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Abstract. The manuscript presents a circuit that can
act as a universal filter as well as a single resistance
controlled oscillator by unpretentiously changing the
switch positions. The circuit employs only two active
devices and all grounded passive elements. The utiliza-
tion of only grounded passive components makes this
circuit a better choice for integrated circuit implemen-
tation. The current mode biquadratic filter offers all
the five basic responses along with independent tunabil-
ity of its quality factor. The dual-mode quadrature si-
nusoidal oscillator offers explicit current outputs along
with voltage outputs. The circuit also offers a simple
and uncoupled condition of oscillation and frequency
of oscillation. The typical analysis such as non-ideal,
sensitivity and parasitic analysis along with the regular
simulation results as well as experimental results are
exposed here, to strengthen the design idea.
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1. Introduction

From last few decades, there has been a predominance
of digital signal processing over analog signal process-
ing. But this does not pose any threat to it; rather it
gave more challenges and opportunity to the designer
and researcher of analog circuits. Analog signal pro-

cessing, where natural/ analog signals are handled as
per the specifications, has its own advantages such as
higher bandwidth, faster speed of operation etc. In
the domain of analog circuits, some of the most widely
employed applications are active filters, sinusoidal os-
cillator, non-linear waveforms generator, synthetic in-
ductor realization [1], [2], [3], [4] and [5]. Frequency
selective filters and sinusoidal oscillator, since long,
have found impeccable application in communication
receiver, control systems etc. [6]. Frequency selective
filters, as the name implies, is the block that passes
/attenuates any specific frequency or a band of fre-
quencies whereas oscillator is a circuit that generates
the undamped waveform of any designed frequency.

The reference no. [7] exposed a gateway to the up-
coming future devices; Voltage Differencing Current
Conveyor (VDCC) is one of them. So many applica-
tions of this active device [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17], [18], [19], [20], [21] and [22], and
references cited therein, are made available in the open
literature. But still as per authors’ perception, this ac-
tive device has to be much more explored and exploited
for analog signal processing applications, in future.

Out of these [8], [9], [10], [11], [12], [13], [14], [15],
[16], [17], [18], [19], [20], [21] and [22], synthetic in-
ductor is realized in [8], [9] and [10], passive element
simulator in [11] and [12], active filter was presented in
[13], [14], [15], [16] and [17], and sinusoidal oscillator
in [18], [19], [20] and [21]. The behavioral model of the
active device is discussed in detail in [22]. Comparison
of the designed universal filter circuit with the earlier
work done on VDCC based filters is as follows. In
[13] a voltage mode universal active filter using single
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Tab. 1: Comparison table of literature survey (Active Filter).

Ref. No.

All five Number Number of Whether all Matching of Is Q0

Mode of types of of passive passive impedances at indepen-
operation responses VDCC elements elements input and dently

available employed used grounded output level tunable
[13] Voltage mode Yes 1 3 No No No
[14] Current mode Yes 1 3 Yes No No
[15] Current mode Yes 2 4 Yes No Yes
[16] Voltage mode No 2 7 No No Yes

Proposed Current mode Yes 2 4 Yes Yes Yescircuit

Tab. 2: Comparison table of literature survey (Sinusoidal Oscillator).

Ref. No.

Number Whether Non- Availability Is operation

Any significant remarksof all passive interacting of explicit in CM/VM
VDCC elements CO and quadrature both

employed grounded FO outputs mode
Availability of BP and LP

[18] 1 Yes No No No responses in transconductance
mode

[19] 2 Yes Yes Yes Yes -

[20] 1 Yes No Yes No Multiphase Oscillator
(Linear Control of FO)

[21] 1 Yes No Yes No -
Proposed 2 Yes Yes Yes Yes Availability of current mode
circuit Universal filter

VDCC is presented but it suffers from the drawback
of the utilization of floating passive elements. A cur-
rent mode universal filter with less number of active
devices is presented in [14] but the circuit has a draw-
back that the filter parameters are not independently
tunable. The circuit given in [15] uses the same number
of active and passive devices but input current is not
injected at low impedance port. Additionally, circuit
can perform one function only. In [16] higher numbers
of passive elements were used. First ever, first order
all-pass filter using single VDCC is presented in [17].
A qualitative comparison of parameters with given lit-
erature survey is shown in Tab. 1.

