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Abstract. In this paper, state variables estimation
and Fuzzy Sliding Mode Control (FSMC) are presented
in order to estimate the state variables and altitude-
attitude tracking control in presence of internal and
external disturbances for unmanned quadrotor. The
main idea of the proposed control strategy is the devel-
opment of an Extended Kalman Filter (EKF) for the
observation of the states. Fuzzy logic systems are used
to adapt the unknown switching-gains to eliminate the
chattering phenomenon induced by Sliding Mode Con-
trol (SMC). The stability of the system is guaranteed in
the sense of Lyapunov. The effectiveness and robust-
ness of the proposed controller-observer scheme that
takes into account internal and external disturbances
are demonstrated on computer simulation using Mat-
lab environment.
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1. Introduction

In recent years, Unmanned Aerial Vehicles (UAVs)
have became a topic of interest in many research or-
ganizations due to their wide applications in several
areas, such as enforcement of traffic rules and road net-
works surveillance, industrial plants and high-tension
power lines, mapping three-dimensional environments.
A quadrotor is a typically under-actuated because it
has six degrees of freedom and only four actual inputs,
and it is a nonlinear coupled system due to the aerody-
namics of its four rotors. Moreover, during the flight

in low attitude, it is susceptible, which influences the
flight performance or even leads to instability [1] and
[2]. However, the difficulty of a controller design in-
creases due to these constraintes. Altitude and atti-
tude tracking control are of main interests in quadro-
tors study. It has attracted much attention from re-
searchers due to its potential practical applications [3].
The attitude controller is an important feature since
it allows the vehicle to maintain a desired orientation
and hence prevents the vehicle from flipping over and
crashing [4].

In the literature, several control algorithms have
been proposed to altitude and attitude control of un-
manned quadrotor systems such as backstepping based
controller [5], fuzzy logic based controller, and slid-
ing mode controller [6] and [7]. Sliding control is
well known for its effectiveness through the theoreti-
cal studies versus the parameter variations and distur-
bances, and has been widely applied to robotics and
aircraft control design. Chattering phenomenon (high
frequency of control action) is the major problem asso-
ciated with SMC, which is caused by the inappropriate
selection of the switching gain. In order to reduce the
chattering phenomenon, various methods have been
proposed in the literature [7] and [8].

In practice, the state variables of a given system are
rarely available for direct measurement. The elabo-
ration of a control law for this system often requires
access to the value of one or more of its states. For
this reason, it is necessary to design an auxiliary dy-
namic system named observer, capable to deliver state
estimates from the measurements provided by physical
sensors and applied inputs. In the case of nonlinear
systems, there is not a general solution to the problem
of observer synthesis, which prompted researchers to
develop nonlinear observers such as sliding mode ob-
server [9], High order sliding mode observer [10], Ex-
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tended Kalman filter [11], fuzzy logic observer [12], and
artificial neural network observer [13].

EKF is an optimal recursive estimator, which can be
used for estimating the state of nonlinear systems [14].
In the last decade, EKF was widely used for stochas-
tic nonlinear systems. EKF provides the suboptimal
state estimator for its ability to consider the stochas-
tic uncertainties, which is the case of quadrotor UAVs.
EKF is a recursive algorithm, and it is known for its
high convergence rate, which improves transient per-
formance significantly. Compared to other nonlinear
observers [15], [16], [17], [18] and [19], EKF algorithm
has better dynamic behavior, resistance to uncertain-
ties and noise, and it can work even in the presence of
a standstill conditions.

In [20], the authors presented stabilizing control laws
synthesis using sliding mode technique, and used the
EKF to estimate the unmeasured states. The con-
trolled model was very simple because the authors did
not consider the nonlinearities, uncertainties, external
perturbations, and nonholonomic constraints.

In [21], the authors presented a state estimation
of the quadrotor UAV based on a high degree cuba-
ture Kalman filter, but they did not illustrate the de-
sign method of the controller and stability analysis of
closed-loop system.

In [22], a Radical Basis Function Neural Networks
(RBFNNs) and double-loop integral sliding mode con-
trol are presented for the position and attitude tracking
of quadrotor subjected to parameter uncertainties and
sustained disturbances. In [23], a novel adaptive fuzzy
gain-scheduling sliding mode control is studied for atti-
tude regulation of an unmanned quadrotors with para-
metric uncertainties and external disturbances. In [24],
the authors explored the design of an SMC for trajec-
tory tracking for an unmanned aerial vehicle. Note
that in both of last two cited works, the influences
of the nonholonomic constraints and the observation
problem were not discussed. Moreover, in [25], the
authors designed a fuzzy sliding mode control based
on backstepping synthesis for unmanned quadrotors,
in which the observation problem was not considered.

