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Abstract. This article presents a study of the Stochas-
tic Galerkin Method (SGM) applied to the Darcy flow
problem with a log-normally distributed random ma-
terial field given by a mean value and an autocovari-
ance function. We divide the solution of the problem
into two parts. The first one is the decomposition of
a random field into a sum of products of a random
vector and a function of spatial coordinates; this can
be achieved using the Karhunen-Loeve expansion. The
second part is the solution of the problem using SGM.
SGM is a simple extension of the Galerkin method in
which the random variables represent additional prob-
lem dimensions. For the discretization of the problem,
we use a finite element basis for spatial variables and
a polynomial chaos discretization for random variables.
The results of SGM can be utilised for the analysis of
the problem, such as the examination of the average
flow, or as a tool for the Bayesian approach to inverse
problems.
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1. Introduction and Problem
Setting

The standard mathematical modelling approach usu-
ally works with deterministic parameters of solved

problems, such as boundary conditions, material con-
stants, etc. These simplifications neglect the inher-
ent uncertainty in these parameters, which can lead
to unreliable solutions. The fast development of com-
putational resources allows computations of massive
problems, e.g. solving the partial differential equa-
tions with uncertainty in parameters. Popular methods
for calculation of these challenges are for example the
Multilevel Monte Carlo method, stochastic collocation
method (see [16]) or the stochastic Galerkin method
which is presented in this article. The comparison be-
tween SGM and Monte Carlo method can be found in
[17]. We focus on a model problem with a very high
uncertainty in input parameters, for which we demon-
strate the application of SGM.

Consider a 2D Darcy flow problem on the unit square
according to Fig. 1. We assume that the pressure

Fig. 1: Illustration of physical domain with boundary.
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equals one on ΓD1
, zero on ΓD2

, and the flow equals
zero on the rest of the boundary.

∀ω ∈ Ω :

−div (k (x;ω)∇u (x;ω)) = 0, ∀x ∈ D,
u (x;ω) = 1, ∀x ∈ ΓD1 ,

u (x;ω) = 0, ∀x ∈ ΓD2
,

∂u(x;ω)
∂n(x) = 0, ∀x ∈ ΓN ,

(1)

where ω represents an event from the sample space
Ω. In general the functions k (x;ω) and u (x;ω) :
D × Ω → R are understood as random fields. That
means that the function K0 = k (x0;ω) : Ω → R is
a random variable for every fixed x0 ∈ D and the func-
tion k0 (x) = k (x;ω0) : D → R is a function on the
spatial domain for every fixed ω0 ∈ Ω. A random field
is a type of a random process, see for example [1]: chap-
ter 5.

The problem Eq. (1) is very complex because the
random field k represents an infinite number of ran-
dom variables. To solve this kind of problems, we need
to reduce the number of random variables to some fi-
nite, ideally small, number. We can achieve this using
the Karhunen-Loeve (KL) decomposition, which will
be discussed in the following section. For a more de-
tailed insight into SGM and the KL decomposition, see
[4].

We choose a log-normally distributed random mate-
rial. This type of random field appears to be a reason-
able choice for the description of permeability proper-
ties of natural materials like sandstone or gravel, see
[6]. The log-normal random field is defined as an expo-
nential of the Gaussian (normal) Random Field (GRF):

k (x;ω) = exp (g (x;ω)) . (2)

The GRF is fully described by its mean value µ (x) =
E (g (x;ω)) and its autocovariance function c (x, y) =
cov (g (x;ω) , g (y;ω)). In this paper, we consider the
GRF specified by:

µ (x) = 0 , c (x, y) = σ2exp
(
‖x− y‖

λ

)
, (3)

where σ is the scale parameter and λ is the correlation
length parameter. The scale parameter affects the am-
plitude (equivalent samples with different values of σ
differ only in scale) and the correlation length parame-
ter changes the correlation/distance ratio between two
points.

2. The Karhunen-Loeve
Decomposition

In this section, we will discuss the approximation of
the random field by a function of a random vector and

a physical variable. This can be achieved using the
truncated Karhunen-Loeve (KL) decomposition. The
existence of the KL decomposition is stated in the fol-
lowing theorem, see [1]: theorem 7.52.

Theorem 1. Let D ⊂ Rd. Consider a random field
{k (x;ω) : x ∈ D} and suppose that k ∈ L2

(
Ω,L2 (D)

)
.

Then

k (x;ω) = µ (x) +

∞∑
j=1

√
λjψj (x) ξj (ω) , (4)

where the sum converges in L2
(
Ω,L2 (D)

)
,

ξj (ω) :=
1√
λj

∫
D

(k (x;ω)− µ (x))ψj (x) dx, (5)

and {λj , ψj} denotes the eigenvalues and the eigen-
functions of the autocovariance operator C : L2 (D) →
L2 (D)

(Cf) (x) :=
∫
D

c (x, y) f (y) dy, (6)

where c (x, y) := cov (k (x;ω) , k (y;ω)); λ1 ≥ λ2 ≥
· · · ≥ 0 and lim

k→∞
λk = 0. The random variables ξj

have zero mean, unit variance and are pairwise uncor-
related.