Now the comparison of the proposed oscillator with
the earlier published work is given as follows. The
quadrature oscillator, employing all grounded passive
elements, which is not having non-interacting CO and
FO (also known as fully uncoupled) and its tuning ca-
pability is limited with passive grounded element only,
is presented in [18] and [21]. In [19], the same number
of active and passive elements are utilized, but works
as a sinusoidal oscillator only (can’t perform the func-
tion of active filter). In [20], a multiphase oscillator
using controlled gain VDCC was proposed but requires
a matching condition to the linear control of oscillation
frequency. A comparative analysis is also presented in
Tab. 2.

The purpose of this manuscript is to present one such
circuit that can work as a universal filter along with
a sinusoidal oscillator. In conclusion, the circuit offers
various features, when used as an active filter, such as:

• Availability of all five responses in current mode
i.e. low pass, high pass, band pass, band reject
and all pass filter function.

• Independent tunability of its quality factor (Q0).

• Orthogonal tunability of its center frequency (ω0).

• Availability of explicit current output.

• Use of only grounded passive elements.

• Availability of low impedance at input port and
high impedance at output port.

Whereas when the same circuit acts as sinusoidal
oscillator reflects some useful characteristics e.g.

• Availability of explicit current output.

• Use of only grounded passive elements.

• Availability of quadrature current output (ex-
plicit).

• Availability of voltage mode quadrature output.

• Simple Condition of Oscillation (CO) and Fre-
quency of Oscillation (FO).

• Uncoupled CO and FO.

• FO can be tuned either electronically or by use of
grounded passive resistor.

• CO can also be adjusted by grounded passive re-
sistor or by electronic tunability.
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Fig. 1: MOS realization of the Voltage Differencing Current Conveyor [15].

Full manuscript is divided into five main sections. At
the outset, the present section gives the introduction of
analog signal processing and comparison between pre-
vious work and presented work. Section 2. presents
the active device i.e. VDCC along with the proposed
circuit. Non-ideal and sensitivity analysis is depicted
in Sec. 3. . Section 4. states the effects of parasitic of
the active device under consideration, on the proposed
circuit. To verify the theoretical analysis, Sec. 5. con-
tains all the simulation results. Experimental results
are given in Sec. 6. At last, conclusion is provided
in Sec. 7.

2. Proposed Circuit

The electrical combination of an Operational Transcon-
ductance Amplifier (OTA) and a second generation
Current Conveyor (CCII) is known as VDCC. The
block diagram along with its functional circuit dia-
gram, employing CMOS transistors, are shown in Fig. 2
and Fig. 1 respectively. Equation (1) represents the
natural characteristics of the active device. Here gm is
the transconductance factor of the device; additionally,
this is electronically tunable with the help of the bias
current i.e. IB1 (Fig. 2).
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Fig. 2: Block Diagram of VDCC [8].


IP
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IZ
VX
IWP
IWN

 =


0 0 0 0
0 0 0 0
gm −gm 0 0
0 0 1 0
0 0 0 1
0 0 0 −1



VP
VN
VZ
IX

 . (1)

The proposed circuit that can work as a current
mode universal filter, as well as single resistance con-
trolled oscillator, by simply altering the switch posi-
tion, is shown in Fig. 3. Table 3 shows the basic com-
bination of switches, as shown in Fig. 3, so that the
circuit can provide the desired nature of the operation.
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Fig. 3: Proposed realization of filter cum Oscillator Circuit.

Tab. 3: Characteristic table (for the circuit shown in Fig. 3).