In this investigation, two major contributions are
proposed:

• An EKF for estimating the state space vector.

• A robust altitude-attitude Fuzzy Sliding Mode
Controller (FSMC) in the presence of both inter-
nal and external disturbances.

In order to reduce chattering phenomenon, a Fuzzy
Logic System (FLS) is designed to adapt the unknown
switching-gains by fuzzifying the sliding surface accord-
ing to the fuzzy inference rule base. Lyapunov synthe-
sis is used to determine the stability analysis of the

closed-loop system. Performances of the controller-
observer are illustrated by a simulation study that
takes into account internal disturbances including the
Gaussian white noise process and measurement noise,
and external disturbances.

The presented paper is organized as follows.
In Sec. 2. , dynamic modeling of a quadrotor is
introduced. In Sec. 3. , state space representation
and discretization of the quadrotor model are formu-
lated, whereas in Sec. 4. , we recall the basic math-
ematical formulas of the EKF. Section 5. is ded-
icated to the proposed controller-observer design and
closed loop stability. In Sec. 6. , we present sim-
ulation studies that illustrate the performance of the
proposed controller-observer system. Finally, conclu-
sions are summarized in Sec. 7.

2. Quadrotor Dynamic
Modelling

The quadrotor adopted in this investigation was intro-
duced in [1] and [2] (see Fig. 1).
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Fig. 1: Quadrotor configuration [1] and [2].

Using the Newton-Euler laws of mechanics , the mo-
tion equations of the quadrotor can be written as fol-
lows:

φ̈ = 1/Ix
{
θ̇ψ̇ (Iy − Iz)−Kfax φ̇2 − JrΩθ̇ + l u2 + d

}
,

θ̈ = 1/Iy
{
φ̇ψ̇ (Iz − Ix)−Kfay θ̇2 + JrΩφ̇+ l u3 + d

}
,

ψ̈ = 1/Iz
{
θ̇φ̇ (Ix − Iy)−Kfaz ψ̇

2 + u4 + d
}
,

ẍ = 1/m
{
ux u1−Kftx ẋ+ d

}
,

ÿ = 1/m
{
uy u1−Kfty ẏ + d

}
,

z̈ = 1/m
{

(cosφ cos θ) u1−Kftz ż
}
− ga + d,

(1)

wherem is the total mass of the quadrotor, d represents
the disturbances applied to the quadrotor, l is the dis-
tance between the mass centre of the quadrotor and the
rotation axis of propeller, and Ω = (ω1−ω2+ω3−ω4) is
the total gyroscopic torques which affect the quadrotor.
Kfa = diag(Kfax,Kfay,Kfaz) represents the aerody-
namics frictions factors. Jr is the total rotational mo-
ment of inertia around the propeller axis.
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Finally, ux and uy are two virtual control inputs:{
ux = cosφ sin θ cosψ + sinφ sinψ,
uy = cosφ sin θ sinψ − sinφ cosψ.

(2)

From Eq. (2), it is easy to show that : φd = arcsin [ux sin(ψd)− uy cos(ψd)],

θd = arcsin [
ux cos(ψd) + uy sin(ψd)

cos(φd)
].

(3)

3. State Space Representation

Let X = (φ, φ̇, θ, θ̇, ψ, ψ̇, x, ẋ, y, ẏ, z, ż)T ∈ R12,
u = (u1, u2, u3, u4)T ∈ R4 and
Y = (x1, x3, x5, x7, x9, x11)T be the state, the
control input and the output vectors, respectively.

The dynamic model given in Eq. (1) can be written
using the state space method as:

ẋ1 = x2,
ẋ2 = f1(X) + g1(X)u2 + d,
ẋ3 = x4,
ẋ4 = f2(X) + g2(X)u3 + d,
ẋ5 = x6,
ẋ6 = f3(X) + g3(X)u4 + d,
ẋ7 = x8,
ẋ8 = f4(X) + g4(X)u1 + d,
ẋ9 = x10,
ẋ10 = f5(X) + g5(X)u1 + d,
ẋ11 = x12,
ẋ12 = f6(X) + g6(X)u1 + d,

(4)

where
f1(X) =

[
a1x4x6 + a2x

2
2 + a3Ωx4

]
, f4(X) = [a9x8],

f2(X) =
[
a4x2x6 + a5x

2
4 + a6Ωx2

]
, f5(X) = [a10x10],

f3(X) = [a7x2x4 + a8x6],

f6(X) = [a11x12 − ga],

g1(X) = b1, g2(X) = b2, g3(X) = b3, g4(X) =
ux
m
,

g5(X) =
uy
m
, g6(X) =

cosx1 cosx3

m
,

in which:

a1 = (Iy − Iz)/Ix, a2 = −Kfax/Ix,
a3 = −Jr/Ix, a4 = (Iz − Ix)/Iy,
a5 = −Kfay/Iy, a6 = Jr/Iy,
a7 = (Ix − Iy)/Iz, a8 = −Kfaz/Iz,
a9 = −Kftx/m, a10 = −Kfty/m,
a11 = −Kftz/m, b1 = l/Ix, b2 = l/Iy, b3 = 1/Iz.

