2 min 13 sec –
dfsin 1 min 35 sec –
dfdiv 1 min 5 sec –

Total Time 4 min 53 sec 5 sec

5. Conclusion

A system-level power estimation model was presented
for the ASIC designs. The application-specific infor-
mation was obtained through the analysis of the LLVM
bit-code, then further employed to train the ANN. The
estimation errors of 2.8 % to 5.1 % were observed.
Moreover, the model was found 58 times quicker than
the Synopsys Design Compiler. In addition, it is pos-
sible to extend this work for an early estimate of the
area of the ASIC designs.
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