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Abstract. The paper deals with a solution of large
multibody contact problems using massively parallel
computers and domain decomposition methods. These
methods can solve the problems discretized by billions
of nodal variables at the cost nearly proportional to the
number of variables using up to thousands cores before
the communication costs start to dominate the com-
putational costs. The paper describes the ingredients
essential for efficient massively parallel implementa-
tion that increases the parallel scalability beyond the
limit mentioned above. The improvements were en-
hanced into a new software package PERMON which
is based on PETSc. The performance of the algorithm
is demonstrated on the solution of an academic bench-
mark discretized by nearly billion of nodal variables.
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1. Introduction

We are interested in the solution of large multibody
contact problems such as those arising in the design of
electromagnetic brakes [3]. A powerful tool for the so-
lution of these problems are the Finite Element Tearing
and Interconnecting (FETI) methods that were origi-
nally introduced by Farhat and Roux [2] for the solu-
tion of large linear systems arising from the discretiza-
tion of elliptic partial differential equations. The key

ingredient of FETI is the decomposition of the spa-
tial domain into non-overlapping subdomains that are
glued by Lagrange multipliers. After elimination of
the primal variables, the original problem is reduced to
a small, relatively well conditioned equality constrained
Quadratic Programming (QP) problem, so it can be
solved by a suitable iterative method.

A unique feature of FETI is its numerical scalability,
i.e., its capability to solve the discretized problems at
the cost nearly proportional to the number of variables.
Moreover, FETI also enjoys the parallel scalability – if
each subdomain is assigned to a core, then the time
of the solution can be reduced nearly proportionally to
the number of available cores until the communication
costs start to dominate the cost of the solution.

If the FETI procedure is applied to the contact prob-
lems, the duality not only reduces the dimension of the
original problem, but it also turns all inequality con-
straints into bound constraints. Though the resulting
QP has not only the equality constraints, but also the
non-negativity constraints, the resulting problem can
still be solved with the optimal complexity [1].

Let us mention that the optimality results mentioned
above are rather qualitative; the estimates contain un-
known constants, so it is not clear whether we can ob-
serve the scalability in the solution of realistic prob-
lems. The point of this paper is to present some im-
plementation details that improve the performance of
the algorithm and extend the domain of their parallel
scalability. The improvements were implemented into
a novel software package based on PETSc that is called
PERMON toolbox. PERMON uses both our in-house
software and efficient open source libraries. The core
solver layer consists of two modules: PermonFLLOP
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for FETI and PermonQP for QP. The numerical and
parallel scalability is demonstrated on the solution of
an academic benchmark discretized by nearly a billion
variables.

2. TFETI Method

Our development is based on a variant of FETI that we
call Total-FETI (TFETI) [9]. TFETI uses Lagrange
multipliers to enforce the Dirichlet boundary condi-
tions so that all subdomains are floating and the ker-
nels of the associated subdomain stiffness matrices are
known a priori.

The original discretized primal problem has the fol-
lowing form:

min
1

2
uTKu− fTu s.t. BIu ≤ 0 and BEu = 0. (1)

The primal global distributed objects denote the stiff-
ness matrix, its kernel, equality and inequality con-
straint matrices and the load vector

K = diag(K1, . . . , KNS ),

R = diag(R1, . . . , RNS ),

B = [BT
E ,B

T
I ]

T = [B1, . . . , BNS ],

f = [(f1)T , . . . , (fNS )T ]T ,

where diag means a block-diagonal matrix consisting
of the diagonal blocks in the parentheses, and Ks, Rs,
Bs and fs denote the local objects associated with s-th
subdomain.

The primal problem Eq. (1) is transformed into the
dual one,

min 1
2 λ̂

T (PFP+ ρQ)λ̂− λ̂TP(d− Fλ̃)

s.t. λ̂I ≥ −λ̃I and Gλ̂ = o.
(2)

The corresponding dual objects are

F = BK†BT , G = RTBT , d = BK†f , e = RT f ,

where K† denotes a left generalized inverse of K, i.e.,
a matrix satisfying KK†K = K, λ̃ satisfies Gλ̃ = e,
while the solution is looked for in the form λ = λ̂ +
λ̃, and ρ > 0 is the regularization parameter. The
favorable spectral properties of the Hessian are given
by orthogonal projectors P = I−Q, ImP = KerG,
and Q = GT (GGT )−1G, ImQ = ImGT . Evaluating
(GGT )−1 is called the Coarse Problem (CP).