Since the Kalman filter is a discrete algorithm, dis-
cretization of the model is needed. The resulting global
discrete form will be given by the following discrete
nonlinear representation:



x1(k + 1) = x1(k) + ∆t x2(k) + w1(k),
x2(k + 1) = x2(k) + ∆t f11 + w2(k),
x3(k + 1) = x3(k) + ∆t x4(k) + w3(k),
x4(k + 1) = x4(k) + ∆t f22 + w4(k),
x5(k + 1) = x5(k) + ∆t x6(k) + w5(k),
x6(k + 1) = x6(k) + ∆t f33 + w6(k),
x7(k + 1) = x7(k) + ∆t x8(k) + w7(k),
x8(k + 1) = x8(k) + ∆t f44 + w8(k),
x9(k + 1) = x9(k) + ∆t x10(k) + w9(k),
x10(k + 1) = x10(k) + ∆t f55 + w10(k),
x11(k + 1) = x11(k) + ∆t x12(k) + w11(k),
x12(k + 1) = x12(k) + ∆t f66 + w12(k),

(5)

where f11 = [f1(X) + g1(X)u2(k) + dk],
f22 = [f2(X) + g2(X)u3(k) + dk],
f33 = [f3(X) + g3(X)u4(k) + dk],
f44 = [f4(X) + g4(X)u1(k) + dk],
f55 = [f5(X) + g5(X)u1(k) + dk],
f66 = [f6(X) + g6(X)u1(k) + dk],

h = Z =



x1(k) + v1(k),
x3(k) + v2(k),
x5(k) + v3(k),
x7(k) + v4(k),
x9(k) + v5(k),
x11(k) + v6(k).

(6)

∆t is the sampling period and k ∈ Z is the discrete-
time points.

4. Extended Kalman Filter

The Kalman filter was developed by R. E. Kalman in
1960 [26]. EKF is a generalization of the Kalman filter
which is a stochastic observer for nonlinear dynamical
systems. In this paper, we shall attempt to find the
best estimate of the state vector Xk of the system,
which evolves according to the following discrete-time
nonlinear dynamic:{

Xk+1 = f(Xk, uk, wk),
Zk = h(Xk, vk),

(7)

where f(.) represents the evolution function of the
system, h(.) represents the relationship between the
state vector and the measurement result Zk, whereas
uk stands for the control input to the system at step
k, and wk and vk are the process and measurement
white Gaussian noise vectors with zero mean and with
associated covariance matrices Q = E[wk, wk]T and
R = E[vk, vk]T , respectively.

To apply EKF to the nonlinearity given in Eq. (7),
it must be linearized by using the first order Tay-
lor approximation around the desired reference point
(X̂k, ŵk = 0, v̂k = 0), which gives us the following
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approximated linear model:


Xk+1 ≈ f(Xk, uk, wk) ≈
≈ f(X̂k, uk, 0) + Fk(Xk − X̂k) +Wk(wk − 0),
Zk ≈ h (Xk, vk) ≈
≈ h(X̂k, 0) +Hk(Xk − X̂k) + Vk(vk − 0),

(8)

where the Jacobean matrices of f and h are given as
follows:

Fk = ∂f(X,0)
∂X

∣∣∣
X=X̂

, Wk = ∂f(X̂k,w)
∂w

∣∣∣
w=0

,

Hk = ∂h(X,0)
∂X

∣∣∣
X=X̂

and Vk = ∂h(X̂k,v)
∂v

∣∣∣
v=0

.

The EKF is a recursive algorithm that is used for es-
timating state vector. It can be given by the following
recursive equations:

Prediction:

X̂k+1/k = f(X̂k/k, uk, 0),

Pk+1/k = FkPk/kF
T
k +WkQW

T
k ,

(9)

Correction:

X̂k+1/k+1 = X̂k+1/k +Kk(Zk − h (X̂k+1/k, 0)),

Pk+1/k+1 = Pk+1/k −KkHkPk+1/k,
(10)

Kalman filter gain matrix:

Kk = Pk+1/kH
T
k (HkPk+1/kH

T
k + VkRV

T
k )−1, (11)

where X̂k+1/k+1 denotes the posteriori state predic-
tion vector, X̂k+1/k is the priori state prediction vec-
tor, Pk+1/k+1 denotes the posteriori prediction error
covariance matrix, and Pk+1/k is the priori prediction
error covariance matrix.

