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Abstract. A novel control DC-DC-AC buck converter
for single phase capacitor-start-run induction motor
drives is presented in this paper. The objective is to
minimize harmonic distortion in inverter output volt-
age supply to a Single Phase Induction Motor (SPIM).
Here, the output of a variable duty cycle buck DC-
DC converter is fed to an H-bridge inverter to gener-
ate a very close sinusoidal output voltage. Few power
semiconductor switches are utilized to produce inverter
output voltage with reduced harmonic distortion com-
parable with results achieved in multilevel inverters.
The SPIM was analysed in the stationary d-q reference
frame while the buck converter was operated in the Con-
tinuous Conduction Mode (CCM) to ensure that the
output voltage vary exactly as the duty cycle. The sim-
ulation results show good starting transient characteris-
tics for the SPIM and also stable operation under inter-
mittent loading of 4 N-m. The average inverter output
voltage of 157.4 V was achieved with Total Harmonic
Distortion (THD) as low as 6.32 %. This configuration
is simple, cheap, and has reduced control complexity.
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1. Introduction

The quality of inverter voltage supply to electrical loads
has attracted considerable research attention in recent
years. Specific attention has been devoted to the prob-

lem of harmonic distortion in inverter output voltage
[1], [2], [3], and [4]. Efficient operation of Single Phase
Induction Motors (SPIM), for industrial and domes-
tic applications, depend on the harmonic content of
inverter output voltage [5], [6], [7], [8], and [9].

Several multilevel inverter topologies have been pro-
posed in literature to minimize harmonics distortions
in inverter output voltages [10], [11], [12], and [13].
For instance, a circuit configuration with a novel con-
trol algorithm for the DC-DC buck converter, which
results in an n-level multilevel inverter output voltage,
was presented in [14]. In this work, tabulated results
of percentage THD for different inverter output levels
are shown for simulation and experimentation. The
3 level inverter has percentage THD of 45.38 and 45.6
for simulation and experimentation, respectively. On
the other hand, the 255 level inverter has percentage
THD of 0.37 and 1.4 for simulation and experimenta-
tion, respectively. This clearly shows that an increase
in the inverter output voltage levels results in reduction
of the THD.

It was, however, observed that power loss in the cir-
cuit increases with increase in the number of output
voltage levels. Consequently, the inverter efficiency de-
creases with increase in the number of levels in output
AC voltage. Apart from high switching losses (leading
to reduction in efficiency), multilevel inverter topolo-
gies also have other demerits, including complexity in
the generation of control signals, high number of circuit
components, and high weight [15], [16], and [17].

The interface between the inverters and unregulated
DC sources such as electromechanical DC generators,
batteries, rectified AC source, solar photovoltaic panels
or hydrogen based fuel cells are the DC-DC converters
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[18], and [19]. There are six types of basic DC-DC
converter with each having performance characteris-
tic suitable for a particular application. These basic
types are the step down or buck converter, the step up
or boost converter, the conventional buck-boost con-
verter, the Cuk’s, the Sepic, and the Zeta converters
[20], [21], [22], and [23].

In this paper, a novel control DC-DC-AC buck con-
verter for single phase capacitor-start-run induction
motor drives is presented. A fundamental frequency
rectified sine reference signal with a high frequency
carrier signal placed above zero reference modulation
technique is adopted. An H-bridge inverter topology
with fundamental frequency control is used to invert
the buck DC-DC output voltage. The research ob-
jective is to obtain inverter AC output voltage with
reduced THD comparable with results obtained using
multilevel inverters while employing reduced number of
power semiconductor switches to offer excellent tran-
sients and steady state performance of the motor. The
software for the research is MATLAB/Simulink 2014a
version.

The organization of this paper is such that the circuit
description and operation of DC-DC-AC conventional
inverter is presented in Sec. 2. Simulation of the
proposed complete circuit topology, result presentation
and discussion are carried out in Sec. 3. The work is
concluded in Sec. 4.