3. QP Problems

QP problems resulting from the application of the
TFETI method to variational inequalities can be solved

by the MPRGP (Modified Proportioning with Re-
duced Gradient Projections) algorithm and SMALBE
(SemiMonotonic Augmented Lagrangian algorithm for
Bound and Equality constraints) algorithm, both de-
veloped by Dostal [1]. These algorithms have the rate
of convergence given by the bounds on the spectrum
of the Hessian matrix. This operator contains three
projector applications that can be implemented using
two CP solutions. In combination with TFETI, these
algorithms were proved to enjoy both numerical and
parallel scalability.

The rate of convergence does not depend on penali-
zation parameter ρ, but it is bounded by the constant

given by the ratio
H

h
:

κ(PFP | ImP) ≤ CH
h
, (3)

with h andH denoting the discretization and decompo-
sition parameter, respectively [2]. Efficiency of TFETI
method could be further improved by application of
preconditioning in face.

4. Massively Parallel
Implementation

Parallelization of FETI/TFETI can be implemented
using SPMD technique.The distribution of primal ma-
trices is quite straightforward as every subblock reflects
a subdomain. The matricesK andR have a favourable
block-diagonal layout and can be implemented using
a block-diagonal matrix composite type where blocks
are ordinary sequential matrices and every core holds
an array of blocks associated with its subdomains.

While the dual problem is solved iteratively, the
auxiliary problems related to the application of an
unassembled system matrix are solved directly.

The first auxiliary problem is the stiffness matrix
pseudoinverse application. It is parallelizable with-
out any data transfers because of a favourable block-
diagonal structure so that core factorizes the regular-
ized local blocks (subdomain stiffness matrices).

The cost of the factorization can be reduced by in-
creasing the number of subdomains. On the other
hand, this increases the null space dimension and the
number of Lagrange multipliers on the subdomains in-
terfaces (dual dimension). It can hardly be solved se-
quentially on the master core for large scale problems
and becomes a bottleneck, see Fig. 1.

The second one is the CP solution appearing in the
application of the projectors. However, this problem
does not possess such a favourable structure suitable
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for parallel processing and some communication is nec-
essary.

An effect of a choice of the LU direct solver on
the Cray XE6 machine HECToR (PETSc, MUMPS,
SuperLU) on performance of the TFETI massively par-
allel implementation in PERMON library can be found
in [11].
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Fig. 1: Increase in number of subdomains leads to a decrease
in size of the local stiffness matrices and improvement
of bounds at the cost of the CP matrix size increase -
times needed by individual actions.

5. K† Action

In the case of the pseudoinverse, each core regularizes
a subdomain stiffness matrix using fixing nodes and
factorizes it in the preprocessing phase. The applica-
tion of K† then consists of purely local backward and
forward substitutions in each CG iteration. A nice time
reduction can be reached by the decomposition of the
domain into more subdomains, see [10]. For this pur-
pose it was necessary to implement special matrix for-
mats enabling handling an array of diagonal blocks as-
sociated with more subdomains on one computational
core, see Fig. 2 and Fig. 3.
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Fig. 2: Data distribution: one subdomain per one core.

R K , K 
+ 

Fig. 3: Data distribution: more subdomains per one core.

6. (GGT )−1 Action

Firstly, it is necessary to assemle the natural coarse
space matrix and CP matrix in parallel, see Fig. 4 and
Fig. 5. The action time and level of communication
depend primarily on the implementation of the CP so-
lution GGTx = y, which can be hardly solved sequen-
tially on the master core for large scale problems. We
have suggested and compared several strategies of CP
solution:

1. directly using LU factorization,

2. iteratively using PCG,

3. applying explicit inverse of GGT ,

4. orthonormalization performed by iterative classi-
cal version of Gram-Schmidt process, if matrixGT

has orthonormal columns then CP is eliminated
because (GGT )−1 = I).

The second strategy does not seem suitable be-
cause it harms robustness of the FETI method. The
third strategy, i.e., explicit inverse assembling + dense
matrix-vector products could be effective depending on
the number of subdomains and the expected number of
CP actions, for results with direct explicit inverse com-
putation see [12]. The fourth orthonormalization strat-
egy with the classical Gramm-Schmidt method fails
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Fig. 4: Parallel computation of GT .
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Fig. 5: Parallel computation of GGT .

when the nullspace is large enough (thousands) because
the roundoff errors become an issue. The modified or
iterative Gramm-Schmidt methods have better numer-
ical properties but worse scalability.