In the case of the log-normal random material field,
it is simpler to decompose the underlying GRF, which
lies in space L2

(
Ω,L2 (D)

)
, see for example [1]: corol-

lary 4.41. Therefore its KL decomposition exists.

In the case of the KL decomposition of the GRF, the
random variables ξi will also be Gaussian ξi ∼ N (0; 1).
Note that the random variables ξi are in general only
uncorrelated, but for the Gaussian random variables,
it implies independence.

The most difficult part of the KL decomposition is
the spectral decomposition of the operator C, which we
can obtain by solving the eigenvalue problem∫

D

c (x, y)ψi (y)dy = λiψi (x) ,∀i ∈ N. (7)

This is the Fredholm integral equation, which can be
solved by the Galerkin method.

We can obtain the weak formulation of the Eq. (7)
by multiplying it by a test function v ∈ L2 (D) and
integrating over the domain D.

Find ψi (x) ∈ L2 (D) , λi ∈ R+ :∫
D
v (x)

∫
D
c (x, y)ψi (y) dydx =

= λi
∫
D
v (x)ψi (x) dx, ∀v (x) ∈ L2 (D) .

(8)
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The next step is the discretization of the weak formula-
tion. First consider a basis 〈φ1 (x) , . . . , φn (x)〉 = Vn ⊂
L2 (D), so the Galerkin formulation takes the form of:

Find ψi (x) =
n∑
j=1

ψijφj (x) , λi ∈ R+ :∫
D
φj (x)

∫
D
c (x, y)ψi (y) dydx =

= λi
∫
D
φj (x)ψi (x) dx, ∀φj (x) ,

(9)

where ψi is a representation of the eigenvector ψi in
the Vn basis. The solution of Eq. (9) can be rephrased
into a generalized eigenvalue problem:

Aψni = λni Wψni , (10)

where

Aij =

∫
D

∫
D

c (x, y)φi (y)φj (x) dydx, (11)

Wij =

∫
D

φi (x)φj (x) dx. (12)

2.1. The Choice of the Basis

We choose a discretization 〈φ1 (x) , . . . , φn (x)〉 = Vn of
the space L2 (D) (D = 〈a, b〉 × 〈c, d〉) as a tensor prod-
uct of 1D bases of the spaces L2 (〈a, b〉) and L2 (〈c, d〉).
Therefore basis functions are in the form of

φi (x) = ϕ1
i (x1)ϕ

2
i (x2) , (13)

where ϕ1
i (x1) ∈ V 1

n :=
〈
ϕ1
1 (x1) , . . . , ϕ

1
m1

(x1)
〉
and

ϕ2
i (x2) ∈ V 2

n :=
〈
ϕ2
1 (x2) , . . . , ϕ

2
m2

(x2)
〉
are 1D func-

tions. The dimension of the space Vn = V 1
n ⊗ V 1

n then
equals m1 ·m2.

For the calculation of the problem Eq. (10), it is
useful to consider the spaces V 1

n and V 2
n with specific

properties. These properties will be demonstrated on
1D basis denoted by 〈ϕ1 (x) , . . . , ϕm (x)〉.

1) The Orthogonality of 〈ϕ1 (x) , . . . , ϕm (x)〉

The complexity of the problem Eq. (10) decreases
if we transform the generalized eigenvalue problem
into a standard eigenvalue problem (W = I). We
can achieve this by assuring all of the 1D bases
〈ϕ1 (x) , . . . , ϕm (x)〉 to be orthonormal:

∀i, j :
b∫
a

ϕi (x)ϕj (x) dx = δi,j . (14)

2) The (Anti)-Symmetricity of
〈ϕ1 (x) , . . . , ϕm (x)〉

The matrix A will generally be dense, but some unique
properties of the chosen autocovariance function can be
utilised to obtain partial sparsity of the matrix. First,
we define the function

p (x, y) = σ2exp

(√
x2 + y2

λ

)
, (15)

which is related to the autocovariance function by

p (|x1 − y1| , |x2 − y2|) = c((x1, x2), (y1, y2)). (16)

Next, consider the translation of the integral over the
domain D = 〈a, b〉 × 〈c, d〉 into the integral over the
domain 〈−α, α〉 × 〈−β, β〉, where α = b−a

2 and β =
d−c
2 (translate the center of D into (0, 0)). Note, that

this will not affect the function p (|x1 − y1| , |x2 − y2|).
For simplicity we denote the basis functions ϕi (x) =
ϕ1
i (x1)ϕ

2
i (x2) as before the translation of the integral.

After these modifications, the formula for the elements
of the matrix A is

Ai,j =

β∫
−β

β∫
−β

f (x2, y2)ϕ
2
i (x2)ϕ

2
j (y2)dy2dx2, (17)

where

f (x2, y2) =

α∫
−α

α∫
−α

p (|x1 − y1| , |x2 − y2|) ·

·ϕ1
i (x1)ϕ

1
j (y1)dx1dy1. (18)

If ϕ1
i (x1) is symmetric and ϕ1

j (y1) is anti-symmetric
(or vice versa), the function f (x2, y2) is constant zero
and Ai,j = 0. The same holds for the functions ϕ2

i (x2)
and ϕ2

j (y2).
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(a) Standard
� � �� ��

�

�

��

��

(b) Permuted

Fig. 2: Nonzero entries of matrix A (discretization 4× 4).