S. No. Switches OperationS1 S2 S3

1. ON OFF ON Current mode
universal filter

2. OFF ON OFF Dual mode
quadrature oscillator

When the switch combination as given in S.No. 1 of
Tab. 3 is applied, the circuit behaves as an active fil-
ter. To get all the desired transfer functions, we simply
apply the basics of circuit theory on the Fig. 3, utiliz-
ing the characteristic equation of VDCC i.e. given in
Eq. (1). All five desired transfer function of a univer-
sal filter i.e. low pass, high pass, band pass, band stop
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and all pass are presented in Eq. (2), Eq. (3), Eq. (5),
Eq. (7) and Eq. (9). The common denominator poly-
nomial, expression for the center frequency and quality
factor are given by Eq. (10), Eq. (11) and Eq. (12). It
is evident from Eq. (12) that the Q0 is independent of
ω0 and its value can be varied by varying a grounded
passive resistor i.e. R0. The gain of the given Band
Pass (HBP) and Low Pass (HLP) filter function is given
in Eq. (13).

IOUT1

IIN
=
IBP

IIN
=

s · gm1

C0

D(s)
. (2)

IOUT

IIN
=
ILP

IIN
=

gm1

R1C0C1

D(s)
. (3)

If gm1R0 = 1,

IHP = −IIN + IBP + ILP, (4)

IHP

IIN
= − s2

D(s)
. (5)

IBS = IHP − IBP, (6)

IBS

IIN
= −

s2 +
s

R0C0

D(s)
. (7)

IAP = −IHP − IBP + ILP, (8)

IAP

IIN
=
s2 − s

R0C0
+

gm1

R1C0C1

D(s)
. (9)

D(s) = s2 +
s

R0C0
+

gm1

R1C0C1
. (10)

ω0 =

√
gm1

R1C0C1
. (11)

Q0 = R0

√
gm1C0

R1C1
. (12)

HLP = 1
HBP = gm1R0

}
, (13)

where ω0 is the center frequency in rad·s−1 and Q0 is
the quality factor.

When the appropriate switch combination of Tab. 3
(S.No.2) is applied, the proposed circuit works as
a Single Resistance Controlled Oscillator (SRCO). The
characteristic equation of the proposed SRCO is given
by Eq. (14). The Condition of Oscillation (CO) and
Frequency of Oscillation (FO) are simple and uncou-
pled to each other, represented by Eq. (15) and Eq. (16)
respectively. Here, it is evident that the CO, as well as

FO, can be tuned electronically (gm0 for CO and gm1

for FO) as well as with the help of grounded passive
resistor (R0 for CO and R1 for FO), without affecting
each other. The circuit offers two explicit current out-
puts that are in 90◦ phase shift to each other. These
two quadrature outputs are IOUT and IOUT1; namely.
The relationship between them is shown by Eq. (17).
Here it is worth noting that the derived circuit can
also offer quadrature voltage outputs Va and Vb. The
relationship between the both is justified by Eq. (18).

s2 +
s

C0

(
1

R0
− gm0

)
+

gm1

R1C0C1
= 0. (14)

C.O.
(

1

R0
− gm0

)
= 0. (15)

F.O. ω0 =

√
gm1

R1C0C1
. (16)

IOUT

IOUT1
=

1

sC1R1
. (17)

Vb
Va

=
gm1

sC1
. (18)

3. Non-Ideal and Sensitivity
Analysis

The deviation between ideal and non-ideal values of the
active device can be checked through its given math-
ematical equation. Equation (19) represents the char-
acteristics equations of VDCC where ’i’ represents the
number of the active device that could be 0 and 1. The
non-ideal factors are defined as α, β, γP and γN . The
ideal values of α, β, γP and γN are in unity only.

IZ = αi · gmi(VP − VN )
VX = βi · VZ
IWP = γPiIX
IWN = −γNiIX

 . (19)

When Eq. (19) is used for analyzing the proposed
circuit, as given in Fig. 3, by circuit theory fundamen-
tals, non-ideal transfer functions are obtained. Equa-
tion (20) and Eq. (21) represent the transfer func-
tions of band pass and low pass filters, whereas, fre-
quency and qualify factor along with common denom-
inator polynomial are given by Eq. (22), Eq. (23) and
Eq. (24).