Let us describe in more details the first strat-
egy using parallel direct solvers (MUMPS [13],
SuperLU_DIST [14]) for factorization + for-
ward/backward substitutions. The CP dimension
is not large enough to justify the fully parallel
approach; in this case, communication takes over
computation. The significant efficiency improvement
can be achieved by means of the partial parallelization
of this CP solution. The approach splits cores of the
global "world" communicator into groups of cores
called subcommunicators in MPI; the number of
these subcommunicators is Nr (number of cores doing
redundant work), i.e., the number of cores in each
subcommunicator is equal to Nc/Nr, with Nc denoting
total number of cores. This CP matrix is factorized
in parallel in subcommunicators. The application
of (GGT )−1 then consists of backward and forward
substitutions which are not local and not negligible
amount of the communication is needed in each CG
iteration. Parallel approach has a big advantage
consisting in the reduction of memory requirements
for the CP solution; there are practically no memory
limits as more and more cores can be engaged into the
subcommunicators.

However, solving large CPs gets very complicated for
tens or hundreds of thousands of subdomains, even if
the best techniques are employed. This motivates our
research in projector-less TFETI method for contact
problems avoiding the CP solution at all, see [15].

7. PERMON Toolbox

The QP algorithms and FETI methods are imple-
mented in our software package PERMON based on
PETSc. PERMON (Parallel, Efficient, Robust, Modu-
lar, Object-oriented, Numerical) [4] and [5] is a collec-
tion of software libraries, uniquely combining QP and
DDM. There are two core modules in PERMON: Per-
monQP and PermonFLLOP. They are built on the top
of PETSc [6] and [7], using mainly its linear algebra

part. They extend PETSc with new specific function-
ality, algorithms for large scale sparse QP problems and
DDM of the FETI type. The same coding style is used
so that the users familiar with PETSc can utilize them
with minimal effort. Among the main applications are
contact problems of mechanics.

PermonQP provides a base for solving the QP prob-
lems. It includes data structures, transforms, algo-
rithms, and supporting functions for QP. PermonQP
is available for free under the FreeBSD open source
license.

PermonFLLOP (FETI Light Layer on Top of
PETSc) is an extension of PermonQP that adds sup-
port for DDM of the FETI type. PermonFLLOP is
currently under preparation for publishing. The “glu-
ing” signed Boolean matrix Bg is constructed based
on l2g as described in [8]. The subdomain nullspace
matrix Rs is assembled using the rigid body modes
assembled from the mesh nodal coordinates [9].

PermonFLLOP passes the global primal data to Per-
monQP and calls a specific series of QP transforms
provided by PermonQP, resulting in the bound and
equality constrained QP which is then solved with the
QPSSolve function. Note that PermonFLLOP allows
more than one subdomain per core, i.e. an array of Ks

and fs is passed per subdomain. The achieved numer-
ical, weak parallel, strong parallel and memory scala-
bility are reported in [10].

8. Numerical Experiments

The numerical experiments with PERMON’s
SMALBE and MPRGP were run on the Salomon
supercomputer [16] at IT4Innovations. Salomon con-
sists of 1008 compute nodes, totaling 24192 compute
cores with 129 TB RAM and giving over 2 PFLOPS
theoretical peak performance. Each node is a powerful
x86-64 computer, equipped with 24 cores, at least
128 GB RAM. Nodes are interconnected by 7D
Enhanced hypercube Infiniband network and equipped
with Intel Xeon E5-2680v3 processors. The Salomon
cluster consists of 576 nodes without accelerators
and 432 nodes equipped with Intel Xeon Phi MIC
accelerators.

As a model of 3D linear elasticity contact problem,
we considered an elastic cube with the bottom face
fixed, the top one loaded with a given vertical surface
force directed downwards, and the right one in contact
with a rigid obstacle, see Fig. 6. Young modulus is
E = 2 · 105 [MPa] and Poisson ratio µ = 0.33.

The action of the stiffness matrix pseudoinverse
K† was implemented using the LU factorization of
the regularized K using the MUMPS library and
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Fig. 6: 3D elastic cube contact problem.

SuperLU_DIST was used for the CP solution in MPI
subcommunicators. Each subdomain was assigned to
one core. The computations were carried out with
decompositions into 512, 1024, 2048, 4096, 8192 and
10648 subdomains. The stopping criterion was defined
by the relative precision of the projected gradient and
the feasibility error equal to 10−4 and compared with
the Euclidean norm of the dual linear term. The results
of computations are depicted in Fig. 7.

Fig. 7: Cube contact linear elasticity problem - numerical and
weak parallel scalability highlight on Salomon.

9. Conclusion

We demonstrated the numerical scalability and weak
scalability of the FETI based algorithm for contact
problems using Salomon up to 702 millions of un-
knowns and 10648 subdomains (cores). The results
document the efficiency of the implemented matrix for-
mats, parallel direct solvers, and other ingredients (as
e.g. adaptive expansion steplength in MPRGP). The
results were obtained by means of TFETI + SMALBE
+ MPRGP implemented in PERMON toolbox.
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