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Abstract. Medical images are increasingly used
within healthcare for diagnosis, planning treatment,
and monitoring disease progression. The images ac-
quired at different times, with different imaging modal-
ities, from different subjects etc. often provide an ad-
ditional clinical information that is not revealed in the
separate images. The spatial relation between the im-
ages has to be found and this process is called image
registration. In our contribution, we use elastic regis-
tration which assumes that the images are two differ-
ent observations of an elastic body which is discretized
by the finite element method. We are especially inter-
ested in the problems where the requirements on the
registration prevent the application of standard FFT
based solvers to the solution of auxiliary linear prob-
lems, which is the case when the part of the two ob-
servations can be related by a rigid body motion. Be-
cause the medical images usually contain a large area of
background and a small area of changes, a regular dis-
cretization results in waste of computational resources
due to the fine refinement of the space outside the re-
gion of interest (especially in 3D). To avoid this, we
use coarser grid with local refinement that takes into
account specific features of the images and their dif-
ferences. The related elasticity problems are solved by
TFETI, which is a variant of the Finite Element Tear-
ing and Interconnecting (FETI) domain decomposition
method for massively parallel numerical solution of el-
liptic Partial Differential Equations (PDE) with opti-
mal complexity.
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1. Introduction

Image registration is one of the challenging problems in
image processing. Since the information gained from
two (or more) images is usually of a complementary na-
ture, proper integration of useful data obtained from
the separate images is often desired. Thus there is
a need to establish an exact point-to-point correspon-
dence between the voxels in one image and those in the
other image. Although manual alignment of images is
possible, it is time-consuming (especially in more than
two dimensions) and lacks reproducibility. In practice,
the specific type of geometric transformation as well
as the meaning of the correspondence depends on the
specific application.

The medical image registration is a vital compo-
nent of a large number of applications, see [1], [2] and
[3]. Such applications include the alignment of data
sets from different modalities, comparison of follow-
up scans to a base-line scan, alignment of pre- and
post-contrast images, updating treatment plans for ra-
diotherapy and surgery, monitoring of diseases, atlas-
based segmentation, and creating models of anatomy.

The early applications of the medical image registra-
tion considered registering the brain images of the same
subject acquired with different modalities (e.g. MRI
and CT or PET). For these applications a rigid body
approximation was sufficient as there is a relatively lit-
tle change in brain shape or position within the skull
over the relatively short periods between scans. Today
rigid registration is often extended to include affine reg-
istration, which includes scale factors and shears, and
can partially correct for calibration differences across
scanners or gross differences in scale between subjects.
Clearly most of the human body does not conform to
a rigid or even an affine approximation and much of
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(a) Image R. (b) Image T .

(c) Trasformed image Tϕ.

Fig. 1: Registration example. Images in this paper are from
Department of Oncology at the University Hospital of
Ostrava. The images show the cuts in the chest inhale
and exhale obtained by CT method.

the most interesting and challenging work in registra-
tion today involves the development of non-rigid regis-
tration techniques. Besides elastic registration we can
mention TPS (thin-plate spline) [3], free form deforma-
tion [4], optical flow techniques [5], and fluid, diffusion
or curvature registration [3].

One of the images is usually viewed as a reference
(target, fixed, baseline) R and the other one as a de-
formable template (source, moving, floating) T . The
optimal transformation ϕ is estimated by minimizing
the cost function, called the distance measure (similar-
ity measure or metric) D, which determines how much
is the image R, in a certain sense, similar to the image
T . So the problem can be formulated as

D[R, T ;ϕ] := D[R, Tϕ]
ϕ→ min . (1)

A direct minimization of the distance measure has
its drawbacks: a solution is not necessarily unique and
it actually may not exist. Thus the problem (Eq. (1))
is ill-posed. Moreover additional implicit assumptions
on the transformation can arise, for example in medical
images no additional cracks or folding of the tissue are
allowed (the transformation should be diffeomorphic).
Both situations can be solved by adding regularizer.

Problem (Eq. (1)) is a challenging optimization prob-
lem, in particular in 3D, whose solution requires effec-
tive solution of the associated elasticity problems. In
our paper, we propose to use a variant of the FETI do-

main decomposition method [6], which is widely used
in the field of material sciences and structural mechan-
ics.