EKF framework is presented in Fig. 2.
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Fig. 2: Extended Kalman filter framework.

5. Controller Design and
Stability Analysis

For the development of the control laws, the following
assumptions are needed:

Assumption 1. The pitch, roll, and yaw an-
gles satisfy the following inequalities: −π/2 ≤ φ(t) ≤
π/2,−π/2 ≤ θ(t) ≤ π/2 and −π ≤ ψ(t) ≤ π.
Assumption 2. The function f is assumed to be
known and the error on its estimate is bounded, i.e.∣∣∣f(X̂)− f(X)

∣∣∣ ≤ M , where X̂ is an estimate have
used an EKohave used an EKf X, and M < 0.
Assumption 3. The input gain g is assumed to be
known and bounded, i.e. 0 < gmin ≤ g(X) ≤ gmax.
Assumption 4. The disturbances d in the discrete
dynamic model are unknown but bounded, i.e.|d| ≤ D,
where D ≥ 0.
Assumption 5. The desired trajectory Xd and its
first and second time derivatives are available and as-
sumed to be bounded.

The objective is to estimate the velocity
{x2, x4, x6, x8, x10, x12} =

{
φ̇, θ̇, ψ̇, ẋ, ẏ, ż

}
, and

to design a robust tracking controller so that
the state vector X = {x1, x2, ..., x12}T =
{φ, φ̇, θ, θ̇, ψ, ψ̇, x, ẋ, y, ẏ, z, ż}T can track a given
desired reference Xd = {xd1, xd2, ..., xd12} =
{φd, φ̇d, θd, θ̇d, ψd, ψ̇d, xd, ẋd, yd, ẏd, zd, żd}T in finite-
time, even in presence of large external disturbances
in the dynamic model. The controller is designed in
three steps: Altitude control, position control (x and
y motions), and attitude control (roll, pitch and yaw)
as shown in Fig. 3.

In this section, a Fuzzy Sliding Mode Controller
(FSMC) is designed; this controller combines the ad-
vantage of the SMC with FLS for the quadrotor air-
craft robot. The SMC is designed to ensure the trajec-
tory tracking and robustness against the internal and
external disturbances. A FLS is designed to adapt
the unknown switching-gains to reduce chattering phe-
nomenon from fuzzifying the sliding surface according
to the fuzzy inference rule base. The structure of the
proposed controller-observer is shown in Fig. 3.

Motivated by practice, the measured UAV variables
are linear position and yaw angle (x, y, z and ψ) and
non-measurable states can be obtained by successive
differentiation. However, they are contaminated by the
measurement noise to a degree that the differentiation
can no longer be used. For this reason, it is necessary to
design an auxiliary dynamic system named observer, in
this paper we have used an EKF as in Eq. (9), Eq. (10)
and Eq. (11). The system input u(t) = [u1, u2, u3, u4]T

and the measured response Y = [x, y, z, ψ]T are used
by the observer EKF, where input u is applied to both
quadrotor and extended Kalman filter. Desired vari-
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Fig. 3: Controller-observer system of the quadrotor robot.

ables and estimated velocity Ŷ of EKF are set to be
inputs to the controller through a comparator. Note
that the control will be impossible if the velocity can-
not be measured.

5.1. Sliding Mode Control Design

If we define e = X̂ − Xd as the tracking error, the
sliding surface s is defined as [7]:

s = λ.e+ ė, (12)

where s = (s1, s2, ..., s6)
T , ė = (ė1, ė2, ..., ė6)

T is the
derivative vector of e, λ = diag (λ1, λ2, ..., λ6) with
λi > 0.

Consider the derivative of the sliding surface defined
as follows:

ṡ = −K sgn(s)− µ(s), (13)

where K = diag(k1, k2, ..., k6), ki > 0 are the
switching-gains matrix entries to be tuned and
µ = diag(µ1, µ2, ..., µ6), µi > 0.

If the initial condition e (0) = 0, the tracking prob-
lem X̂ = Xd can be considered as the state error vector
remaining on the sliding surface s (e) = 0. To achieve
this condition, a Lyapunov function candidate is de-
fined as:

V =
1

2
sT s. (14)

A sufficient condition for the stability of the system
is given in [27] as follows:

V̇ =
1

2

d

dt
sT s ≤ −η |s| . (15)

This leads to the following convergence condition:

sT s ≤ −η |s| ⇒ ṡ. sgn (s) ≤ −η, (16)

where η > 0, and sgn(.) denotes the signum function,
it is defined as:

sgn(si) =

 1, if si > 0,
0, if si = 0,
−1, if si < 0.