The symmetricity/anti-symmetricity (or "parity") of
the 〈ϕ1 (x) , . . . , ϕm (x)〉 basis results into a stronger
property than just a partial sparsity of the matrix A.
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The nonzero pattern of the matrix A for the stan-
dard ordering according to the polynomial degree (see
Fig. 2(a)) can be reordered into a block diagonal struc-
ture (see Fig. 2(b)). The permutation can be done by
reordering the basis functions according to their parity
in each dimension. The block diagonal structure leads
to the solution of four smaller eigenvalue problems in-
stead of one bigger eigenvalue problem. Note that in
3D we get eight diagonal blocks.

The next part of the Galerkin method is the
particular choice of the discrete basis (orthonormal,
symmetric/anti-symmetric). The most suitable bases
for the Galerkin discretization Eq. (9) are e.g. piece-
wise constant functions, polynomials, or trigonometric
functions. For the solution of similar problem using
the wavelet basis see [18].

3) The Piecewise Constant Basis

First consider an interval (a, b) divided into an even
number (say 2n) of subintervals ti of the same size
|ti| = b−a

2n . Than the symmetric basis functions are

∀i = 1, . . . n : ϕSi (x) =

{
α, x ∈ ti, t2n−i+1,

0, otherwise,
(19)

and the anti-symmetric basis functions are

∀i = 1, . . . n : ϕAi (x) =


α, x ∈ ti,
−α, x ∈ t2n−i+1,

0, otherwise,
(20)

where α =
√

n
b−a . This construction also ensures the

orthonormality of the basis.

4) The Polynomial Basis

In the case of polynomial basis, the choice is simple; the
Legendre polynomials are both orthogonal and alter-
nately symmetric or anti-symmetric. For general use,
the Legendre polynomials need to be shifted into the
desired interval and normalised. An explicit formula
for the standard Legendre polynomials on 〈−1, 1〉 is

Pn (x) = 2n
n∑
k=0

(−1)k xk
(
n
k

)(
n+k−1

2
n

)
. (21)

The normalised Legendre polynomials on 〈a, b〉 are de-
fined as

ϕn (x) =

√
2n+ 1

b− a
Pn

(
2

b− a
x− a+ b

b− a

)
. (22)

5) The Trigonometric Basis

As the trigonometric basis, we choose the solution of
the same problem in 1D (on 〈0, 1〉). The 1D basis con-
sists of eigenvectors of the operator

(Cf) (x) :=
1∫

0

σ2exp

(√
(x− y)2
λ

)
f (y) dy, (23)

with the same parameters σ and λ. This problem has
an analytic solution, see [5]. Explicit formulas for the
basis functions are

ϕ′n (x) = an cos (wnx) + bn sin (wnx) , (24)

where

an = λwnbn, bn =

(
λ2w2

n + 1

2
+ λ

)− 1
2

(25)

and wn is the n-th smallest solution of(
λ2w2 − 1

)
sin (w) = 2λw cos (w) . (26)

Then we shift the functions into the interval 〈a, b〉:

ϕn (x) =

√
1

b− a
ϕ′n

(
1

b− a
x− a

b− a

)
. (27)

2.2. Numerical Results

In this part, we compute the approximation of the
KL decomposition and compare the bases mentioned
above. To evaluate the integrals in the calculation of
A (see Eq. (11)), we use the Gauss-Legendre quadra-
ture with 100 points per dimension. Note, that this is
a computationally expensive task, because we need to
evaluate the integrand at 1004 points for each nonzero
entry of the matrix A.

First, we illustrate the fast decay of the eigenval-
ues (see Fig. 3) and the approximation of the first and
the thirteenth eigenfunction (see Fig. 4). The results
are obtained using the trigonometric basis of 400 basis
functions (20 in each dimension). Figure 3 shows that
for a good approximation of the random field we need
only the first few eigenpairs, i.e., the components of

0 100 200 300 400
10 -4

10 -2

10 0

Fig. 3: Approximation of first 400 eigenvalues.
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Fig. 4: 1st eigenvector (left) and 13th eigenvector (right).

the KL decomposition. This is an important property
of the KL decomposition, that ensures a small approx-
imation error while using the truncated KL decompo-
sition. Some autocovariance functions provide a good
estimate of the maximum approximation error of the
truncated KL decomposition, see for example [7] and
[1].

The next step is a comparison of the approximation
error of the selected bases. The explicit eigenfunc-
tions are unknown; therefore we use the approxima-
tion obtained by using the piecewise constant basis of
500 × 500 = 250000 functions as a reference solution.
We measure the error as the L2 (D) norm of the dif-
ference between the reference solution ψi (x) and the
Galerkin approximation ψhi (x) (both multiplied by the
square root of the corresponding eigenvalue):

erri =
∥∥∥∥√λiψi (x)−√λhi ψhi (x)∥∥∥∥

L2(D)

. (28)

The results in Fig. 5 and Fig. 6 show that the poly-
nomial basis has the best approximation property. The
stagnation of the convergence of the polynomial basis
is caused by the choice of the reference solution. Note

0 50 100 150 200 250
number of basis functions

10 -5
10 -4
10 -3
10 -2
10 -1
10 0

L2
 e

rr
or

constant polynomial trigonometric

Fig. 5: Approximation of err1 for different bases.
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number of basis functions

10 -5
10 -4
10 -3
10 -2
10 -1
10 0

L2
 e

rr
or

constant polynomial trigonometric

Fig. 6: Approximation of err13 for different bases.

that the convergence of the Galerkin method depends
on the precision of the numerical integration, which is
lower for fast oscillating functions like polynomials and
trigonometric functions. On the other hand, the piece-
wise constant basis needs a lower number of integration
points for a larger basis.