The performance of the FETI method can be im-
proved by effective mesh generation. In the case of
images of human body, e.g. CT scans, there are many
heterogeneous parts of the image domain in which it is
not necessary to have fine mesh. Mesh adaptation is
clearly recognized as an efficient and powerful method
for improving the accuracy of the solution as well as for
capturing the physical phenomena behavior. Reduc-
ing the number of Degrees of Freedoms (DoF) allows
to substantially reduce the CPU time. For example,
Haber at al. [7] used octrees as a basic structure for
the underlying displacement field which requires a spe-
cial and careful discretization of the variational form.

Using the adaptive mesh generation based on geo-
metric attributes leads to the combination of coarse
parts of the mesh with very fine parts identified by
doctors or by some automatic prediction. The paper is
focused on using an a priori estimate of the image based
on geometric qualities to create an adaptive mesh for
the image registration. Our adaptive mesh has much
smaller number of DoF for similar accuracy of the so-
lution. Further image registration is done on solid
mesh. Though the reduction is essential in 2D (sin-
gle image frame), it is even more relevant in 3D. To
simplify the exposition, the algorithms are explained
in 2D, but our approach can be applied to 3D registra-
tion. Detailed information on numerical experiments
with human body scans can be seen in Sec. 5.

2. Elastic Image Registration

The elastic potential of deformation in the image reg-
istration has been introduced by Broit [8]. His method
can register images with local non-rigid geometric dif-
ferences. Broit uses it to automatically find an op-
timal mapping between a CT image and an atlas of
brain anatomy. The external forces have been derived
by correlating the intensity-based properties in local
regions in the source and target image.

Elastic registration is based on physical motivation
that the images are two different observations of an
elastic body with the template image corresponding
the body in the reference configuration. The trans-
formation ϕ : R2 → R2 of the image is split into the
identity part and the displacement u : R2 → R2

ϕ(x) = x− u(x). (2)
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As the regularizer we use the linearized elastic potential

P [u] =
∫

Ω

µ

4

2∑
j=1

2∑
k=1

(∂xjuk + ∂xk
uj)

2+

+
λ

2
(div u)2dx,

(3)

where λ and µ are the Lame constants. This linear
model assumes small deformations. For larger defor-
mations it can be replaced by a viscous fluid model
[9].

We gain regularized problem, which is a starting
point for a stable numerical implementation (param-
eter α control the strength of the smoothness of the
displacement versus the similarity of the images, in our
case is included in Lame constant µ)

J [u] = minv:R2→R2 J [v],
where J [v] := D[R, T ; v] + αP[v].

(4)

A necessary condition for a minimizer u of prob-
lem (Eq. (4)) is that the Gateaux-derivative dJ [u; v]
of J vanishes for all siutable perturbations v.

The partial differential operator associated with the
Gateaux-derivative of the elastic potential is the well-
known Navier-Lame operator. The displacement of the
elastic body is then obtained by the solution of partial
differential equation

µ∆u+ (λ+ µ)∇divu = −f. (5)

The regularizer has the meaning of internal forces
which implicitly enforce the displacement to be
smooth.

The distance measure D represents external forces,
so it pushes the deformable template into the direc-
tion of the reference. We choose the Sum of Squared
Differences (SSD)

D[R, T ;u] :=
1

2
‖Tu −R‖2L2(Ω) , (6)

where Tu(x) := T (x− u(x)). Thus, the forces f : R2 ×
R2 → R2 are derived from its Gateaux-derivative

f(x, u(x)) := (R(x)− Tu(x))∇Tu(x). (7)

The images are represented by the compactly sup-
ported mappings R(x), T (x) : Ω → R, where
Ω = (0, 1)2. Hence, T (x) and R(x) denotes the in-
tensities of images at the spatial position x. We set
R(x) = 0 and T (x) = 0 for all x /∈ Ω.

If the images are monomodal, i.e., the intensities of
corresponding pixels are supposed to be identical, the
SSD is a reasonable measure for applications. But if
the images are multimodal, then the SSD can fail. Al-
ternative choices are the mutual information [10] or the
normalized gradient field [11].

Modersitzki [3] solves this equation by the finite
difference approximation with periodic boundary con-
ditions, so that the resulting matrix is highly struc-
tured. This structure allows him to use the Fast
Fourier transform to diagonalize and invert the matrix.
Thus he gains very effective solution with complexity
O(N logN). But this approach doesn’t work with the
constraints, which destroy the structure of the matrix.