Note that in Eq. (16): |s| =
s

sgn (s)
, by deriving

Eq. (12):

ṡ = λ.ė+ ë = λ.ė+ Ẍ − Ẍd. (17)

Consider the control problem of the nonlinear sys-
tem given in Eq. (5), replacing Ẍ with the state space
equations, we get:

ṡ = f(X) + u(X)u+ d+ λ.ė− Ẍd, (18)

where f = (f1, f2, ..., f6)
T and g = (g1, g2, ..., g6)

T .

Consider the EKF defined by Eq. (9), Eq. (10) and
Eq. (11) , by replacing X with X̂, we get:

ṡ = f(X̂) + g(X̂)u+ d+ λ.ė− Ẍd. (19)

From Eq. (13) and Eq. (19), and to satisfy the slid-
ing condition Eq. (15), u∗ has to be chosen so that
V̇ is negative semi definite. Therefore, we can easily
construct the SMC law:

u∗ = ueq + udis =
1

g(X̂)
·

·
(
−K sgn(s)− µ.s− f(X̂)− d− λ.ė+ Ẍd

)
,

(20)

where

ueq =
1

g(X̂)
(−f(X̂)− d− λ.ė+ Ẍd),

udis =
1

g(X̂)
(−K sgn(s)− µ.s).

(21)

The equivalent control Eq. (21) is given by the fol-
lowing condition [27] s = 0 and ṡ = 0⇒ u = ueq.
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Based on assumptions 1–4 and considering that the
estimate g(X̂) could be chosen according to the geo-
metric mean g(X̂) =

√
gmax · gmin, the bounds of g(X)

may be expressed as β−1 < g(X̂)/g(X) < β, where
β =

√
gmax/gmin.

Under this condition, the switching-gains K should be
chosen according to:

K ≥ β(η +D +M) + (1− β−1) |τ̂ | , (22)

where η is a strictly positive constant related to the
reaching-time and τ̂ = −f(X̂)− d− λ.ė+ Ẍd.

However, the use of discontinuous sgn function in
the discontinuous control Eq. (20) will excite undesired
phenomenon called chatter, which is caused by the in-
appropriate selection of the switching-gains matrix. In
this context, high switching-gains matrix entries K in
Eq. (20) will increase the oscillations in the control
signal, and therefore an excitation of high frequency
dynamics will take place, as a result, a chattering phe-
nomenon will be created. Moreover, a decrease in
switching-gains can reduce the chattering phenomenon
and improve the tracking performance despite noise
and external disturbances. To achieve more appro-
priate performance, these switching-gains must be ad-
justed. This adjustment is based on the distance be-
tween the system states and the sliding surfaces. i.e.,
when the trajectory of the system states deviate from
the sliding surfaces, the switching-gains should be in-
creased in order to reduce chattering and vice versa.
This idea can be realized by combining fuzzy logic
with sliding mode control to construct FSMC to facil-
itate the adaptive switch-gains (see Fig. 3) according
to some appropriate fuzzy rules. For this reason, one-
input one-output FLS is designed in the next section.

5.2. Fuzzy Logic System

According to fuzzy logic systems [28], The fuzzy sets
are defined as follows:

Ai = {NB,NM,Z, PM,PB},
Bi = {NB,NM,Z, PM,PB}.

Based on the experiences, the type of fuzzy rules is
decided as “IF-THEN ”.

The membership functions of input and output are
chosen as illustrated in Fig. 4, in which the following
linguistic variables have been used: Negative Big (NB),
Negative Medium (NM), Zero (Z), Positive Medium
(PM), and Positive Big (PB).

The fuzzy base rule of the adopted FLS contains five
rules given in Tab. 1.

These rules govern the input-output relationship be-
tween s and Kfuzzy by adopting the Mamdani-type in-
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Fig. 4: (a) Input membership functions, (b) Output member-
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Tab. 1: Fuzzy rule set.

s NB NM Z PM PB
Kfuzzy NB NM Z PM PB

ference engine, in which the center of gravity method
is used for defuzzification as in Eq. (23).

Kfuzzy =

N∑
l=1

ζl
(∏n

j=1 µAl
j
(sj)

)
N∑
l=1

(∏n
j=1 µAl

j
(sj)

) , (23)

where N is the total number of fuzzy IF-THEN rules
in the rule base, n is the number of system states.
Alj and Blj denote fuzzy sets, ζl is the centre of gravity
of the membership function of Kfuzzy for the lth rule.
The Architecture of the FLS is shown in Fig. 5.

Defuzzifier
Output

Fuzzifier

engineengine

membership

function

Input

Inference

Rules

Fuzzy 

fuzzy
Ks

Fig. 5: The architecture of FLS.