IOUT1

IIN
=

α1 · γNO

(
sgm1

C0

)
D′(s)

. (20)

IOUT

IIN
=

α1 · β1 · γP1 · γNO

(
gm1

C0C1R1

)
D′(s)

. (21)
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ω′0 =

√
α1 · β1 · gm1 · γN1

C0C1R1
. (22)

Q′0 = R0

√
C0α1 · β1 · gm1 · γN1

C1R1
. (23)

D′(s) = s2 + s

(
1

C0R0

)
+
α1 · β1 · γN1gm1

C0C1R1
. (24)

While doing the non-ideal analysis for the proposed
sinusoidal oscillator, we get the following characteristic
equation, given by Eq. (25). From Eq. (25), non-ideal
CO and FO can be easily deduced, which are repre-
sented in Eq. (26) and Eq. (27) respectively.

s2 +
s

C0

(
1

R0
− α0 · gm0

)
+
α1 · β1gm1γN1

R1C0C1
= 0. (25)

C.O.
(

1

R0
− α0 · gm0

)
≥ 0. (26)

F.O. ω0 =

√
α1 · β1 · gm1γN1

R1C0C1
. (27)

Sensitivity analysis was also carried out for both the
proposed applications of VDCC. The sensitivity equa-
tions for the derived current mode universal filter are
given by Eq. (28), Eq. (29), Eq. (30), Eq. (31), Eq. (32)
and Eq. (33) and for SRCO derived sensitivity equa-
tions are represented by Eq. (34) to Eq. (35). All the
derived sensitivity figures are under considerable lim-
its.

S
ω′

0
α1 = S

ω′
0

β1
= S

ω′
0

γN1 =
1

2
. (28)

S
ω′

0
gm1 =

1

2
; S

ω′
0

R1
= S

ω′
0

C1
= S

ω′
0

C0
= −1

2
. (29)

S
Q′

0
α1 = S

Q′
0

β1
= S

Q′
0

γN1 =
1

2
. (30)

S
Q′

0
gm1 = S

Q′
0

C0
=

1

2
. (31)

S
Q′

0

C1
= S

Q′
0

R1
= −1

2
. (32)

S
Q′

0

R0
= 1. (33)

S
ω′

0
α1 = S

ω′
0

β1
= S

ω′
0

γN1 =
1

2
. (34)

S
ω′

0
gm1 =

1

2
; S

ω′
0

R1
= S

ω′
0

C1
= S

ω′
0

C0
= −1

2
. (35)
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Fig. 4: Parasitic model of VDCC [19].

4. Parasitic Analysis

A well known parasitic model of VDCC [19] has been
taken into consideration, shown in Fig. 4, to explore
the effect of parasitic on designed circuits.

The next scheme shows the proposed circuit includ-
ing parasitic effects. It is evidently shown that the
proposed current mode universal filter and sinusoidal
oscillator reflects good performance under the influence
of parasitic.

4.1. Parasitic Analysis for Universal
Filter

-IIN

WN

WP

P

N

Z

VDCC
gm0

IOUT1

IOUT

WN

WP

P

N
Z

VDCC
gm1

IIN

X

Ca
Rb

Ra
C1

X

ZC+

Va

RZ1

Assumptions:

Ra = R1 +RX1.

Rb = R0||RN0||RN1.

Ca = C0 + CN0 + CN1.

IOUT1 =

[
1

RZ1
+ sC1

]
gm1

CaC1

D̃(s)
.

IOUT =

gm1

RaC1Ca

D̃(s)
.
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D̃(s) = s2+s

[
1

C1RZ1
+

1

CaRb

]
+

1

CaC1

[
gm1

Ra
+

1

RZ1Rb

]
.

ω̃0 =

√
1

C1Ca

[
gm1

Ra
+

1

RZ1Rb

]
.

Q̃0 =
1[

1

C1RZ1
+

1

CaRb

]√ 1

C1Ca

[
gm1

Ra
+

1

RZ1Rb

]
.

Sω̃0

C1
= Sω̃0

Ca
= −1

2
.

Sω̃0

Ra
= −Sω̃0

gm1
= −1

2

gm1

RaC1Ca
1

C1Ca

[
gm1

Ra
+

1

RZ1Rb

] .

