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Abstract. This article focuses on the functionality ver-
ification of a novel non-invasive fibre-optic sensor mon-
itoring basic vital signs such as Respiratory Rate (RR),
Heart Rate (HR) and Body Temperature (BT). The in-
tegration of three sensors in one unit is a unique solu-
tion patented by our research team. The integrated sen-
sor is based on two Fiber Bragg Gratings (FBGs) en-
capsulated inside an inert polymer (non-reactive to hu-
man skin) called PolyDiMethylSiloxane (PDMS). The
PDMS is beginning to find widespread applications in
the biomedical field due to its desirable properties, es-
pecially its immunity to ElectroMagnetic Interference
(EMI). The integrated sensor’s functionality was veri-
fied by carrying out a series of laboratory experiments
in 10 volunteer subjects after giving them a written in-
formed consent. The Bland-Altman statistical analy-
sis produced satisfactory accuracy for the respiratory
and heart rate measurements and their respective ref-
erence signals in all test subjects. A total relative er-
ror of 0.31 % was determined for body temperature
measurements. The main contribution of this article
is a proof-of-concept of a novel noninvasive fiber-optic
sensor which could be used for basic vital sign moni-
toring. This sensor offers a potential to enhance and
improve the comfort level of patients in hospitals and
clinics and can even be considered for use in Magnetic
Resonance Imaging (MRI) environments.
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1. Introduction

The emerging trends in biomedical instrumentation de-
velopment clearly show that the immediate future of
vital sign monitoring favors the utilization of sophisti-
cated diagnostic tools and devices which integrate more
diagnostic parameters into one universal device. More
precisely stated: the integration of a variety of basic
sensors into one measurement unit with the purpose
to increase safety as well as comfort levels of patients
is of great research interest. This article reports our
contribution to the field and shares our recent research
findings on biomedical applications of fiber-optic sen-
sors. For a review of this emerging field please see
articles [1] and [2]. Our research team has developed
a patented fiber-optic sensor that allows monitoring of
mechanical vibrations of the human body evoked by
life activities such as breathing and cardiac rhythms as
well as body temperature [3].

A number of research articles which used one or more
FBGs, have presented results of measurements of res-
piration rate, heart rate or both simultaneously [4], [5],
[6], [7], [8] and [9]. For example, Chethana et al. have
presented very interesting results based on the design
and construction of an FBG-based sensor attached to
the patient’s chest that enables respiratory and heart
rate monitoring [4]. In this design, it is essential to
pay special attention to the tension of the optical fiber
so that adequate sensitivity is achieved. The detailed
design of this FBG-based sensor for monitoring respi-
ratory and heart rates in human subjects is presented
in [5]. In this work, the sensor consists of an FBG em-
bedded inside a single-mode optical fiber that operates
with the wavelength of approximately 1550 nm with
a maximum relative measurement error of 12 %. The
experimental results reported in article [6] describe an
FBG-based sensor prototype designed for monitoring
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the respiratory rate. In this work, the FBG sensor
is encapsulated inside a PDMS enclosure. The sen-
sor assembly is mounted on an elastic contact strap
that encircles the patient’s chest. The tension in the
chest caused by breathing leads to a spectral shift of
the reflected light from the FBG. In [7], Dziuda et al.
present results obtained from monitoring the respira-
tion and heart rates of a patient in a Magnetic Reso-
nance Imaging (MRI) environment using a fiber-optic
FBG-based sensor. This sensor was proposed by its de-
velopers to specifically acquire BallistoCardioGraphic
(BCG) signals from a patient positioned inside a dy-
namic magnetic field. The authors in [8] report a fiber-
optic-based smart textile sensor for respiratory rate
monitoring capable of operating in MRI environments.
In this work, two FBGs placed on the thorax enable
the conversion of chest wall movements during respi-
ration to measurable signals. Interestingly, article [9]
focuses on an MRI-friendly fiber-optic sensor for mon-
itoring the heart and respiration rates simultaneously.
In this design, the sensor employs a Plexiglas spring-
board to which an FBG is attached to convert the pa-
tient’s body movements to mechanical strain while ly-
ing on the springboard.