2. Circuit Description and
Operation

The circuit diagram of the proposed inverter topology
is shown in Fig. 1, in which a DC-DC buck converter is
coupled with a conventional H-bridge inverter. In the
half cycle, S1 and S2 are turned ON, thereby allowing
the half waveform from the buck converter to appear
at the inverter output. Furthermore, in the subsequent
half cycle, S3 and S4 are turned ON, thereby invert-
ing the second waveform from the buck output voltage.
The two resultant waveforms gave a sinusoidal wave-
form as depicted in Fig. 1. The power semiconduc-
tor switch S, can be a single high voltage and current
switch or series high current or low voltage switches,
which can meet the necessary full Vdc hold-off require-
ment. The advent of Insulated Gate Bipolar Transis-
tor (IGBT) has made important contribution to power
electronics because the power and frequency bound-
aries have been extended. Inverter circuits for motor
drives are predominantly made of IGBTs. The relation-
ship between the input and output voltages is related
by the duty cycle.

Vdc
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S3

S4

Fig. 1: Circuit diagram of the proposed inverter configuration.

2.1. Generation of Variable PWM
Duty Cycle

A method of varying duty cycle of DC-DC converter
is obtained by comparing the reference signal (rectified
sine wave) and carrier triangular signal (placed above
zero level). An array of PWM signal generated com-
prises of unequal intervals between 0–90◦ and 90–0◦,
which represents the variation of sine function which
has a minimum value at zero degree and maximum at
90 degrees. Sine-triangle carrier modulation is identi-
fied as the most promising technique to pursue for both
technical and pedagogical reasons [24], and [25].
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Fig. 2: Carrier and rectified signals and corresponding switch-
ing pulses.

Figure 2 shows the generation of PWM control sig-
nal, Vgs, for firing the switch S of Fig. 1. This is ob-
tained by comparing a carrier and a reference signal.
Also shown in Fig. 2 are the firing pulses Vgs1–Vgs4 for
the H-bridge inverter switches S1-S4 generated by com-
paring the reference signal with ground potential. The
block diagram for the generation of these firing pulses
is shown in Fig. 3.

Figure 2 shows the generation of PWM control sig-
nal, Vgs, for firing the switch S of Fig. 1. This is ob-
tained by comparing a carrier and a reference signal.
Also shown in Fig. 2 are the firing pulses Vgs1–Vgs4
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Fig. 3: Logic circuit configuration for corresponding switching
pulses.

for the H-bridge inverter switches S1–S4 generated by
comparing the reference signal with ground potential.
The block diagram for the generation of these firing
pulses is shown in Fig. 3.

2.2. Design of Buck Converter
Parameters

The Buck converter is operated in Continuous Cur-
rent Mode (CCM) to enable the output voltage, Vo,
to exactly follow the duty cycle variation. The pro-
cedure for the design of buck converter with the
given specifications of: DC input voltage, Vdc, capac-
itor average current, VCavg, minimum output current,
Iomin, maximum output current, Iomax, switching fre-
quency, fs and duty cycle, δ (Reference signal voltage,
Vref/Carrier signal voltage, Vca) ≤ 1 % is described in
[21], [22], and [24].
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Fig. 4: Duty cycle vs. output voltage plot for a constant input
voltage.

The linear relationship existing between the input
voltage and output voltage of the DC-DC buck con-
verter shown in Fig. 4 makes it possible to realize a rec-
tified output voltage for the buck converter. The duty
cycle and the other converter parameters are computed
as in [14], [20], and [26].

Tab. 1: Parameters of the converter.

DC Input Voltage Vdc 220 V
Minimum Output Current Iomin 0.2 A

Specifications Maximum Output Current Iomax 10 A
Switching frequency fs 5 kHz

Fudamental Frequency FF 50 Hz
Designed Inductance L 1 mH
parameters Capacitance C 47 µF

2.3. D-Q Modelling of Capacitor
Start Capacitor Run Induction
Motor

To achieve good steady state performance and high
starting torque, two capacitors are used in a variant
of the capacitor-start-run motor shown in Fig. 5. To
start the motor, a relatively large capacitor value is
used for high starting torque. This is followed by the
application of a low value capacitor to sustain staedy
state operation without excessive current. Thus, the
motor combines the advantages of capacitor-run and
capacitor-start motors (i.e. good running power fac-
tor, efficiency, quiet and smooth operation, and high
starting torque). Typical applications are refrigerators,
compressors, conveyers, air conditioners, or pumps.
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Fig. 5: Capacitor-start capacitor-run induction motor.