Sω̃0

Rb
= −Sω̃0

RZ1
= −1

2

1

C1CaRZ1Rb
1

C1Ca

[
gm1

Ra
+

1

RZ1Rb

] .

4.2. Parasitic Analysis for Sinusoidal
Oscillator

WNP

N

Z

VDCC
gm0
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P

N
Z

VDCC
gm1

Ca
Rb Ra

C1

X

RZ1

Assumptions:

Ra = R1 +RX1.

Rb = R0||RZ0||RN1.

Ca = C0 + CN1.

CO:
1

Ca
[gm0 −Rb] =

1

C1RZ1
.

FO: ω̃2
0 =

1

CaC1

[
1

RZ1

(
1

Rb
− gm0

)
+
gm1

Ra

]
.

Sω̃0

C1
= Sω̃0

Ca
= −1

2
.

Sω̃0

Ra
= −Sω̃0

gm1
= −1

2

gm1

RaC1Ca
1

CaC1

[
1

RZ1

(
1

Rb
− gm0

)
+
gm1

Ra

] .

Sω̃0

Rb
= −1

2

1

C1CaRZ1Rb
1

CaC1

[
1

RZ1

(
1

Rb
− gm0

)
+
gm1

Ra

] .

Sω̃0

RZ1
= −1

2

1

C1CaRZ1

(
1

Rb
− gm0

)
1

CaC1

[
1

RZ1

(
1

Rb
− gm0

)
+
gm1

Ra

] .

Sω̃0
gm0

= −1

2

gm0

RZ1C1Ca
1

CaC1

[
1

RZ1

(
1

Rb
− gm0

)
+
gm1

Ra

] .

5. Simulation Results

Feasibility of the proposed filter cum oscillator cir-
cuit, with all grounded passive components, has been
tested and simulated using Cadence PSPICE simula-
tion software. The CMOS version shown in Fig. 1,
using 0.18 µm TSMC MOS process parameters [23], is
utilized for generating the graphical results. The as-
pect ratios, used in Fig. 1, are presented in Tab. 4 [8].
For simulation, supply voltage of ±0.9 V and bias cur-
rent of 50 µA (IB1) and 100 µA (IB2), shown in Fig. 1,
are used and the corresponding value of transconduc-
tance gain (gm) is 277 µA·V−1. All the simulation
results of the derived circuit are mainly divided into
two parts - former depict universal filter’s simulation
results and latter shows the simulation graphs for the
oscillator circuit.

For the testing of the universal filter, the passive
components were selected as R0 = R1 = 3.6 kΩ,
C0 = 21.9 pF, C1 = 87.6 pF and the transconduc-
tance gain of the active device is 277 µA·V−1. Figure 5
demonstrates that the designed current mode circuit
can be utilized as a low pass, high pass, band pass and
band stop filter. Here the center frequency was chosen
as 1 MHz and the value of the quality factor is 0.5.
The proposed circuit can also act like an all pass fil-
ter whose gain as well as phase response is depicted in
Fig. 6. Figure 5 and Fig. 6 collectively justify the de-
sign of a universal filter using VDCC with all grounded
passive components. As given in Eq. (12), Q0 can be
varied with the help of resistance R0 without altering
the center frequency. So the variation of the quality
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factor by changing the value of grounded passive resis-
tor R0 is shown in Fig. 7. Table 5 gives the range of
R0 and their corresponding value of Q0.

Tab. 4: Aspect ratios of the MOS devices [8].

CMOS transistors W/L (in µ/m)
M1–M4 3.6/1.8
M5, M6 7.2/1.8
M7, M8 2.4/1.8
M9, M10 3.06/0.72
M11, M12 9.0/0.72
M13–M17 14.4/0.72
M18–M22 0.72/0.72

Tab. 5: Q0 tunability (passive Components values).

Q0 R0 (in kΩ)
0.25 1.8
0.35 2.54
0.5 3.6

0.707 5.09
1 7.2

1.414 10.18
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Fig. 5: Current mode filter responses of low pass, high pass,
band pass and band reject functions.