Referring to Eq. (10), Eq. (11) and Eq. (13), the
control law FSMC is now chosen as:

u =
1

g(X̂)
·

·
(
−Kfuzzy sgn(s)− µ.s− f(X̂)− d− λ.ė+ Ẍd

)
,

(24)

where Kfuzzy = diag(k̂1, k̂2, ..., k̂6), k̂i > 0 are the
switching-gains matrix entries estimated by FLS. Note
that the same FLS is used for all controllers (see Fig. 3).

5.3. Stability Analyses of the
Proposed Controller-Observer

In order to demonstrate the stability of the closed-loop
system, we adopt the following theorem:
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Theorem 1. Consider the nonlinear system of Eq. (5)
associated with the chosen sliding surfaces s = 0. Un-
der the assumptions 1–5, the estimation X̂ given by
Eq. (9), (10), and (11), the switching-gains matrix
Kfuzzy adjusted by the FLS Eq. (19) and according
to Eq. (22), therefore condition of Eq. (16) is satisfied
and the tracking error will converge to zero asymptoti-
cally.

Proof. Proving the theorem above requires examining
the sliding condition using the Lyapunov method.

Define the following positive definite Lyapunov func-
tion candidate V = 1

2s
T s.

Its time derivative is given by:

V̇ =
1

2

d
dt
sT s = sT ṡ. (25)

Substituting Eq. (18) in Eq. (25) we get:

V̇ = sT (f(X) + g(X)u+ d+ λ.ė− Ẍd). (26)

Replacing the control u by Eq. (24), so that the
derivative of the Lyapunov function becomes

V̇ = sT
[
f(X) + g(X)g−1(X̂)

(
−Kfuzzy sgn(s) +

−µ.s− f(X̂)− d− λ.ė+ Ẍd

)
+ d+ λ.ė− Ẍd

]
=

= sT
[
f(X) + g(X)g−1(X̂)

(
−f(X̂)− d− λ.ė +

+Ẍd

)
+ g(X)g−1(X̂)

(
−Kfuzzy sgn(s)− µ.s

)
+

+d+ λ.ė− Ẍd

]
.

Noting that: f(X) = f(X̂)−
[
f(X̂)− f(X)

]
, then

V̇ = sT
[
f(X̂)−

(
f(X̂)− f(X)

)
+ g(X)g−1(X̂) ·

·
(
−f(X̂)− d− λ.ė+ Ẍd

)
+ g(X)g−1(X̂)·

·
(
−Kfuzzy sgn(s)− µ.s

)
+ d+ λ.ė− Ẍd

]
=

= sT
[
−
(
f(X̂)− f(X)

)
+ g(X)g−1(X̂)û +

+ g(X)g−1(X̂)
(
−Kfuzzy sgn(s)− µ.s

)
− û
]

=

= −sT
[(
f(X̂)− f(X)

)
− g(X)g−1(X̂)û +

+ g(X)g−1(X̂)
(
+Kfuzzy sgn(s) + µ.s

)
+ û
]
.

Therefore, considering Assumptions 2. and Assump-
tions 3., and defining Kfuzzy according to Eq. (22),
V̇ becomes V̇ ≤ −η |s|.

Dividing by |s| and integrating both sides over the
interval 0 < t < ts (ts is the time required to reach s),

gives:

t∫
0

s

|s|
ṡ dτ ≤ −

t∫
0

η dτ,

|s(t = ts)| − |s(t = 0)| < −η ts.

Considering treach as the time required to reach
s and noting that |s(treach) = 0|, one has treach ≤
|s(0)| /η and, consequently, the finite time convergence
to the sliding surface s. Thus, the tracking errors X −
Xd converge asymptotically to zero as t→ +∞.

The synthesized control laws are given as follows:

1) Altitude Control

The altitude FSMC can be obtained by similar design
procedures:

u1 =
m

cosx1 cosx3

(
−k̂6 sgn(sz)+

−µ6sz − a11x12 + ga − λ6e12 + z̈d − d
)
,

(27)

where µ6, λ6 are positive real numbers.

From the dynamic Eq. (1), it can be seen that the
motion through the axes x and y depends on u1. In
fact, u1 is the total thrust vector oriented to obtain
the desired linear motion, by considering ux and uy
are directing of u1 responsible for the motion through
x and y axes, respectively. Using FSMC, the control
motion in the direction of x and y are obtained using
the same steps described above.

ux =
m

u1
·

·
(
−k̂4 sgn(sx)− µ4sx − a9x8 − λ4e8 + ẍd − d

)
,

uy =
m

u1
·

·
(
−k̂5 sgn(sy)− µ5sy − a10x10 − λ5e10 + ÿd − d

)
,

where µi and λi, (i = 4, 5) are positive real numbers.