The equivalent circuit model is obtained in [8], thus
the modified machine input voltage for single phase
capacitor-start capacitor-run induction motor is mod-
elled as follows:

Vqs = Vs = Vac. (1)
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The equivalent impedance Zeq of the start-run capaci-
tor is given by:

Zeq = (Rrun + jXCrun)//(Rstart + jXCstart)

= Zrun//Zstart.
(2)

During start, the switch S is turned ON thereby con-
necting the capacitor-start, thus we have:

Vds = Vs −
1

Zeq

∫
idsdt. (3)

At 75 % synchronous speed, the switch S turns OFF
thereby disconnecting capacitor start, thus we get:

Vds = Vs −
1

Zrun

∫
idsdt, (4)

Vqs = idsRds + pλds − ωrλqs, (5)

Vds = iqsRqs + pλqs − ωrλds, (6)

Vdr = idrRdr + pλdr, (7)

Vqr = iqrRqr + pλqr, (8)

Pωr =
Te
J
− TL

J
− Bm

J
ωr, (9)

where:

• λdr and λqr are the d-axis, and q-axis, rotor flux
linkages,

• λds and λqs are the d-axis, and q-axis, stator flux
linkages,

• Rstart and Cstart are resistance start and
Capacitor-Start,

• Rrun and Crun are resistance-run and Capacitor-
Run,

• Zstart and Zrun are start and run impedances,

• Vqs and iqs are q-axis main winding voltage and
current,

• Vds and ids are d-axis auxiliary winding voltage
and current,

• Vqr and iqr are q-axis rotor voltage and current,

• Vdr and idr are d-axis rotor voltage and current,

• Vs = Vac is the inverter output voltage,

• p =
d
dt

is differential operator,

• P is number of pole pairs,

• ωr is the mechanical rotational speed,

• TL is load Torque, Te is electromagnetic Torque,

• J is load inertia coefficient,

• Bm is damping coefficient.

3. Simulation, Results, and
Discussion

Figure 6 shows the complete schematic of the pro-
posed single phase capacitor-start capacitor-run in-
duction motor drives. It comprises the DC-DC buck
converter operating in continuous current conduction
mode at a variable duty cycle; a conventional DC-AC
inverter with four power switches operating at a low
frequency of 50 Hz; and a coupled load of single phase
capacitor start capacitor run induction machine.
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Fig. 6: Complete schematic of the single phase capacitor-start
capacitor-run induction motor drives.

The circuit configuration shown in Fig. 1 along with
the method for varying duty cycle shown in Fig. 3 has
been simulated in MATLAB/Simulink and the results
shown in Fig. 2. The specifications considered for the
design of filter parameters of DC-DC converter and the
values of L and C obtained from the aforementioned
design procedure are tabulated in Tab. 1. Figure 4 de-
picts duty cycle versus input voltage plot, which shows
the linear relationship between the three vital buck
converter parameters.

Figure 7 and Fig. 8 depict DC-DC buck converter
voltages and currents plots. It is clear from Fig. 7 that
with the designed parameters, the output DC-DC con-
verter, Vo exactly followed the duty cycle variation. In
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addition, the inductor voltage was also plotted and it
shows a variation which is a function of duty cycle.
Figure 8 depicts inductor current which operates at
the boundary condition of continuous and discontinu-
ous conduction current modes which depends on duty
cycle, switching frequency and inductor value. In ad-
dition, the DC-DC buck converter output current was
also plotted and the result depends on the variation
of the duty cycle. Figure 9 shows the inverter output
voltage.
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Fig. 7: Buck converter waveforms for DC source, inductor and
output voltages.
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Fig. 9: Inverter output voltage waveform.
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Fig. 10: Capacitor-start capacitor-run induction machine volt-
age waveforms.
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Fig. 11: Machine loading profile.
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Fig. 12: Capacitor-start capacitor-run induction machine out-
put current waveforms.