3. The Stochastic Galerkin
Method

This section focuses on a solution of the model prob-
lem Eq. (1) with a random material properties in the
form of the truncated KL decomposition of a random
field. The fast decay of the eigenvalues (see Fig. 3)
ensures a low Approximation Error (AE) of the trun-
cated KL decomposition. We consider a log-normally
distributed random material properties. Therefore our
random material properties take the form

k (x;Z) = exp

(
N∑
i=1

ki (x)Zi

)
, (29)

where Z = (Z1, . . . , ZN ) denotes a random vector of
independent standard normal variables, and ki (x) are
known functions.

The formulation of the model problem with the ma-
terial field k (x;Z) changes to the following:

∀Z = (Z1, . . . , ZN ) , Zi ∼ N (0; 1) :

−div (k (x;Z)∇u (x;Z)) = 0, ∀x ∈ D,
u (x;Z) = 1, ∀x ∈ ΓD1

,

u (x;Z) = 0, ∀x ∈ ΓD2
,

∂u (x;Z)

∂n(x)
= 0, ∀x ∈ ΓN .

(30)

We can understand the formulation Eq. (30) as a para-
metric differential equation with additional proper-
ties of the parameters defined by their distribution.
The solution of this problem is the function u (x;Z) :
D×RN → R, which is an approximation of the original
solution u (x;ω) : D ×Ω → R.

The next step is a weak formulation of Eq. (30),
the details of which can also be found in [16]. A ran-
dom field is understood as an operator from the space
L2
(
Ω,L2 (D)

)
, as mentioned in Sec. 2. In the case of

the solution u (x;ω) (also a random field), the homo-
geneous part uH (x;ω) is in the space H1

0 (D) for every
fixed ω. Therefore the resulting random field is in the
space V := L2

(
Ω,H1

0 (D)
)
+ u0 (x;ω), where u0 (x;ω)

is an arbitrary function from the space L2
(
Ω,H1 (D)

)
that satisfies the Dirichlet boundary conditions. When
using the truncated KL decomposition form of the ran-
dom material properties, the solution u (x;Z) is in
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the space u0 (x;Z) + L2
dFZ

(
RN , H1

0 (D)
)
. The space

L2
dFZ

(
RN , H1

0 (D)
)
is defined as:

L2
dFZ

(
RN , H1

0 (D)
)
:={

f :
∫
RN ‖f (Z)‖2H1

0 (D) dFZ <∞
}
, (31)

where dFZ denotes “according to the distribution of
the random vector Z”. In the case of continuous ran-
dom variables, it is equal to the probability density of
Z. Similarly, as in the KL theorem, it can be shown
that the space L2

dFZ

(
RN , H1

0 (D)
)
and tensor product

of the spaces H1
0 (D) and L2

dFZ

(
RN
)
are isometrically

isomorphic (see e.g. [2] and [3]). The space VH :=
H1

0 (D)⊗L2
dFZ

(
RN
)
is also a Hilbert space. Construc-

tion of the weak formulation is similar to the standard
approach: multiply the equation by a function from the
space VH , integrate over the domain on which u (x;Z)
is defined with its natural measure (distribution of Z
and L2 measure), and use the Green formula to transfer
the derivatives to the test function. If we consider the
solution in the form u (x;Z) = uH (x;Z) + u0 (x;Z),
where u0 ∈ V := H1 (D) ⊗ L2

dFZ

(
RN
)
satisfies the

Dirichlet boundary conditions and uH ∈ VH , we ob-
tain the following weak formulation of the problem{

Find uH (x;Z) ∈ VH , ∀v (x;Z) ∈ VH :

a (uH ; v) = −a (u0; v) ,
(32)

where
a (u, v) :=

=

∫
RN

∫
D

k (x;Z)∇xu (x;Z)∇xv (x;Z) dx dFZ. (33)

Although the material does not have positive lower or
upper bound, the weak formulation is well posed, see
[8].

The next step of the solution is the Galerkin dis-
cretization. We can construct the discretization us-
ing the tensor product of discrete bases of the spaces
H1

0 (D) and L2
dFZ

(
RN
)
. The natural choice of the

discrete basis of the space H1
0 (D) (spatial variable)

are finite elements. The discrete basis of the space
L2

dFZ

(
RN
)
(stochastic variable) will be the polyno-

mial chaos.

3.1. The Polynomial Chaos
Expansion

This part serves as a brief introduction to the polyno-
mial chaos (PC) (or the generalised polynomial chaos),
a more thorough description of the PC can be found
in [9], [1] and [4]. First, we focus on the PC of a sin-
gle random variable and then we show the transition
to the PC of a random vector of independent random
variables.