Current research by our team substantiates that our
novel sensor based on Mach-Zehnder interferometers
along with adaptive signal processing methods can find
applications in a variety of fields including noninvasive
monitoring of basic vital signs in obstetrics and gyne-
cology (uterine contractions, fetal heart rate monitor-
ing and others) [10], [11], [12] and [13].

Recent literature in the field of noninvasive mater-
nal and fetal vital sign monitoring provides ample ev-
idence that the integration of several diagnostic mea-
sures in one all-purpose instrument or sensor, although
an appealing concept, is facing many challenges; con-
sequently, there is a vast need for improvement and
research in this area. Our sensor, which allows the
measurement of body temperature in addition to mon-
itoring the heart and/or respirations rates as described
in the articles above, offers an innovative solution in
noninvasive, basic vital sign monitoring and is thus a
step forward.

2. Methods

FBGs are currently the most frequently used single-
point fiber-optic sensors due to their desirable proper-
ties such as: small size with high tensile strength, im-
munity to electromagnetic interference, and minimal
aging effect with regard to the components from which
they are assembled [14], [15] and [16]. Basically, FBGs
function by means of the periodical change of the re-
fractive index in their optical core, selectively filter-
ing certain wavelengths that are reflected back, while

allowing the remaining part of the spectrum to pass
through. All the reflected light signals combine coher-
ently to form one large reflection at a particular wave-
length when the grating period is approximately 1/2
of the input light’s wavelength. This is referred to as
the Bragg Condition, and the wavelength at which this
reflection occurs is called the Bragg Wavelength. An
example of the FBG structure and its working princi-
ple is shown in Fig. 1. As FBGs are sensitive to strain
and temperature changes, they are suitable for many
biomedical measurements. Single-point FBG sensors
can be connected together in cascade, thereby produc-
ing a multi-point sensor within one optical fiber. The
easiest method for enhancing the resolution of individ-
ual sensors is to use wavelength-division multiplexing.
We can integrate tens of sensors within the wavelength-
division multiplex, whose capacity is given by the type
of a measured value, the size of measuring ranges and
the size of the protection zone, see [17] and [18].
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Fig. 1: An example of FBGs structure and working principle.

The size of Fiber Bragg wavelength is given by the
following relationship:

λB = 2neffΛ, (1)

where neff is the effective refractive index of the used
optical fiber with Bragg grating, and Λ is the period
of changes in the refractive index of the core of the
used optical fiber. Deformation and temperature de-
pendence are given by the central Fiber Bragg Wave-
length and parameter values (where λB is the Bragg
wavelength, ∆λB is the shift of the Bragg wavelength,
∆ε is the change of deformation and ∆T represents
a change in temperature). To determine individual
sensitivities, normalized deformation and temperature
coefficients are used [19]. The normalized deformation
coefficient is given by the following relationship:

1

λB

∆λB
∆ε

= 0.78 · 10−6 µstrain−1, (2)

and the normalized temperature coefficient is given by
the following relationship:

1

λB

∆λB
∆T

= 6.678 · 10−6 ◦C−1. (3)
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3. Results

Our sensor with the following dimensions: 70 mm
(length) × 40 mm (width) × 4 mm (thickness), and
the weight of 50 grams, is used for measuring the res-
piratory rate, heart rate and body temperature in the
human body. It is based on two FBGs which are en-
capsulated inside a polydimethylsiloxane polymer [20]
and [21], see (Fig. 2). Our results reported elsewhere
[22] indicate that this type of encapsulation does not
affect the structure of the FBG.

Optical fiber to 
another probe

Optical fiber 
to OSA

Measuring sensor

FBG1 FBG2

Fig. 2: The design of our noninvasive basic vital sign sensor.