The inverter output voltage (i.e. main winding volt-
age), the auxiliary winding voltage, and the capacitor-
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start-run voltages are shown in Fig. 10. This confirms
that the proposed circuit configuration in Fig. 1 is ca-
pable of producing sinusoidal AC voltage using one DC
source few semiconductor switches.

The loading sequence for the machine is shown in
Fig. 11. The machine was loaded with 4 Nm at 0.51 sec-
onds until 0.76 seconds when the load was removed
(a period of 0.25 seconds). It was loaded again at
1.01 seconds (0.25 seconds later) and sustained for
another 0.25 seconds before the load was removed at
1.26 seconds. Thus, an equal interval of 0.25 seconds
for load and offload was maintained. The effect of the
loading sequence is observed in Fig. 10, Fig. 12, and
Fig. 13. Figure 12 shows the main winding current and
auxiliary winding current, from which the main wind-
ing inrush current or starting current is little above
20 A while that of auxiliary winding is little below 10 A.

The dynamic waveforms of the induction motor are
obtained in Fig. 13, which depict the following plots;
Electromagnetic torque under 4 N-m load torque, ro-
tor speed running at 1500 rpm maximum and 1300 rpm
minimum speed, and torque-speed which shows the be-
haviour of torque at different rotor speed values. The
effect of the 4 Nm intermittent loading can be noticed
in the electromagnetic torque, rotor speed, and torque-
speed plots. Figure 14 shows the phase-plane por-
trait of the system, displaying the periodicity of the
capacitor-start capacitor-run motor. Figure 14 depicts
the rotor currents in D-Q axes plots. These oscillations
are caused by elliptical rotating field due to the phase
difference between the rotor currents in D-Q-axes and
also unequal amplitudes of these currents.
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Fig. 13: Waveforms for electromagnet torque, rotor speed and
torque vs. speed plots.

The harmonic spectrum for the machine input volt-
age is shown in Fig. 15 above. The spectrum displays
the operating frequency of the machine (50 Hz), aver-
age input voltage (157.4 V) and THD of 6.32 %.
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4. Conclusion

A voltage source inverter with single DC source and
reduced number of power components, which can gen-
erate voltage very close to a pure sinusoidal wave with
a variable duty cycle, was presented. This circuit con-
figuration along with a novel DC-DC control technique
results in reduced control complexity, lower switching
losses, lower cost and weight, and higher efficiency.
Above all, the single phase induction motor exhibited
excellent dynamic performance during sudden gain,
loss of load, and enhanced starting torque. From the
results, it is concluded that the proposed DC-DC buck
control method performs very effectively in producing
an output AC voltage very close to sinusoidal waveform
with THD reduced to as low as 6.32 % using a single
DC voltage source and employing reduced number of
power semiconductor switches. This result is compara-
ble with the results of multilevel inverters which have
inherent limitation of increased power loss, reduced ef-
ficiency, complexity in the generation of control signals,
high number of circuit components, and high weight.
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Appendix A
Single Phase Induction Motor
Parameters

• Rated Voltage (V) = 110
√

2.

• Rated Power (Hp) = 1/4.

• Frequency (Hz) = 50.

• Number of Pole pairs = 2.

• Rated Speed (RPM) = 1500.

• Inertia (kg·m2) = 0.0146.

• Friction factor (N·m·s) = 0.

• Turn ratio (aux/main) = 1.18.

• Main winding stator [Rs (Ω), LIs]=2.02, 7.4·10−3.

• Main winding stator [R′r (Ω), L′Ir]=4.12, 5.6·10−3.

• Main winding Mutual Inductance
Lms (H)=0.1772.

• Auxiliary winding stator [Rs (Ω), Lls (H)] = 7.14,
85 · 10−3.

• Capacitor-start [Rst (Ω), Cs (Farad)] = 2,
254.7 · 10−6.

• Capacitor-run [Rru (Ω), Cru (Farad)] = 18,
21.1 · 10−6.
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