Let Z be a random variable with all 2n moments
finite, i.e. ∀n ∈ N : E

(
Z2n

)
< ∞. The PC of such

variable is a set of N polynomials ψi (Z), i ∈ 1, . . . , N
(i denotes the degree of the polynomial) satisfying
E (ψi (Z)ψj (Z)) = γiδij , where γi = E

(
ψi (Z)

2
)
.

In the following text, we consider a normalised PC
(γi = 1). We can understand the PC of a ran-
dom variable Z as an orthonormal basis of the space
L2

dFZ (R). Consequently, we can approximate every
function f (Z) ∈ L2

dFZ (R) by the PC of the random
variable Z:

f (Z) ≈ fn (Z) =
n∑
i=0

ψi (Z)E (ψi (Z) f (Z)) , (34)

where fn (Z) is the projection of f (Z) into the space
of polynomials up to the degree n, and

lim
n→∞

‖fn (Z)− f (Z)‖L2
dFZ(R) = 0, (35)

see [2], [19] and [20].

In the case of a random vector Z of N independent
random variables, the space L2

dFZ

(
RN
)
can be han-

dled as a tensor product L2
dFZ1

(R)⊗ . . .⊗L2
dFZN

(R).
The PC of the random vector Z consists of products
of the PC basis functions of the random variables Zi:

Ψi (Z) =

N∏
k=1

ψik (Zk) , (36)

where i denotes a multi-index of size N .

The PC expansions are well known for most of
the standard probability distributions, see the Wiener-
Askey scheme in Tab. 1. According to this scheme, the
polynomial chaos for a normal random variable consists
of the Hermite polynomials (we will use the normalised
Hermite polynomials).

Tab. 1: The Wiener-Askey scheme, see [4]: Table 5.1.

Distribution Polynomial chaos
Gaussian Hermite polynomials
Uniform Legendre polynomials
Gamma Laguerre polynomials
Beta Jacobi polynomials

Poisson Charlier polynomials
Negative Binomial Miexner polynomials

Binomial Krawtchouk polynomials
Hypogeometric Hahn polynomials

3.2. Assembling the Stiffness Matrix

As mentioned before, discretization of the space
VH can be considered as a tensor product of
discretization of the space H1

0 (D) and discretiza-
tion of the space L2

dFZ

(
RN
)
. As discretization
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of the space H1
0 (D) we will use the finite el-

ements basis V hD := 〈ϕ1 (x) , . . . , ϕND
(x)〉 ⊂

〈ϕ1 (x) , . . . , ϕND
(x) , ϕND+1 (x) , . . . , ϕNDD

(x)〉 ⊂
H1 (D), and as discretization of the space
L2

dFZ

(
RN
)

we will use the Hermite polynomials
basis V hP := 〈ψ1 (Z) , . . . , ψNP

(Z)〉 (we now simplify
the aforementioned multi-index into the simple index).
We denote the discretized test function space as
V hH := V hD ⊗ V hP ⊂ VH . Then, the discretized solution
and the discretized particular solution will take the
form of

uhH (x;Z) =

ND∑
i=1

NP∑
j=1

(uH)ij ϕi (x)ψj (Z) , (37)

and

uh0 (x,Z) =

NDD∑
i=ND+1

(u0)i ϕi (x)ψ1 (Z) , (38)

where ψ1 (Z) is the constant element of the PC basis.
The Galerkin formulation of the problem:{

Find uH ∈ RNDNP ,∀ϕ ∈ V hD ,∀ψ ∈ V hP :

a
(
uhH , ϕψ

)
= −a

(
uh0 , ϕψ

)
,

(39)

is equivalent to the system of linear equations

AuH = b, (40)

where individual elements of A and b are defined as:

(A)ij,kl =

∫
RN

∫
D

exp

(
N∑
m=1

km (x)Zm

)
·

·∇ϕi (x)ψj (Z)∇ϕk (x)ψl (Z) dxdFZ, (41)

(
b
)
ij
=

∫
RN

∫
D

exp

(
N∑
m=1

km (x)Zm

)
∇ϕi (x) ·

·ψj (Z)

NDD∑
k=ND+1

(u0)k ϕk (x)ψ1 (Z)dxdFZ. (42)

Calculation of elements of the matrix A and the right-
hand side b seems complicated, but the integral over
the stochastic domain RN can be evaluated analyti-
cally. Using the commutativity of multiplication and
Fubini’s theorem, we can transform the expression of
(A)ij,kl and

(
b
)
ij

to

(A)ij,kl =

∫
D

∇ϕi (x)∇ϕk (x) kj,l (x) dx, (43)

(
b
)
ij
=

∫
D

∇ϕi (x)
NDD∑

k=ND+1

(u0)k ϕk (x) kj,1 (x)dx, (44)

where

ki,j (x) =

∫
RN

exp

(
N∑
m=1

km (x)Zm

)
·

·ψi (Z)ψj (Z) dFZ.