Measurements were carried out in ten volunteer sub-
jects of both sexes (5 men: M1–M5, and 5 women: F1–
F5), after obtaining their written informed consents, in
a research laboratory with the temperature of 24 ◦C.
The subjects were between 21 and 47 years of age, their
heights were between 156 and 197 cm, and their weights
were between 47 and 108 kg. No significant differences
were found in the quality of the recorded data based
on the subjects’ age, height, and weight. The sensor
probe was placed on the chest (around the pulmonic
area) and fixed by a contact elastic strap, see Fig. 3.
The subjects were tested in the supine position in a re-
laxed state.

Contact elastic
strap

Sensor probe

Fig. 3: Implementation sensor with contact elastic strap on hu-
man body.

An Optical Interrogator (OI) system developed by
our team was used to further process the sensed vital
signs acquired by the sensor [3]. The OI system is com-
posed of a wideband spectral light source from a Light

Emitting Diode (LED) with the central wavelength of
1550 nm and the output power of 1 mW. Furthermore,
it is composed of an Optical Spectrum Analyzer (OSA)
unit using the sampling frequency of 250 Hz, an optical
circulator, a Digital Signal Processing (DSP) Unit, and
an Electronic Control Unit (ECU) for each individual
optical element. The vital sign information (comprised
of heart rate, respiratory rate, and body temperature)
was displayed in a graphical user interface in an ap-
plication created in LabVieW (2015, National Instru-
ments, Austin, Texas, USA) by our research team.

The heart rate (expressed in beats per minute BPM)
and respiratory rate (expressed in respiration per
minute RPM) were obtained by a spectral evaluation
of the measured signals. Based on signal peak de-
tection and the calculation of time intervals between
these peaks, the heart and respiratory rates were de-
termined. The reference ECG and respiratory signals
were acquired by using a real-time monitoring sys-
tem with standard bioelectrodes, a respiratory sensing
module fixed to a subject’s chest along with a real-time
ECG and respiratory signal monitoring system based
on a virtual instrumentation system (NI ELVIS, II Se-
ries, National Instruments, Austin, TX, USA). The
body temperature (expressed in degrees Celsius ◦C)
was obtained by the mathematical relationships shown
in Eq. (4). A digital thermometer (Greisinger, Prague,
Czech Republic) was used to acquire the reference tem-
perature signal and recordings.

To determine the body temperature, we used two
FBGs with different temperature and deformation sen-
sitivities. Different sensitivities were within the pro-
posed sensor range given by a specific form and shape
of encapsulation. It is established that if the sensor
is affected by deformation or temperature, the size of
both of these impacts could be determined by using
the following relationship [23]:(

∆T
∆ε

)
=

1

K1TK2ε +K2TK1ε
· . . .

. . . ·
(
K2ε −K1ε

−K2T K1T

)(
∆λB1

∆λB2

)
,

(4)

where ∆ε is deformation, ∆T is the temperature
change, Knε is the deformation coefficient, and KnT

is the temperature coefficient belonging to the first or
second FBG. ∆λB1 and ∆λB2 represent the shift of the
Bragg Wavelength for the first FBG1 and the second
FBG2, respectively.

Figure 4 shows a 30-second long record of changes
in Fiber Bragg Wavelength during the measurement of
breathing activity in test subject M1 as an example.

For comparison, Fig. 5 shows a 10-second long record
of changes in the Fiber Bragg Wavelength during the
measurement of heartbeat activity in a female test sub-
ject (F4).
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Fig. 4: A 30-second record of changes in the Fiber Bragg Wave-
length during the measurement of breathing activity in
a male test subject (M1).
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Fig. 5: A 10-second record of changes in the Fiber Bragg Wave-
length during the measurement of heartbeat activity in
a female subject (F4).

Figure 6 shows a 60-second-long record of tempera-
ture measurement in test subject M1.
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Fig. 6: A 60-second-long record of measurement and determi-
nation of temperature in test subject M1.