2) Attitude Control

Similar steps can be followed to design attitude FSMC
laws for trajectory tracking control of roll, pitch, and
yaw angles. The corresponding control laws are de-
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signed as follows,

u2 =
m

b1

(
−k̂1 sgn(sφ)− µ1sφ − a1x4x6+

−a2x
2
2 − a3Ω̄x4 − λ1e2 + φ̈d − d

)
,

u3 =
m

b2

(
−k̂2 sgn(sθ)− µ2sθ − a4x2x6+

−a5x
2
4 − a6Ω̄x2 − λ2e4 + θ̈d − d

)
,

u4 =
m

b3

(
−k̂3 sgn(sψ)− µ3sψ − a7x2x4+

−a8x
2
6 − λ3e6 + ψ̈d − d

)
,

where µi and λi, (i = 1, 2, 3) are positive real numbers.

The simplification of all computation steps concern-
ing the tracking errors and sliding surfaces is defined
as follows, respectively.

e :

{
ei = xi − xid, i ∈ {1, 3, 5, 7, 9, 11},
ei = ėi−1, i ∈ {2, 4, 6, 8, 10, 12},

s :

 sφ = e2 + λ1e1 sx = e8 + λ4e7,
sθ = e4 + λ2e3 sy = e10 + λ5e9,
sψ = e6 + λ3e5 sz = e12 + λ6e11,

6. Simulation and Discussions

In this section, the numerical simulation is conducted
to demonstrate the performance of the controller-
observer developed. In this simulation, the system’s
nominal parameters are shown in Tab. 2. The pro-
posed controller-observer applied to the above quadro-
tor is simulated on a PC using MatLab environment
(version 8.6.0.267246). A total of N = 10000 measure-
ment data are simulated on a time interval from 0 to
10 seconds with step size ∆t = 0.001 s. Note that the
full program is coded in Matlab M-Files.

The initial condition for the quadrotor is
X(0) = 012×1, where 012×1 is a null vector, the
controller parameters are selected as follows:
µ = diag(3, 3, 2, 2, 2, 4), λ = diag(10, 10, 3, 1, 1, 1).
Two types of uncertainties are injected in the struc-
ture to verify the robustness of the controller-observer.
The first one is an internal disturbance including the
random Gaussian noise (process noise and measure-
ment noise) both with covariance’s q = 10−2 and
r = 10−4, respectively, and with zero mean values.
The second uncertainty is an external disturbance
δ(t) = 0.01 × sin(2πt) × I6×1, where I6×1 is a vector,
the upper bound of the disturbances is assumed
to be D = max (|d|) = 1. Note that these both
disturbances sum up to d(t) and they are applied at
t ≥ 5. EKF is implemented as in Eq. (9), Eq. (10) and
Eq. (11) and will provide the state estimate vector
X̂ = [x̂1, x̂2, ..., x̂12]T . The initial state and initial
covariance conditions of the EKF are chosen to be
X̂0/0 = 012×1 and P0/0 = 1 × I12×12, respectively.

Note that the error covariance matrix P is set to be
a 12× 12 matrix, and covariance matrices Q and R
are set to be 12× 12 and 6× 6 matrices, respectively,
and they are experimentally set to:

Q = diag (qx1 , · · · , qx12) =

=


10−2 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 · · · 0 10−2

 ,

R = diag (rx1
, rx3

, rx5
, rx7

, rx9
, rx11

) =

=


10−1 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 · · · 0 10−1

 ,
The Jacobean matrices Fk, Wk, Hk, and Vk for the
Quadrotor are calculated as follows:

Fk =



1 ∆t 0 0 0 0 0 0 0 0 0 0
0 f22 0 f24 0 f26 0 0 0 0 0 0
0 0 1 ∆t 0 0 0 0 0 0 0 0
0 f42 0 f44 0 f46 0 0 0 0 0 0
0 0 0 0 1 ∆t 0 0 0 0 0 0
0 f62 0 f64 0 f66 0 0 0 0 0 0
0 0 0 0 0 0 1 ∆t 0 0 0 0
f81 0 f83 0 f85 0 0 f88 0 0 0 0
0 0 0 0 0 0 0 0 1 ∆t 0 0

f10.1 0 f10.3 0 f10.5 0 0 0 0 f10.10 0 0
0 0 0 0 0 0 0 0 0 0 1 ∆t

f12.1 0 f12.3 0 0 0 0 0 0 0 0 f12.12


,

Hk =

 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0

 , (28)

Wk = I12×12, Vk = I6×6,

where

f22 = 2x2a2∆t+ 1; f24 = ∆t
(
x6a1 + a3Ω̄

)
;

f26 = x4a1∆t; f42 = ∆t
(
x6a4 + a6Ω̄

)
;

f44 = 2x4a5∆t+ 1; f46 = x2a4∆t;
f62 = x4a7∆t; f64 = x2a7∆t; f66 = 2x6a8∆t+ 1;
f81 = ∆t u1 (C1S5 − C5S1S3) /m;
f83 = ∆t u1 (C1C3C5/m) /m; f88 = a9∆t+ 1;
f85 = ∆t u1 (C5S1 − C1S3S5) /m;
f10.1 = −∆t u1 (C1C5 + S1S3S5) /m;
f10.3 = ∆t u1C1C3S5/m; f10.10 = a10∆t+ 1;
f12.1 = −∆t u1C3S1/m; f12.3 = −∆t u1C3S1/m;
f12.12 = a11∆t+ 1;
Ci = cos(xi), Si = sin(xi), i = {1, 3, 5}.