(45)

We obtain the values of ki,j (x) for some x ∈ D by
rewriting the expression using the definition of the PC
basis (see Eq. (36)):

ki,j (x) =

N∏
m=1

∫
R

exp (km (x)Zm) ·

·ψim (Zm)ψjm (Zm) dFZm, (46)

and merging the part of the random field
exp (km (x)Zm) corresponding to the random variable
Zm with its probability density function (currently
denoted as dFZm). The elements of the product take
the form of ∫

R

ψim (Zm)ψjm (Zm) ·

· 1√
2π

exp

(
2km (x)Zm − Z2

m

2

)
dZm, (47)

which can be expressed by the shifted random variables
Z̃m ∼ N (km (x) , 1). The probability density of Z̃m is

dFZ̃m :=
1√
2π

exp

(
−
(
Z2
m − km (x)

)2
2

)
dZm. (48)

Therefore ki,j (x) can be expressed as:

ki,j (x) =

N∏
m=1

exp
(
km (x)

2
)
·

·
∫
R

ψim (Zm)ψjm (Zm) dFZ̃m. (49)

Calculation of the stochastic part of the integral now
reduces to the evaluation of∫

R

ψim (Zm)ψjm (Zm) dFZ̃m,∀m = 1, . . . , N. (50)

The functions ψim (Zm) are polynomials; therefore the
expression Eq. (50) can be written as a linear combina-
tion of the moments of Z̃m (normal distribution with
given mean), which are known.

Another approach to the construction of the matrix
A is using the PC expansion of the truncated KL de-
composition of the random material properties

NPC∑
i=1

k̃i (x)ψi (Z) ≈ exp

(
N∑
i=1

ki (x)Zi

)
. (51)
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This approach allows us to separate the stochastic and
the physical part of the integral in the matrix A cal-
culation

(A)ij,kl =

NPC∑
m=1

∫
D

k̃m (x)∇ϕk (x)∇ϕi (x)dx ·

·
∫
RN

ψm (Z)ψj (Z)ψl (Z) dFZ. (52)

The separation leads to the “tensor form” of the ma-
trix A:

A =

NPC∑
m=1

Gm ⊗Km, (53)

where

(Km)ij =

∫
D

k̃m (x)∇ϕi (x)∇ϕj (x) dx, (54)

(Gm)ij =

∫
RN

ψm (Z)ψi (Z)ψj (Z) dFZ. (55)

This approach allows compressed storage of the matrix
A in the form of pairs of the matrices (Km,Gm); the
matrix A does not need to be constructed. On the
other hand, this approach suffers from an additional
AE of the PC representation of the random material
properties, see Eq. (51). The tensor form of the ma-
trix can also be assembled by rephrasing the problem,
see [10], but this approach leads to a non-symmetric
system.

The matrix A can have two different types of struc-
ture, which depends on the ordering of the basis func-
tions:

• (A)ij,kl denotes ordering (ϕ1ψ1) ,(ϕ2ψ1) , . . . ,
(ϕND

ψ1) , (ϕ1ψ2) , . . ., or

• (A)ji,lk denotes ordering (ϕ1ψ1) ,(ϕ1ψ2) , . . . ,
(ϕ1ψNP

) , (ϕ2ψ1) , . . ..

We can see the nonzero pattern of the matrix A for
both structures in Fig. 7. We can use this property for
the construction of a preconditioner.

1 25 49 73 97 120

1

25

49

73

97

120

(a) (A)ij,kl

1 21 41 61 81 101 120

1

21

41

61

81

101

120

(b) (A)ji,lk

Fig. 7: Different structures of matrix A (ND = 24, NP = 5).

3.3. Numerical Results

This part reports on numerical results for the solved
problem. For the numerical experiments, we choose
a regular 50 × 50 grid for the physical domain. We
solve the problem using the full matrix A construction
to avoid the AE of the PC expansion of the random
material properties.

The main aims of this section are the evaluation of
the mean and the variance/standard deviation of the
resulting random field and the comparison of the SGM
solution with the standard FEM solution.

The system of equations (structure (A)ij,kl) was
solved using the flexible GMRES method and a double
block diagonal preconditioner

M = D−12 PTD−11 P, (56)

whereP is a permutation matrix for reordering a vector
from the (A)ij,kl ordering to the (A)ji,lk ordering, D1

is the block diagonal of the matrix (A)ji,lk and D2 is
the block diagonal of the matrix (A)ij,kl.

There exist other types of preconditioners for the
SGM systems, for example: block-diagonal precondi-
tioner, see [12]; kronecker proconditioner, see [15]; or
hirearchical Schur preconditioner, see [11]. Some in-
sight into effectivity of preconditioners can be obtained
using the strengthened Cauchy-Bunyakowski-Schwarz
constant, see [13] and [14].