We discretize the problem using a finite element
method with piece-wise affine basis functions on tri-
angular elements. To approximate the image gradient,
we use a convolution with an appropriate kernel of the
Sobel operator.

Let us mention some examples for future use of elas-
tic registration. Non-rigid image registration was al-
ready used for the automatic quantification of small
changes in the volume of the anatomical structures in
brain over time by means of the segmentation propa-
gation for dementia progression [12], for monitoring of
the response of the brain to drug therapy [13]. An-
other example represents modeling organs motion dur-
ing the respiratory cycle in radiotherapy [14] or the
study thorax and lung deformation to develop tools
to evaluate the reproducibility of ABC (Active Breath
Control) [15] .

3. Adaptive Mesh Generation

The local Adaptive Mesh Refinement (AMR) problem
uses the local insertion of additional vertices in order
to produce a mesh which provides higher accuracy of
the solution. We place more nodes to the areas where
we anticipate a large local error of the solution or re-
quire higher precision for the final solution. We have
no difficulties with boundary condition issues because
the area near the boundary is the image background
which doesn’t require adaptation. Different methods
exist to perform the mesh adaptation, see [16] or [17].
Our approach locally refines the mesh size depending
of the geometry of the image.

Because we are working with the finite element
solvers based on the meshes of triangles, we have to
partition the selected triangles and handle the tran-
sition between two zones with different level of refine-
ment. The conformity of the mesh is preserved by using
a particular templates of the elements in the transition
area, see [18]. By conformity we understand that the
intersection of adjacent triangles is either a common
vertex or common edge. Good quality of the mesh
is preserved during the refinement process by using
a method that does not refine a single angle more than
once.

Figure 2 shows 2D image meshes generated by the
adaptive refinement algorithm described further. The
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Fig. 2: Adaptive meshes with three consecutive level of refine-
ment.

presence of the refined parts of the image corresponds
to the differences between images, in our case to the
tissue movement.

(a) Image |R− T |. (b) Binary image.

Fig. 3: Binary image based on image differences and intensity
threshold.

A refinement algorithm is controlled by a local er-
ror indicator. There are many methods that could be
used to define the refinement criterion, such as those
based on the geometry of the domain or a priori or
a posteriori error estimators for a particular solver or
manual (expert) selection [7] and [19]. In our case, we
are using the error indicator resulting from very simple
analysis. The error indicator, the binary image/logical
matrix I, is assembled by thresholding the absolute dif-
ference between the images R and T using the given
intensity threshold t, see Fig. 3. We use the image
erosion and dilation to fill pixel-sized holes to improve
compactness. The matrix I reads

I(τij) :=

{
1 |R(τij)− T (τij)| > t,
0 |R(τij)− T (τij)| ≤ t,

(8)

where τij denote the coordinates of vertex j of element
τi and values R(τij) and T (τij) are intensities (gray
values) in given coordinates. The mesh is constructed
in such way that the nodes are identical with pixels.
We use linear interpolation whenever the values in el-
ements are needed. The error function is defined as

E(τi) :=

3∑
j=1

I(τij). (9)

If the intersection of the element and the region of
interest given by the binary image is not empty, then
the error function is not zero and the element has to
be refined.

(a) One level of local refinement.

(b) Finer level of refinement.

Fig. 4: Two levels of refinement with error elements (blue),
nodal elements(dark grey) and transition elements(light
grey).

The AMR algorithm, see Alg. 1, begins with a given
level of refinement L, threshold t, and with a coarse
initial mesh. The finest possible level of the refinement
corresponds to the image size. All the initial elements
belong to the level l = 0. The first step of the algo-
rithm is to assembly binary image based on the error
indicator to define the criteria of refinement. In the
next step, for each level of refinement, we mark all
the elements identified by a refinement criteria as the
error elements (ones to be refined). To avoid splitting
of any angle in the initial mesh more than once, all el-
ements sharing a node with error elements are marked
as nodal elements. This step ensures that the resulting
mesh will keep similar quality as the initial mesh and
is illustrated in Fig. 4. Each element which shares an
edge with a nodal element and is not an error or nodal
one is marked as transition element. The marked el-
ements are then divided into sub-elements that belong
to level l+1 by particular pattern. Standard pattern is
used for error and nodal elements. For the transition el-
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ements, there are used special transition patterns, see
Fig. 6. Finally, all unrefined elements are copied to
level l + 1. At the finest level, the rest of the elements
are added.