To compare the differences between the reference sig-
nals and those acquired from our novel sensor, the
Bland-Altman plot was utilized [24]. The differences
between the sensor and the reference traces, x1 − x2,
are plotted against the average, (x1 + x2)/2. The re-
producibility is considered to be good if 95 % of the

results lie within the ±1.96 SD (Standard Deviation)
range.

The key experimental results for the heart and respi-
ratory rate measurements are summarized in Tab. 1. In
the case of heart rate measurements for the entire data
set, 95.34 % (95.45 % for men and 95.24 % for women)
of the values lie within the ±1.96 SD range for the HR
determination and no significant differences were found
between observed individuals (Fig. 7).

Tab. 1: Summary of respiratory and heart rates measurements.

Sub.

RR HR
Rec. NoS Samples NoS Samples
time sensor in ±1.96 sensor in ±1.96
(s) SD (%) SD (%)

M1 720 204 94.61 816 95.47
M2 530 133 94.38 636 95.60
M3 680 197 95.53 884 94.57
M4 540 141 93.80 675 95.56
M5 440 122 95.18 535 96.07
F1 340 71 94.57 459 96.08
F2 450 135 95.56 630 95.71
F3 420 106 96.33 553 94.39
F4 490 139 94.54 760 96.05
F5 530 133 95.59 616 93.99
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Fig. 7: Statistical analysis of heart rate using the Bland-Altman
plot.

In the case of respiratory rate measurements for the
entire data set, 95.01 % (94.71 % for men and 95.31 %
for women) of the values lie within the ±1.96 SD range
(Fig. 8).
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Fig. 8: Statistical analysis of the respiratory rate using the
Bland-Altman plot.

The key experimental results of body temperature
measurements are summarized in Tab. 2. This table
shows temperature values obtained after a measure-
ment time interval of 60 seconds. The maximum rela-
tive error of temperature measurement was 0.55 %.

Tab. 2: Summary of body temperature measurements.

Subject Rec. time (s) 60 Relative error (%)

M1 ref. (◦ C) 35.7 0.28sensor (◦ C) 35.8

M2 ref. (◦ C) 35.6 0.28sensor (◦ C) 35.7

M3 ref. (◦ C) 36.3 0.55sensor (◦ C) 36.5

M4 ref. (◦ C) 36.8 0.27sensor (◦ C) 36.7

M5 ref. (◦ C) 36.9 0.27sensor (◦ C) 37.0

F1 ref. (◦ C) 36.7 0.27sensor (◦ C) 36.8

F2 ref. (◦ C) 36.6 0.27sensor (◦ C) 36.5

F3 ref. (◦ C) 36.3 0.28sensor (◦ C) 36.4

F4 ref. (◦ C) 36.6 0.27sensor (◦ C) 36.7

F5 ref. (◦ C) 37.1 0.27sensor (◦ C) 37.2

4. Conclusion

Here we described the functionality verification of a
novel non-invasive fiber-optic sensor for the monitor-
ing of human basic vital signs: Respiratory Rate (RR),
Heart Rate (HR), Body Temperature (BT). Experi-
ments were carried out in a research laboratory condi-
tion on 10 volunteer test subjects after obtaining their
written informed consents. At the completion of the
experiments all test subjects were asked whether they
had sensed or encountered any feelings of discomfort,
especially at the moment of fixing the measurement
sensor into a contact strap. None of the test subjects
expressed any sense of discomfort. The total time for
carrying out all experiments was 85 minutes 39 sec-
onds. The Bland-Altman Statistical Analysis for the
respiratory rate (95.01 %) and heart rate (95.34 %)
measurements showed satisfactory accuracy for all data
acquired from the test subjects. The maximum rela-
tive error for temperature measurement was 0.55 %.
The outcomes of these experiments have unambigu-
ously proved the functionality of our novel sensor. We
are hoping that our contribution reported here paves
the way for researchers in this fast developing and
emerging field and facilitates their efforts in expand-
ing the applications of fiber-optic sensors and devices
in sophisticated medical diagnostic instrumentation in
the near future.
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