1) Mean Value and Standard Deviation of
the Solution

The SGM solution of the given problem offers an easy
way to obtain the mean and the variance of the solu-
tion. We can express the mean value of the solution

µuh (x) : D → R :=

∫
RN

uh (x,Z) dFZ, (57)

as

µuh (x) =

∫
RN

NP∑
j=1

uj (x)ψj (Z) dFZ = u1 (x) , (58)

where

uj (x) =

NDD∑
i=1

(u)ij ϕi (x) . (59)

The variance of the solution

σ2
uh (x) : D → R :=∫

RN

(
uh (x,Z)− µuh (x)

)2
dFZ, (60)
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can be expressed as

σ2
uh (x) =

∫
RN

NP∑
j=2

uj (x)ψj (Z)

2

dFZ

=

∫
RN

NP∑
j=2

NP∑
i=2

uj (x)ψj (Z)ui (x)ψi (Z) dFZ

=

NP∑
j=2

u2j (x) . (61)

The mean value and the standard deviation of so-
lution are shown in Fig. 8. The results are obtained
using N = 5 elements of the truncated KL decomposi-
tion and the PC up to the degree 10. The results agree
with the intuition - the mean value corresponds to the
deterministic solution with the homogeneous material
and the standard deviation is higher for the points far-
ther from the Dirichlet boundary.

0 0.5 1
0

0.5

1

0

0.2

0.4

0.6

0.8

1

(a) mean value µuh (x)

0 0.5 1
0

0.5

1

0

0.05

0.1

0.15

0.2

(b) standard deviation σuh (x)

Fig. 8: Characteristics of the solution.

2) Comparing SGM and FEM Solutions

The main advantage of the SGM solution is that it gives
us an approximation of u (x,Z) for all possible values
of Z (random material instances). Therefore we can
use the SGM solution instead of the FEM calculation
for a specific material sample. In the following text,
u (x,Z) denotes the FEM solution for a random ma-
terial sample (using the truncated KL decomposition)
and uh (x,Z) denotes the SGM solution. The AE of
SGM will be measured using the H1 (D) norm and the
L2 (D) norm of the difference between the FEM and
the SGM solution; the precision of the SGM approxi-
mation over the whole domain of Z will be measured
using

errH1

(
uh
)
:=

∫
RN

∥∥u (x,Z)− uh (x,Z)
∥∥
H1 dFZ, (62)

and

errL2

(
uh
)
:=

∫
RN

∥∥u (x,Z)− uh (x,Z)
∥∥
L2 dFZ. (63)

The integral in the calculation of errH1

(
uh
)

and
errL2

(
uh
)
will be approximated by the Monte Carlo

method with 106 samples.

The first numerical test describes the dependence of
the AE on the iterative solution precision and on the
maximum polynomial degree of the PC basis. We con-
struct the PC basis with the maximum polynomial de-
gree n as 〈

Ψa (Z) :=

N∏
i=1

ψai (Zi)

〉
∑
ai≤n

. (64)

The results of the numerical tests are shown in Fig. 9.
We can observe the following:

• The convergence in the L2 norm is comparable
with the convergence in the H1 norm. In the rest
of the text, we will use only the H1 norm.

• The precision of the iterative solution affects the
SGM AE only slightly, the difference between rel-
ative residual error 10−5 and 10−9 is negligible.

• The convergence is almost linear when increasing
the maximum polynomial degree.

1 2 3 4 5 6 7 8 9 10
Polynomial degree

10 -2

10 0

ap
pr

ox
im

at
io

n 
er

ro
r

Fig. 9: Comparison of error for different iterative precision and
polynomial degree.

The next numerical test will compare two basic ap-
proaches to the construction of the PC base. The first
construction is given by Eq. (64), where the sum of de-
grees of polynomials over all dimensions is bounded by
n. The second construction is〈

Ψa (Z) :=

N∏
i=1

ψai (Zi)

〉
∀i:ai≤n

, (65)

where the degree of a polynomial is bounded by n in

every dimension. The size of the PC basis is
(
n+N
n

)
for the first construction and nN for the second con-
struction.

The error errH1

(
uh
)
for both PC bases is shown in

Fig. 10 and Fig. 11. Figure 10 shows the dependence of
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Fig. 10: Error dependence on the maximal degree of the PC
basis.
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Fig. 11: Error dependence on the size of the PC basis.

errH1

(
uh
)
on the maximal degree of the polynomials,

and Fig. 11 shows the dependence of error on the size
of the basis. We can observe that the second approach
has a linear convergence rate and if compared to the
first approach, it has lower errH1

(
uh
)
for the same n.

On the other hand, the first approach has lower AE for
the same size of the basis.

The previous numerical tests demonstrated that
there is a considerable difference between two ap-
proaches to the construction of the PC basis. This
behaviour can motivate a search for an optimal con-
struction of the PC basis. Here we will try to construct
an “optimal” PC basis based on a different importance
(or the impact on the AE) of each KL decomposition
random variable (KLV).

First, we investigate the AE in some specific subsets
of the stochastic dimension. We want to observe the
AE when changing only one random variable and the
AE when fixing one random variable to zero. There-
fore we propose two error indicators. First, the AE
measured only across the Zi part of the stochastic di-
mension

erriH1

(
uh
)
:=

∫
RN

∥∥u (x,Zi)− uh (x,Zi)
∥∥
H1 dFZ,

(66)
where Zi = (0, . . . , 0, Zi, 0, . . . , 0). Second, the AE
measured as the complement to errH1

(
uh
)

erriH1

(
uh
)
:= errH1

(
uh
)
−

−
∫
RN

∥∥u (x,Zi)− u
h (x,Zi)

∥∥
H1 dFZ, (67)

where Zi = (Z1, . . . , Zi−1, 0, Zi+1, . . . , ZN ).
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(
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)
Fig. 12: Indicators of the relative impact on the approximation

error.