Algorithm 1 AMR algorithm
Require: Coarse mesh, threshold t, level of refinement

L.
Ensure: Final mesh of level L.
1: Compute binary image I, see formula (Eq. (8)).
2: for each level l < L of refinement, each element τi:

do
3: Compute error E(τi), see formula (Eq. (9)),
4: Mark elements with error E(τi) > 0 as error el-

ements,
5: Mark (nodal) elements sharing a node with an

error element,
6: Select elements sharing edge with nodal elements

as transition elements,
7: Edge propagation,
8: Refine error and nodal elements by standard pat-

tern,
9: Refine transition elements by particular transi-

tion pattern,
10: Compose mesh for level l + 1 as non-refined ele-

ments from level l and elements created by pat-
tern subdivision.

11: end for

We are not using a template with two edges to the
refinement. Such a refinement could rapidly decrease
the quality of the mesh. During the marking step of
the algorithm, we also mark all the edges of elements
that would be refined as edges to refine. At this point
we need to investigate if there is any element which
has two edges to refine (false element). We mark
such element as an element to refine (we are using the
same tag as for nodal elements) by marking the third
edge as one to refine and repeat this process until there
are only elements with zero, one or all three edges to
refine. This procedure is called edge propagation and
is illustrated in Fig. 6.

Fig. 5: Refinement patterns of the error and the transition ele-
ments in 2D and 3D.

(a) Elements to refine.

(b) 1st step.

(c) 2-edge/false elements found.

(d) Another false element.

(e) Zero false elements.

(f) Final refinement.

Fig. 6: Refinement patterns of the error and the transition ele-
ments in 2D and 3D.
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We use the mid-edge subdivision for refining the el-
ements of the mesh. Each error and nodal element is
split into four homothetic elements. The transition ele-
ment in 2D could be only element with a single hanging
node. In this case we connect the pending node to the
opposite vertex, which splits the element into two ones
as in Fig. 5. The algorithm works similarly in 3D.

4. Problem Solution

For the solution of the discretized problem we use
a variant of FETI method which is one of the most
successful methods for the parallel solution of elliptic
partial differential equations. This method is based
on the decomposition of the spatial domain into non-
overlapping subdomains that are "glued" by Lagrange
multipliers. Thus, after eliminating the primal vari-
ables, the original problem is reduced to a small, rel-
atively well conditioned, typically equality constrained
quadratic programming problem that is solved itera-
tively. Its drawback is difficulty to determine the ker-
nels of stiffness matrices reliably in the presence of
rounding errors.

TFETI method is easier to implement and preserves
efficiency of the coarse grid of the classical FETI [20].
The basic idea of TFETI is to simplify the inversion
of stiffness matrices of subdomains by using Lagrange
multipliers not only for gluing of the subdomains along
the auxiliary interfaces, but also to enforce the Dirich-
let boundary conditions. Thus, all the subdomains are
floating and their stiffness matrices will have a priori
known kernels-bases of rigid body motion.

λ

h

λ

Ω

Ω

Ω

Ω

Ω

Fig. 7: TFETI domain decomposition.

To apply the FETI based domain decomposition, we
partition Ω into N subdomains Ωs as in Fig. 7 (now ~λ
detones vector of Lagrange multipliers) and we denote
by Ks, ~fs and ~us for s = 1, . . . , N , the subdomain
stiffness matrix, the subdomain force and displacement
vectors respectively.

We shall get the discretized problem

min
1

2
~uTK~u− ~uT ~f s.t. B~u = ~c, (10)

where

K =

 K1

. . .
KN

 , B = [ B1, . . . ,BN] , (11)

~f =


~f1

...
~fN

 , ~u =

 ~u1

...
~uN

 . (12)

The matrixB and the vector ~c enforce the prescribed
displacements on the part of the boundary with the
imposed Dirichlet condition and the continuity of the
displacements across the auxiliary interfaces. For easy
implementation we choose the Dirichlet condition on
whole boundary. We shall introduce the Lagrangian
associated with problem (Eq. (10)) by

L(~u,~λ) =
1

2
~uTK~u− ~uT ~f + ~λT (B~u− ~c), (13)

and the equivalent saddle-point problem[
K BT

B 0

] [
~u
~λ

]
=

[
~f
~c

]
. (14)