Apart from Q0 tunability, the center frequency of the
designed filter can also be varied, as shown in Fig. 8.
The passive elements values selected for Fig. 8 are given
in Tab. 6. The transient response of the band pass fil-
ter is also simulated at 1 MHz, represented in Fig. 9.
Figure 9 depicts that at input current of 25 µA, the
output is distortion free. Total Harmonic Distortion
(THD) of the designed current mode filter circuit is
also calculated. The graph plotted between input cur-
rent versus existing percentage of THD, is depicted in
Fig. 10. Figure 10 shows that up to 80 µA of input
current the THD is significantly low.

The proposed circuit can also be utilized as a single
resistance controlled oscillator with all grounded com-
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Fig. 6: Gain and phase response of an all pass filter function.

104 105 106 107 108

Frequency (Hz)

0

0.2

0.4

0.6

0.8

1

N
or

m
al

is
ed

 G
ai

n 

Q0 =1.414
Q0 =1
Q0 =0.707
Q0 =0.5
Q0 =0.35
Q0 =0.25

Fig. 7: Q0 tunability with fixed center frequency at 1 MHz.

Tab. 6: Passive Components values for the tunability of the
center frequency.

Frequency (MHz) 0.63 1 1.48
R0 (kΩ) 5.72 3.6 2.45
R1 (kΩ) 7.2 3.6 1.8

gm (µA·V−1) 220 277 299
Q0 0.5 0.5 0.5

ponents. The passive components values for the de-
signed sinusoidal oscillator were chosen as R1 = 15 kΩ,
C0 = C1 = 21.9 pF and the transconductance gain of
the active device is 277 µA·V−1. The transient and
the steady state responses, with explicit current output
are shown in Fig. 11 and Fig. 12, respectively. Addi-
tionally, Fig. 12 represents the quadrature outputs in
current mode. As discussed in Sec. 2. , the designed
oscillator can also deliver the voltage mode quadrature
output, represented in Fig. 13. Lissajous patterns for
the current and voltage mode quadrature outputs are
also plotted in Fig. 14 and Fig. 15, respectively. It can
be seen from last two figures that there are no tilts
in the ellipses, hence verifying the quadrature relation-
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Fig. 8: Variation of center frequency with fixed Q0.
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Fig. 10: THD curve for a band pass filter function.

ships. The measured phase angle is 88.3◦ and 89.4◦

respectively for Fig. 12 and Fig. 13.
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Fig. 11: Transient response of the current mode sinusoidal os-
cillator.
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Fig. 12: Steady state response of the quadrature current out-
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Fig. 13: Steady state response of the quadrature voltage out-
puts.

c© 2017 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 840



THEORETICAL AND APPLIED ELECTRICAL ENGINEERING VOLUME: 15 | NUMBER: 5 | 2017 | DECEMBER

-40 -20 0 20 40

Current Iout1 (micro ampere)

-40

-20

0

20

40

C
ur

re
nt

 I
ou

t (
m

ic
ro

 a
m

pe
re

)
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Fig. 15: Lissajous Pattern for voltage mode outputs.

The FFT representation of the explicit current out-
put sinusoidal oscillator is shown in Fig. 16 (for better
clarity and to see the availability of harmonics, y-axis
has been taken in log domain). It is evident from
Eq. (16) that the FO of the derived circuit can be var-
ied with the help of grounded passive resistor i.e. R1

and same can also be achieved by electronic tunability
using gm1. Figure 17 shows the variation of FO with
respect to grounded resistor R1 whereas Fig. 18 rep-
resents the electronic tunability of FO with respect to
bias current of gm1 i.e. IB1. In Fig. 17, for the en-
tire range of R1 the FO is calculated and maximum
error between simulated and calculated values of FO is
found to be 6.78 % only. The variation of frequency,
under the influence of parasitics, has also been com-
puted. The values of parasitic elements (RX = 43 Ω,
RZ = 362 kΩ, RN = 141 kΩ, CP = CN = 0.92 pF)
have been taken from [8]. In Fig. 18, for ideal frequency
of 1.86 MHz (for C0 = C1 = 21.9 pF, R1 = 3.6 kΩ and
gm1 = 236 µA·V−1 at IB1 of 35 µA) we get the sim-

ulated value as 1.84 MHz and including the effect of
parasitic we get the FO 1.82 MHz with an error of
2.58 % with respect of ideal frequency.