The desired trajectory components are chosen to be
xd = 0.5 cos(π/4t), yd = 0.5 sin(π/4t), zd = 5 and
ψd = 45°. The parameter values of the used qudrotor
can be found in [1] and [2] and they can be seen at
Tab. 2. The results obtained for the altitude and atti-
tude tracking control of the quadrotor are given in the
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Tab. 2: Quadrotor parameters.

Kfa = diag(5.5670; 5.5670; 6.3540) · 10−4 N·rad−1·s−1

Kfd = diag(0.032; 0.032; 0.048) N·m−1·s−1

J = diag(3.8278; 3.8278; 7.1345) · 10−3 N.m ·rad−1·s−2

Cp = 2.9842 · 10−5 N·rad−1·s−1

Cd = 3.2320 · 10−7 N·m · rad−1·s−1

Jr = 2.8385 · 10−5 N·m · rad−1·s−2,
m = 400 g l = 20.5 cm ga = 9.81 m·s−2

a1 = −1 a2 = −0.1454 a3 = −0.0074
a4 = 1 a5 = −0.1454 a6 = 0.0074
a7 = −1.3061 · 10−4 a8 = −0.0830
a9 = −0.0011 a10 = −0.001 a11 = −0.0013
b1 = 65.3117 b2 = 65.294 b3 = 130.6063
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Fig. 6: Positions tracking.

Fig. 6, Fig. 7, Fig. 8, Fig. 9, Fig. 10, Fig. 11, Fig. 12
and Fig. 13.

Figure 6, Fig. 7, Fig. 8, Fig. 9, Fig. 10, Fig. 11,
Fig. 12 and Fig. 13 show the simulation results ob-
tained by the proposed method. Figure 6 and Fig. 7
show the output positions tracking and the positions
tracking errors, respectively, where we observe that,
the performances and robustness of the fuzzy sliding
mode controller under the occurrence of internal and
external disturbances are very acceptable. Figure 8
and Fig. 10 represent the velocities tracking, the veloc-
ities estimation errors, and the velocities tracking er-
rors, respectively. It is clear that the estimated states
converge to the desired ones (see Fig. 8), which shows
a satisfactory estimation during the flight see Fig. 9.
As it is clear from these figures, although we did not
have measurements on velocities, EKF was able to es-
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Fig. 7: Positions tracking errors.
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Fig. 8: Velocities tracking.

timate these values significantly. Figure 10 shows the
velocities tracking errors, which all tend to zero af-
ter a finite time. The corresponding control inputs
are depicted in Fig. 11, where we can clearly see that
the chattering almost disappeared. It is noted that
the discontinuities amplitudes are reduced. Compared
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Fig. 9: Velocities estimation errors.
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Fig. 10: Velocities tracking errors.

to the conventional SMC [8], we see clearly that the
proposed control approach effectively reduces chatter-
ing phenomenon. The estimated fuzzy switching-gain
curves are depicted in Fig. 12. We have also illustrated
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Fig. 13: Global tracking trajectory during 20s using: xd =
0.5 cos(π/4t), yd = 0.5 sin(π/4t), zd = 5t, ψd = 45°.

the global 3-D tracking trajectory of the quadrotor in
Fig. 13.
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7. Conclusion

In this paper, we presented an EKF based states esti-
mation, and altitude-attitude tracking control for un-
manned quadrotor despite the presence of internal and
external disturbances. We assumed that not all states
are measured; therefore an EKF system to estimate the
hidden states in order to avoid hardware sensors was
introduced. Sliding mode control was applied, and it
was enhanced by a fuzzy system to adapt the unknown
switching-gains in order to eliminate the chattering
phenomenon. Based on the simulation results, we con-
clude that the proposed controller-observer performs
well. This reflect the robustness and performances
of the mixed controller-observer, which was also con-
firmed by the tracking an estimation errors conver-
gence. The stability of the proposed approach was
guaranteed by Lyapunov stability criterion. Simulation
results confirmed the ability of proposed controller-
observer to ensure a good estimation and yield supe-
rior control performances for nonlinear system control
against internal and external disturbance simultane-
ously.
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