By substituting RT(~f−BT~λ) = ~o, ~u = K†(~f−BT~λ)+
R~α we get the dual formulation[

BK†BT −BR
−RTBT 0

] [
~λ
~α

]
=

[
~d
~e

]
, (15)

where ~d := BK† ~f − ~c, ~e := −RT ~f , and K† denotes a
generalized inverse matrix satisfying KK†K = K. As
mentioned above the kernels Rs of the local stiffness
matrices Ks are bases of the rigid body motion and
can be formed directly

R>s = [(R1
s )>, . . . , (Rns

s )>]>,

Ri
s =

[
1 0 −yi
0 1 xi

]
,

(16)

where (xi, yi), i = 1, ..., ns are the coordinates of the
nodes of Ωs. Using Rs, we can easily assemble the
block diagonal basis R of the kernel of K as

R =

 R1

. . .
RN

 . (17)

After denoting F = BK†BT, G = −RTBT, we get the
problem [

F GT

G 0

] [
~λ
~α

]
=

[
~d
~e

]
, (18)

with relatively small and well conditioned block F as
compared with K. We can obtain ~λ by solving

PFP~λ = P~d, (19)
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where P = I−Q and Q = GT(GGT)−1G denote the
orthogonal projectors on the image space of GT and
on the kernel of G, respectively. This problem may be
solved effectively by the conjugate gradient method.
More details can be found in [20].

5. Numerical Experiments

Algorithm for creating the adaptive image-based mesh
described in this paper and assembling matrices for
TFETI was implemented in Matlab. We used the im-
plementation of the TFETI method in FLLOP (FETI
Light Layer On top of PETSc), the package for con-
strained quadratic programming and FETI domain de-
composition, see [21]. We used the Matlab Mesh Par-
titioning and Graph Separator Toolbox to divide the
mesh into equal-sized components with a small number
of connecting nodes as in Fig. 8. This toolbox contains
Matlab code for several graph and mesh partitioning
methods. Specifically, we used a simple and quite effi-
cient geometric method [22].

The values of Lame’s constants, λ and µ, are artificial
and there is no general rule how to choose them. λ is
usually set to zero to ensure that deformations are only
effected in the directions of applied forces. Our choice
µ = 1.5 was obtained experimentally.

Fig. 8: Mesh partitioning.

For testing, we used medical images from depart-
ment of Oncology at the University Hospital of Os-
trava and the numerical experiments were, for now,
performed on personal computer with two processors.
The resulting images Tu can be seen in Fig. 9 and the
resulting optimal transformation as displacement field
in Fig. 10. In Tab. 1, we report the computational
times for preprocessing image with creating adaptive
mesh, time for assembling matrices for TFETI, and
time for performing TFETI method for different res-
olutions of images in Fig. 1. We can observe that

Tab. 1: Type denotes type of mesh - full and regural or adaptive
image-based mesh, Ns number of subdomains, Nnod

number of nodes (nodes on interfaces are doubled), Ti

computational time for preprocessing image with creat-
ing adaptive mesh, Tm time for assembling matrix for
TFETI and Tt time for performing TFETI method.

Type Ns Nnod Ti Tm Tt

1 16 641 9.09 31.45 2.10
Full 2 16 770 4.24 20.30 3.34

4 16 900 3.33 14.52 99.25
1 5115 4.59 5.68 0.90

Adapt 2 5175 4.55 3.99 0.94
4 5275 4.75 3.12 85.70

Full 2 263 682 1509.20 10 598.69 75.18
4 264 196 762.39 4651.37 198.24

Adapt 2 45 907 262.37 190.52 14.40
4 46 194 221.62 92.52 145.52

Fig. 9: Images Tu for full and adaptive mesh.

Fig. 10: The resulting optimal transformation as displacement
field.

the adaptive meshes cost much less time than the full
meshes.

6. Conclusion

We have implemented the image registration algorithm
based on the TFETI method with the local adaptive
mesh generation in 2D. We use the SSD distance mea-
sure for deriving external forces from the intensities
of monomodal image. The efficiency of the algorithm
was demonstrated by numerical experiments. In the
next stage we will implement the algorithm in 3D and
exploit the massively parallel capability of TFETI on
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the supercomputer cluster Anselm. Using local adap-
tive mesh combining with the domain decomposition
method could provide effective strategy for future com-
puting with huge 3D meshes.
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