The total harmonic distortion was also calculated for
the entire usable range of the sinusoidal oscillator, as
shown in Fig. 19. Figure 19 depicts that the THD is sig-
nificantly low for the entire range of frequencies which
strengthens the designed idea. However, the fluctua-
tion presented in Fig. 19 can be reduced by introducing
an additional AGC network as given in [20].
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Fig. 16: FFT representation of the explicit current output of
sinusoidal oscillator.
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Fig. 17: Variation of FO with respect to a grounded resistor
R1.

6. Experimental Results

For practical implementation of VDCC as a block,
a readily available integrated circuit i.e. OPA860 (see
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Fig. 20: Experimental setup for Active filter using VDCC.

Fig. 13 of [13]) have been used here. OPA860 is basi-
cally a diamond transistor [24]. Here it is worth men-
tioning that the resistors of 100 Ω are connected in
series to the bases of OTA and buffers inputs [24]. The
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Fig. 21: Filter responses of low pass and band pass responses.

Fig. 22: Experimental setup for sinusoidal oscillator using
VDCC.

value of ROFFSET is also taken as 100 Ω (Fig. 13 of
[13]).

For a generation of hardware results, we have used
SCIENTIFIC Multiple power supply (PSD3304), SCI-
ENTECH function generator (4061), SCIENTIFIC Os-
cilloscope (30 MHz, SM410). The passive component
values, used in experimentation for the active filter,
are C1 = C2 = 470 pF, Rm1 = 1/gm1 = 330 Ω and
R1 = R0 = 330 Ω. For the implementation of SRCO
following passive elements have been taken, C1 = C2 =
470 pF, Rm1 = 1/gm1 = Rm0 = 1/gm0 = 330 Ω and
R1 = 330 Ω. Figure 20 and Fig. 22, respectively, shows
the experimental setup for the active filter and sinu-
soidal oscillator using OPA860. The two (explicit) re-
sponses i.e. low pass and band pass are simulated us-
ing the PSPICE library file of OPA 860 obtained from
www.ti.com. The results obtained are very much close
to reality, as one can see in Fig. 21. For the purpose
of experimentation low pass and band pass (explicit
outputs, obtained experimentally) are also marked in
Fig. 21. The frequency of operation was chosen as
1 MHz. Figure 23 shows the steady state quadrature
output of the experimentally realized oscillator using
OPA860. Here the frequency of operation is also cho-
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sen as 1.03 MHz (ideally) and the achieved frequency
through simulation (using OPA860 macro model) is
935 kHz (with an error of 6.5 %). When the same
is performed experimentally, the frequency of opera-
tion comes out to be 914 kHz (with an error of 2.2 %
with respect to OPA860 simulation). To check the wide
range of the oscillator, the graph between frequency of
operation and a grounded passive resistor R1 is plot-
ted, shown in Fig. 24. The simulated and experimental
values are in good agreement to each other.

Fig. 23: Steady state output of the oscillator.
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Fig. 24: Variation of FO with respect to a grounded resistor
R1.

7. Conclusion

This manuscript presents a realization of a current
mode universal filter and a single resistance controlled
oscillator successively, by altering the positions of the
passive switches. Both the designed circuits employ
only grounded passive elements and two active devices.
Availability of explicit current outputs makes it a bet-
ter proposition. The designed universal filter can pro-

duce all the five basic responses along with indepen-
dent control of its quality factor. The derived SRCO
has quadrature outputs in current mode (explicit out-
put) as well as in voltage mode. The CO and FO of
the oscillator are totally uncoupled and can be gov-
erned by a passive grounded resistor. The additional
electronic tunability of CO and FO is also available.
Regular mathematical analysis and typical simulation
and experimental results justify the theoretical idea.
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