The results of the numerical test of the two proposed
error indicators are shown in Fig. 12. The test was
performed for N = 15 and n = 2, 3, 4 (bounded sum
of degrees). Both erriH1

(
uh
)
and erriH1

(
uh
)
exhibit

a similar behaviour, the relative impact on the AE is
the greatest for the 2nd, 3rd and 4th KLV. The results
of erriH1

(
uh
)
in Fig. 12 may be more credible, because

they include a dependence between single KLVs.

The behaviour observed in the previous paragraph
can be supported by the sensitivity analysis. The sen-
sitivity analysis, in the context of this paper, is under-
stood as a comparison of errH1

(
uh
)
for different bases.

The tested bases will be constructed as

Ψn,mi := Ψni ∪ Ψm, (68)

where

Ψm :=

〈
Ψa (Z) :=

N∏
j=1

ψaj (Zj)

〉
∑
aj≤m

, (69)

Ψni :=

〈
Ψa (Z) :=

N∏
j=1,j 6=i

ψaj (Zj)

〉
∑

j 6=i aj≤n

. (70)

We performed numerical tests for Ψ4,3
i (denoted as “pol.

degree -1”), Ψ4,2
i (denoted as “pol. degree -2”) and Ψ4,1

i

(denoted as “pol. degree -3”). The results (see Fig. 13)
reflect the increase of errH1

(
uh
)
when removing the

polynomials of the highest degree for a specific random
variable. Note, that the sensitivity analysis calcula-
tion is extremely computationally expensive; therefore
it cannot be used for the evaluation of the importance
of a KLV.
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Fig. 13: Sensitivity analysis (Ψ4,3
i , Ψ4,2

i and Ψ4,1
i ).

The performed numerical tests are computationally
expensive and require the calculation of the approxi-
mations of the solution. Therefore we cannot use them
for the construction of the PC basis. Another way to
estimate the importance of the KLV is the examination
of the functions ki (x) from the truncated KL decom-
position form of the random material properties, see
Eq. (29). The different importance of single KLVs is
caused only by the disparity between the functions ki.
The objective is to find a function f : L2 (D) → R+

which for each ki (x) returns similar values as the rela-
tive impact indicators or sensitivity analysis for single
KLVs. A straightforward approach to estimate the rel-
ative impact on the AE is to take the L2 (D) norm of
ki (x). However, a single ki (x) has the same relative
impact on the AE if a constant ki (x) = kci (x) + ci is
added to it, because

k (x;Z) = c (Z) kc (x;Z) , (71)

where c (Z) = exp

(
N∑
i=1

ciZi

)
and kc (x;Z) =

exp

(
N∑
i=1

kci (x)Zi

)
, and

−div (c (Z) kc (x;Z)∇u (x;Z)) = 0

−div (kc (x;Z)∇u (x;Z)) = 0. (72)

Therefore the following approximation is proposed:

f (ki (x)) := min
c∈R
‖ki (x)− c‖L2(D) , (73)

which equals to the

f (ki (x)) =

∥∥∥∥ki (x)− ∫
D
ki (y)dy

∥∥∥∥
L2(D)

. (74)

The values of the f (ki (x)) for the KL decomposition
elements 1, . . . , 15 can be seen in Fig. 14. Compared to
the previous relative impact indicators and sensitivity
analysis, the function f (ki (x)) has a similar behaviour.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
variable

0.2

0.4

0.6

Fig. 14: Estimate of the relative impact on the AE.

The next step is the construction of the PC basis
according to the given weights. We proceed as follows:

• we normalize the weights from Eq. (74)
so that the maximum is 0.5: wi =

f (ki (x)) /

(
2 max
k∈1,...,N

f (ki (x))

)
, the vector

w = (w1, . . . , wN ) is obtained,

• we calculate the weight of each polynomial of the
PC basis from its multi-index a = (a1, . . . , aN )

wa =

N∏
i=1

waii , (75)

• the PC basis of NP polynomials is constructed
from the first NP polynomials with the highest
weight wa.

The numerical results of the AE dependence on the
size of the PC basis for the weighted polynomial order-
ing compared to the previous construction approaches
can be seen in Fig. 15. Note that in addition to the
lower AE for the same size of the PC basis, the pro-
posed construction also allows an arbitrary size of the
basis.
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Fig. 15: Error dependence on the PC basis construction.

4. Conclusion

The paper focused on the complete solution of the
Darcy flow problem with a random material. We out-
lined a path from the differential equation with a ran-
dom field as an input parameter to an approximation
of the solution, which is also a random field. We dealt
with the spectral decomposition of the operator given
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by the autocovariance function, and we used the out-
coming decomposition for assembling the SGM system
of equations.

In the section about the KL decomposition, we also
provided an enhanced approach to the construction of
the Galerkin solution, which leads to the block diago-
nal structure of the outcoming system, and numerical
experiments concerning the choice of the basis for the
Galerkin solution.

In the section about the SGM solution, we performed
extensive numerical experiments regarding the conver-
gence in the stochastic dimension and the AE of the
different PC bases. Then we proposed the construc-
tion of the PC basis with a better AE.
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